Killing Magnetic Curves in Non-Flat Lorentzian-Heisenberg Spaces

Murat Altunbaş ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24030, Erzincan, TURKEY

Abstract

We obtain some explicit formulas for Killing magnetic curves in non-flat Lorentzian-Heisenberg spaces.

1. Introduction

Let (M, g) be a three-dimensional (semi-)Riemannian manifold. The magnetic curves γ on M are generalizations of geodesics which satisfy the following differential equation:

$$
\begin{equation*}
\nabla_{\gamma^{\prime}} \gamma^{\prime}=\varphi\left(\gamma^{\prime}\right) \tag{1}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g and φ is a skew-symmetric (1,1)-tensor field. The tensor field φ is known as the Lorentz force and equation (1) is said to be the Lorentz equation. Magnetic curves were investigated by several authors in Riemannian and semi-Riemannian manifolds (see [10], [11], [12], [13]).

Moreover, when the magnetic fields (which will be explained later) correspond to a Killing vector, the curves γ which fulfill equation (1) are said to be Killing magnetic curves. Studying Killing magnetic curves is an actual topic of research in pure mathematics and theoretical physics. In [14], Romaniuc and Munteanu considered Killing magnetic curves in three-dimensional Euclidean space. In [15], the same authors studied these curves in three-dimensional Minkowski space. In [5], Erjavec gave some characterizations about Killing magnetic curves in $S L(2, \mathbb{R})$. In [6] and [7], Killing magnetic curves were investigated in Sol space and almost cosymplectic Sol space, respectively. In [9], Munteanu and Nistor classified Killing magnetic curves in $S^{2} \times \mathbb{R}$. In [3], Calvaruso, Munteanu and Perrone obtained a complete classification for the Killing magnetic curves in three-dimensional almost paracontact manifolds. In [2], Bejan and Romaniuc proved that equipped with a Killing vector field V, any arc length parameterized spacelike or timelike curve, normal to V, is a magnetic trajectory associated to V in a Walker manifold. And finally, in [4], Derkaoui and Hathout occured explicit formulas for Killing magnetic curves in Heisenberg group.

In this paper, we determine the Killing magnetic curves in the three-dimensional Lorentzian-Heisenberg space. It is known that Lorentzian-Heisenberg space can be equipped with three non-isometric metrics. We will consider two of them which are non-flat.

[^0]
2. Preliminaries

Let (M, g) be a three-dimensional semi-Riemannian manifold. The magnetic curves on (M, g) are trajectories of charged particles, moving on M under the action of a magnetic field F. A magnetic field on M is a closed 2-form F on M, to which one can associate a skew-symmetric (1,1)-tensor field φ on M, uniquely determined by

$$
F(X, Y)=g(\varphi(X), Y)
$$

for all $X, Y \in \chi(M)$. Here, the tensor field φ is called the Lorentz force.
The magnetic trajectories of F are regular curves γ in M which satisfy the Lorentz equation

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\varphi(\mathbf{t}) \tag{2}
\end{equation*}
$$

where $\mathbf{t}=\gamma^{\prime}$ is the speed vector of γ.
Furthermore, to have a positively oriented orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ and represent the vectors X and Y as $X=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$ and $Y=y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}$, the vector product of two vector fields $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ is given by

$$
X \wedge Y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{2} y_{1}-x_{1} y_{2}\right)
$$

The mixed product of the vector fields $X, Y, Z \in \chi(M)$ is then defined by

$$
g(X \wedge Y, Z)=d v_{g}(X, Y, Z)
$$

where $d v_{g}$ denotes a volume on M.
A vector field V is called a Killing vector field if it satisfies the Killing equation

$$
g\left(\nabla_{X} V, Y\right)+g\left(\nabla_{Y} V, X\right)=0
$$

for all $X, Y \in \chi(M)$, where ∇ is the Levi-Civita connection of the metric g.
Let $F_{V}=i_{V} d v g$ be the Killing magnetic force corresponding to the Killing magnetic vector field V on M, where i denotes the inner product. The Lorentz force of F_{V} is described as

$$
\varphi(X)=V \wedge X
$$

for all $X \in \chi(M)$. Therefore, equation (2) can be rewritten as

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=V \wedge \mathbf{t} \tag{3}
\end{equation*}
$$

and solutions of above equation are called Killing magnetic curves corresponding to the Killing vector fields V.

For shortness, we will call these curves as V-magnetic curves in this paper.

3. Metrics on Lorentzian-Heisenberg space

Each left-invariant Lorentzian metric on the 3-dimensional Heisenberg group H_{3} is isometric to one of the following metrics:

$$
\begin{aligned}
& g_{1}=-\frac{1}{\lambda^{2}} d x^{2}+d y^{2}+(x d y+d z)^{2} \\
& g_{2}=\frac{1}{\lambda^{2}} d x^{2}+d y^{2}-(x d y+d z)^{2}, \lambda>0 \\
& g_{3}=d x^{2}+(x d y+d z)^{2}-((1-x) d y-d z)^{2}
\end{aligned}
$$

Furthermore, the Lorentzian metrics g_{1}, g_{2}, g_{3} are non-isometric and the Lorentzian metric g_{3} is flat [1]. We will deal with the metrics g_{1} and g_{2} (i.e. non-flat cases).

Remark 3.1. According to the coordinate change $u=\lambda^{-1} x, v=y, w=z+2 x y$, we rewrite the metrics as

$$
\begin{align*}
& g_{1}=-d u^{2}+d v^{2}+\lambda^{2}(v d u-u d v)^{2} \\
& g_{2}=d u^{2}+d v^{2}-\lambda^{2}(v d u-u d v)^{2}, \lambda>0 . \tag{4}
\end{align*}
$$

4. The metric g_{1}

An orthonormal basis on $\left(H_{3}, g_{1}\right)$ is given by

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial z}, e_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, e_{3}=\lambda \frac{\partial}{\partial x} \tag{5}
\end{equation*}
$$

where the vector e_{3} is timelike. The non-zero components of the Levi-Civita connection ∇ of the metric g_{1} are given by

$$
\begin{align*}
\nabla_{e_{1}} e_{2} & =\nabla_{e_{2}} e_{1}=\frac{\lambda}{2} e_{3}, \tag{6}\\
\nabla_{e_{1}} e_{3} & =\nabla_{e_{3}} e_{1}=\frac{\lambda}{2} e_{2}, \\
\nabla_{e_{2}} e_{3} & =-\nabla_{e_{3}} e_{2}=\frac{\lambda}{2} e_{1} .
\end{align*}
$$

The Lie algebra of Killing vector fields of $\left(H_{3}, g_{1}\right)$ admits as basis

$$
\begin{align*}
& V_{1}=\frac{\partial}{\partial z}, V_{2}=\frac{\partial}{\partial y}, V_{3}=\lambda \frac{\partial}{\partial x}-\lambda y \frac{\partial}{\partial z^{\prime}} \tag{7}\\
& V_{4}=\lambda^{2} y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-\frac{1}{2}\left(x^{2}+\lambda^{2} y^{2}\right) \frac{\partial}{\partial z}
\end{align*}
$$

Using (5), we rewrite equations (7) as follows:

$$
\begin{aligned}
V_{1} & =e_{1}, V_{2}=x e_{1}+e_{2}, V_{3}=-\lambda y e_{1}+e_{3} \\
V_{4} & =\frac{1}{2}\left(x^{2}-\lambda^{2} y^{2}\right) e_{1}+x e_{2}+\lambda y e_{3}
\end{aligned}
$$

If $\gamma: I \rightarrow\left(H_{3}, g_{1}\right), \gamma(t)=(x(t), y(t), z(t))$ is a regular curve, then its speed vector is described as

$$
\mathbf{t}=\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

and

$$
\begin{equation*}
\mathbf{t}=\gamma^{\prime}(t)=\left(z^{\prime}+x y^{\prime}\right) e_{1}+y^{\prime} e_{2}+\frac{x^{\prime}}{\lambda} e_{3} . \tag{8}
\end{equation*}
$$

From equations (6), we have

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\left(z^{\prime}+x y^{\prime}\right)^{\prime} e_{1}+\left(y^{\prime \prime}+x^{\prime}\left(z^{\prime}+x y^{\prime}\right)\right) e_{2}+\left(\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)\right) e_{3} \tag{9}
\end{equation*}
$$

In the following subsections, we obtain some formulas for V_{i}-magnetic curves $(i=1, \ldots, 4)$ in $\left(H_{3}, g_{1}\right)$. To solve the differential equations, we need help of Wolfram Mathematica.

4.1. V_{1}-magnetic curves

Using (7) ${ }_{1}$ and (8), we occur

$$
\begin{equation*}
V_{1} \wedge \mathbf{t}=-\frac{x^{\prime}}{\lambda} e_{2}-y^{\prime} e_{3} \tag{10}
\end{equation*}
$$

The equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{1} \wedge \mathbf{t}$ gives us the following system:

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}+x^{\prime}\left(\left(z^{\prime}+x y^{\prime}\right)+\frac{1}{\lambda}\right)=0 \tag{11}\\
x^{\prime \prime}+y^{\prime}\left(\lambda^{2}\left(z^{\prime}+x y^{\prime}\right)+\lambda\right)=0 \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=0
\end{array}\right.
$$

By integrating $\left(S_{1}\right)_{3}$ and putting it in $\left(S_{1}\right)_{1,2}$, we obtain

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}+x^{\prime}\left(c+\frac{1}{\lambda}\right)=0 \\
x^{\prime \prime}+y^{\prime} \lambda(\lambda c+1)=0 \\
\left.z^{\prime}+x y^{\prime}=c \text { (constant }\right)
\end{array}\right.
$$

Solution of the system $\left(S_{1}\right)_{1,2}$ is

$$
\left\{\begin{array}{l}
x(t)=-\frac{\lambda}{\lambda c+1}\left[k_{1} \cosh ((\lambda c+1) t)+k_{2} \sinh ((\lambda c+1) t)\right]+k_{3}, \tag{12}\\
y(t)=\frac{1}{\lambda c+1}\left[k_{1} \sinh ((\lambda c+1) t)+k_{2} \cosh ((\lambda c+1) t)\right]+k_{4},
\end{array}\right.
$$

where $k_{i}, i=1, \ldots, 4$ are constants. Setting equations (12) in $\left(S_{1}\right)_{3}$ and by integration, we get

$$
\begin{aligned}
z(t)= & \left(c+\frac{\lambda}{2(\lambda c+1)}\left(k_{1}^{2}-k_{2}^{2}\right)\right) t+\frac{\lambda}{(\lambda c+1)^{2}}\left[\frac{\left(k_{1}^{2}+k_{2}^{2}\right)}{4} \sinh (2(\lambda c+1) t)\right. \\
& \left.+\frac{k_{1} k_{2}}{2} \cosh (2(\lambda c+1) t)\right]+\frac{1}{\lambda c+1}\left[k_{1} k_{3} \sinh ((\lambda c+1) t)\right. \\
& \left.+k_{2} k_{3} \cosh ((\lambda c+1) t)\right]+k_{5},
\end{aligned}
$$

where k_{5} is a constant.
If $c=-\frac{1}{\lambda}$, the system S_{1} reduces to

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}=0 \\
x^{\prime \prime}=0 \\
z^{\prime}+x y^{\prime}=-\frac{1}{\lambda}
\end{array}\right.
$$

Its general solution

$$
S_{1}:\left\{\begin{array}{l}
x(t)=k_{1} t+k_{2} \\
y(t)=k_{3} t+k_{4} \\
z(t)=-\frac{k_{1} k_{3}}{2} t^{2}-\left(\frac{1}{\lambda}+k_{2} k_{3}\right) t+k_{5}
\end{array}\right.
$$

where $k_{i}, i=1, \ldots, 5$ are constants. Therefore, we state the following theorem.
Theorem 4.1. All V_{1}-magnetic curves of $\left(H_{3}, g_{1}\right)$ satisfy the following equations:
(i) If $c=-\frac{1}{\lambda}$, then

$$
\gamma(t)=\left(\begin{array}{c}
x(t)=k_{1} t+k_{2} \\
y(t)=k_{3} t+k_{4} \\
z(t)=-\frac{k_{1} k_{3}}{2} t^{2}-\left(\frac{1}{\lambda}+k_{2} k_{3}\right) t+k_{5}
\end{array}\right)
$$

(ii) If $c \neq-\frac{1}{\lambda}$, then

$$
\gamma(t)=\left(\begin{array}{c}
x(t)=-\frac{\lambda}{\lambda+1}\left[k_{1} \cosh ((\lambda c+1) t)+k_{2} \sinh ((\lambda c+1) t)\right]+k_{3}, \\
y(t)=\frac{1}{\lambda c+1}\left[k_{1} \sinh ((\lambda c+1) t)+k_{2} \cosh ((\lambda c+1) t)\right]+k_{4}, \\
z(t)=\left(c+\frac{\lambda}{2(\lambda c+1)}\left(k_{1}^{2}-k_{2}^{2}\right)\right) t+\frac{\lambda}{(\lambda c+1)^{2}}\left[\frac{\left(k_{1}^{2}+k_{2}^{2}\right)}{4} \sinh (2(\lambda c+1) t)\right. \\
\left.+\frac{k_{1} k_{2}}{2} \cosh (2(\lambda c+1) t)\right]+\frac{1}{(\lambda c+1)}\left[k_{1} k_{3} \sinh ((\lambda c+1) t)\right. \\
\left.+k_{2} k_{3} \cosh ((\lambda c+1) t)\right]+k_{5}
\end{array}\right),
$$

where $k_{i}, i=1, \ldots, 5$ are constants.

4.2. V_{2}-magnetic curves

According to $(7)_{2}$ and (8), we have

$$
\begin{equation*}
V_{2} \wedge \mathbf{t}=\frac{x^{\prime}}{\lambda} e_{1}-\frac{x x^{\prime}}{\lambda} e_{2}-\left(x y^{\prime}-\left(z^{\prime}+x y^{\prime}\right)\right) e_{3} \tag{13}
\end{equation*}
$$

From the equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{2} \wedge \mathbf{t}$, we get

$$
S_{2}:\left\{\begin{array}{l}
y^{\prime \prime}+x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\frac{x x^{\prime}}{\lambda} \tag{14}\\
\left(\lambda y^{\prime}-1\right)\left(z^{\prime}+x y^{\prime}\right)=-x y^{\prime}-\frac{x^{\prime \prime}}{\lambda} \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=\frac{x^{\prime}}{\lambda}
\end{array}\right.
$$

By integrating $\left(S_{2}\right)_{3}$, we deduce

$$
z^{\prime}+x y^{\prime}=\frac{x}{\lambda}+c
$$

where c is a constant. Putting the last equation in $\left(S_{2}\right)_{1,2}$ we get

$$
\bar{S}_{2}:\left\{\begin{array}{l}
y^{\prime \prime}=-x^{\prime}\left(\frac{2 x}{\lambda}+c\right), \\
\left(\lambda y^{\prime}-1\right)\left(\frac{x}{\lambda}+c\right)=-x y^{\prime}-\frac{x^{\prime \prime}}{\lambda}
\end{array}\right.
$$

and

$$
\bar{S}_{2}:\left\{\begin{array}{l}
y^{\prime}=-\frac{x^{2}}{\lambda}-x c \tag{15}\\
x^{\prime \prime}-2 x^{3}-x-\lambda c\left(3 x^{2}+c \lambda x+1\right)=0
\end{array}\right.
$$

Without loss of generality, we can suppose that $c=0$. In this case, the equation $x^{\prime \prime}-2 x^{3}-x=0$ involves Jacobi elliptic functions as solutions. So, we can express the following proposition.

Proposition 4.2. The Killing magnetic curves in $\left(H_{3}, g_{1}\right)$ corresponding to the Killing vector field $V_{2}=x e_{1}+e_{2}$ are solutions of the system of differential equations (14).

4.3. V_{3}-magnetic curves

From $(7)_{3}$ and (8), we have

$$
\begin{equation*}
V_{3} \wedge \mathbf{t}=-y^{\prime} e_{1}+\left(y x^{\prime}+\left(z^{\prime}+x y^{\prime}\right)\right) e_{2}+\lambda y y^{\prime} e_{3} . \tag{16}
\end{equation*}
$$

Using the equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{3} \wedge \mathbf{t}$, we obtain

$$
S_{3}:\left\{\begin{array}{l}
y^{\prime \prime}+x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=y x^{\prime}+\left(z^{\prime}+x y^{\prime}\right) \tag{17}\\
\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)=\lambda y y^{\prime} \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=-y^{\prime}
\end{array}\right.
$$

By integrating $\left(S_{3}\right)_{3}$, we occur

$$
z^{\prime}+x y^{\prime}=-y+c
$$

where c is a constant. Putting the last equation in $\left(S_{3}\right)_{1,2}$, we get

$$
\bar{S}_{3}:\left\{\begin{array}{l}
x^{\prime}=\lambda^{2} y^{2}-\lambda^{2} y c \tag{18}\\
y^{\prime \prime}-2 x^{\prime} y+y+c\left(x^{\prime}-1\right)=0
\end{array}\right.
$$

Without loss of generality, we can assume that $c=0$. In this case, when we try to solve the system \bar{S}_{3}, i.e., the equation $y^{\prime \prime}-2 \lambda^{2} y^{3}+y=0$, we encounter Jacobi elliptic functions. Therefore, we write the following proposition.

Proposition 4.3. The Killing magnetic curves in $\left(H_{3}, g_{1}\right)$ corresponding to the Killing vector field $V_{3}=-\lambda y e_{1}+e_{3}$ are solutions of the system of differential equations (17).

4.4. V_{4}-magnetic curves

From (7) $)_{3}$ and (8), we write

$$
\begin{align*}
V_{4} \wedge \mathbf{t}= & \left(\frac{x x^{\prime}}{\lambda}-\lambda y y^{\prime}\right) e_{1}-\left(\frac{1}{2}\left(x^{2}-\lambda^{2} y^{2}\right) \frac{x^{\prime}}{\lambda}-\lambda y\left(z^{\prime}+x y^{\prime}\right)\right) e_{2} \tag{19}\\
& -\left(\frac{1}{2}\left(x^{2}-\lambda^{2} y^{2}\right) y^{\prime}-x\left(z^{\prime}+x y^{\prime}\right)\right) e_{3}
\end{align*}
$$

From the equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{4} \wedge \mathbf{t}$, we get

$$
S_{4}:\left\{\begin{array}{l}
y^{\prime \prime}+x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\frac{1}{2}\left(x^{2}-\lambda^{2} y^{2}\right) \frac{x^{\prime}}{\lambda}+\lambda y\left(z^{\prime}+x y^{\prime}\right) \tag{20}\\
\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\frac{1}{2}\left(x^{2}-\lambda^{2} y^{2}\right) y^{\prime}+x\left(z^{\prime}+x y^{\prime}\right) \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=\left(\frac{x x^{\prime}}{\lambda}-\lambda y y^{\prime}\right)
\end{array}\right.
$$

By integrating $\left(S_{4}\right)_{3}$, we obtain

$$
\begin{equation*}
z^{\prime}+x y^{\prime}=\frac{x^{2}}{2 \lambda}-\frac{\lambda y^{2}}{2}+c \tag{21}
\end{equation*}
$$

where c is a constant. Putting the last equation in $\left(S_{4}\right)_{1,2}$, we get

$$
\bar{S}_{4}:\left\{\begin{array}{l}
y^{\prime \prime}+\frac{x^{\prime}}{\lambda}\left(x^{2}-\lambda^{2} y^{2}\right)=\frac{1}{2} y\left(x^{2}-\lambda^{2} y^{2}\right)+c\left(\lambda y-x^{\prime}\right) \tag{22}\\
x^{\prime \prime}+\lambda y^{\prime}\left(x^{2}-\lambda^{2} y^{2}\right)=\frac{1}{2} x\left(x^{2}-\lambda^{2} y^{2}\right)+c\left(\lambda x-\lambda^{2} y^{\prime}\right)
\end{array}\right.
$$

It seems very difficult to solve the system \bar{S}_{4} in general case. For a particular case $x=\lambda y$, we deduce

$$
\bar{S}_{4}:\left\{\begin{array}{l}
x^{\prime \prime}+c \lambda x^{\prime}-c \lambda x=0 \tag{23}\\
y^{\prime \prime}+c \lambda y^{\prime}-c \lambda y=0
\end{array}\right.
$$

By solving the second equation of the above system, we get

$$
y(t)=k_{1} e^{-\frac{t}{2}(c \lambda+\sqrt{c \lambda(4+c \lambda)})}+k_{2} e^{\frac{t}{2}(-c \lambda+\sqrt{c \lambda(4+c \lambda)})}
$$

where k_{1} and k_{2} are constants. From (21), we obtain

$$
\begin{aligned}
z(t) & =c t-\frac{\lambda y^{2}}{2} \\
& =c t-\frac{\lambda}{2}\left(k_{1} e^{-\frac{t}{2}(c \lambda+\sqrt{c \lambda(4+c \lambda)})}+k_{2} e^{\frac{t}{2}(-c \lambda+\sqrt{c \lambda(4+c \lambda)})}\right)^{2}
\end{aligned}
$$

Therefore, a solution of the system \bar{S}_{4} is given by

$$
\bar{S}_{4}:\left\{\begin{array}{l}
x(t)=\lambda\left(k_{1} e^{-\frac{t}{2}(c \lambda+\sqrt{c \lambda(4+c \lambda))}}+k_{2} e^{\frac{t}{2}(-c \lambda+\sqrt{c \lambda(4+c \lambda))}}\right) \tag{24}\\
y(t)=k_{1} e^{-\frac{t}{2}(c \lambda+\sqrt{c \lambda(4+c \lambda)})}+k_{2} e^{\frac{t}{2}(-c \lambda+\sqrt{c \lambda(4+c \lambda)})} \\
z(t)=c t-\frac{\lambda}{2}\left(k_{1} e^{-\frac{t}{2}(c \lambda+\sqrt{c \lambda(4+c \lambda))}}+k_{2} e^{\frac{t}{2}(-c \lambda+\sqrt{c \lambda(4+c \lambda)})}\right)^{2} .
\end{array}\right.
$$

Hence, we write the following proposition.
Proposition 4.4. The Killing magnetic curves in $\left(H_{3}, g_{1}\right)$ corresponding to the Killing vector field $V_{4}=\frac{1}{2}\left(x^{2}-\right.$ $\left.\lambda^{2} y^{2}\right) e_{1}+x e_{2}+\lambda y e_{3}$ are solutions of the system of differential equations (20). Moreover, the space curves given by parametric equations (24) are V_{4}-magnetic curves in $\left(H_{3}, g_{1}\right)$.

In the last section, we follow the steps explained in the strategy mentioned in this section for the metric g_{2}.

5. The metric g_{2}

We have an orthonormal basis on $\left(H_{3}, g_{2}\right)$

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, e_{2}=\lambda \frac{\partial}{\partial x}, e_{3}=\frac{\partial}{\partial z} \tag{25}
\end{equation*}
$$

where the vector e_{3} is timelike. The non-zero components of the Levi-Civita connection ∇ of the metric g_{2} are given by

$$
\begin{align*}
\nabla_{e_{1}} e_{2} & =-\nabla_{e_{2}} e_{1}=\frac{\lambda}{2} e_{3} \tag{26}\\
\nabla_{e_{1}} e_{3} & =\nabla_{e_{3}} e_{1}=\frac{\lambda}{2} e_{2}, \\
\nabla_{e_{2}} e_{3} & =\nabla_{e_{3}} e_{2}=-\frac{\lambda}{2} e_{1} .
\end{align*}
$$

The Lie algebra of Killing vector fields of $\left(H_{3}, g_{2}\right)$ admits as basis

$$
\begin{align*}
& V_{1}=\frac{\partial}{\partial z}, V_{2}=\frac{\partial}{\partial y}, V_{3}=\lambda \frac{\partial}{\partial x}-\lambda y \frac{\partial}{\partial z^{\prime}} \tag{27}\\
& V_{4}=-\lambda^{2} y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+\frac{1}{2}\left(-x^{2}+\lambda^{2} y^{2}\right) \frac{\partial}{\partial z} .
\end{align*}
$$

Using (25), we rewrite equations (27) as follows:

$$
\begin{aligned}
& V_{1}=e_{3}, V_{2}=e_{1}+x e_{3}, V_{3}=e_{2}-\lambda y e_{3} \\
& V_{4}=x e_{1}-\lambda y e_{2}+\frac{1}{2}\left(x^{2}+\lambda^{2} y^{2}\right) e_{3}
\end{aligned}
$$

If $\gamma: I \rightarrow\left(H_{3}, g_{2}\right), \gamma(t)=(x(t), y(t), z(t))$ is a regular curve, then its speed vector is described as

$$
\mathbf{t}=\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

and

$$
\begin{equation*}
\mathbf{t}=\gamma^{\prime}(t)=y^{\prime} e_{1}+\frac{x^{\prime}}{\lambda} e_{2}+\left(z^{\prime}+x y^{\prime}\right) e_{3} . \tag{28}
\end{equation*}
$$

From equations (26), we have

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\left(y^{\prime \prime}-x^{\prime}\left(z^{\prime}+x y^{\prime}\right)\right) e_{1}+\left(\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)\right) e_{2}+\left(z^{\prime}+x y^{\prime}\right)^{\prime} e_{3} \tag{29}
\end{equation*}
$$

5.1. V_{1}-magnetic curves

We have

$$
\begin{equation*}
V_{1} \wedge \mathbf{t}=-\frac{x^{\prime}}{\lambda} e_{1}+y^{\prime} e_{2} \tag{30}
\end{equation*}
$$

From the equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{1} \wedge \mathbf{t}$, we get

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}-x^{\prime}\left(\left(z^{\prime}+x y^{\prime}\right)-\frac{1}{\lambda}\right)=0 \tag{31}\\
x^{\prime \prime}+y^{\prime}\left(\lambda^{2}\left(z^{\prime}+x y^{\prime}\right)-\lambda\right)=0 \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=0 .
\end{array}\right.
$$

By integrating $\left(S_{1}\right)_{3}$ and putting it in $\left(S_{1}\right)_{1,2}$, we obtain

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}-x^{\prime}\left(c-\frac{1}{\lambda}\right)=0 \\
x^{\prime \prime}+y^{\prime} \lambda(\lambda c-1)=0 \\
\left.z^{\prime}+x y^{\prime}=c \text { (constant }\right)
\end{array}\right.
$$

Solution of the system $\left(S_{1}\right)_{1,2}$ is

$$
S_{1}:\left\{\begin{array}{l}
x(t)=\frac{\lambda}{\lambda c-1}\left[k_{1} \cos ((\lambda c-1) t)+k_{2} \sin ((\lambda c-1) t)\right]+k_{3} \tag{32}\\
y(t)=\frac{1}{\lambda c-1}\left[k_{1} \sin ((\lambda c-1) t)-k_{2} \cos ((\lambda c-1) t)\right]+k_{4}
\end{array}\right.
$$

where $k_{i}, i=1, \ldots, 4$ are constants. Setting equations (31) in $\left(S_{1}\right)_{3}$ and by integration, we get

$$
\begin{aligned}
z(t)= & \left(c-\frac{\lambda}{2(\lambda c-1)}\left(k_{1}^{2}-k_{2}^{2}\right)\right) t-\frac{\lambda}{(\lambda c-1)^{2}}\left[\frac{\left(k_{1}^{2}-k_{2}^{2}\right)}{4} \sin (2(\lambda c-1) t)\right. \\
& \left.-\frac{k_{1} k_{2}}{2} \cos (2(\lambda c-1) t)\right]+\frac{1}{\lambda c-1}\left(k_{1} k_{3} \sin ((\lambda c-1) t)\right. \\
& \left.-k_{2} k_{3} \cos ((\lambda c-1) t)\right)+k_{5},
\end{aligned}
$$

where k_{5} is a constant. If $c=\frac{1}{\lambda}$, the system S_{1} reduces to

$$
S_{1}:\left\{\begin{array}{l}
y^{\prime \prime}=0 \\
x^{\prime \prime}=0 \\
z^{\prime}+x y^{\prime}=\frac{1}{\lambda}
\end{array}\right.
$$

Its general solution

$$
S_{1}:\left\{\begin{array}{l}
x(t)=k_{1} t+k_{2} \\
y(t)=k_{3} t+k_{4} \\
z(t)=-\frac{k_{1} k_{3}}{2} t^{2}+\left(\frac{1}{\lambda}-k_{2} k_{3}\right) t+k_{5}
\end{array}\right.
$$

where $k_{i}, i=1, \ldots, 5$ are constants. So, we have proved the theorem below.
Theorem 5.1. All V_{1}-magnetic curves of $\left(H_{3}, g_{2}\right)$ satisfy the following equations:
(i) If $c=\frac{1}{\lambda}$, then

$$
\gamma(t)=\left(\begin{array}{c}
x(t)=k_{1} t+k_{2} \\
y(t)=k_{3} t+k_{4} \\
z(t)=-\frac{k_{1} k_{3}}{2} t^{2}+\left(\frac{1}{\lambda}-k_{2} k_{3}\right) t+k_{5}
\end{array}\right)
$$

(ii) If $c \neq \frac{1}{\lambda}$, then

$$
\gamma(t)=\left(\begin{array}{c}
x(t)=\frac{\lambda}{\lambda c-1}\left[k_{1} \cos ((\lambda c-1) t)+k_{2} \sin ((\lambda c-1) t)\right]+k_{3}, \\
y(t)=\frac{1}{\lambda c-1}\left[k_{1} \sin ((\lambda c-1) t)-k_{2} \cos ((\lambda c-1) t)\right]+k_{4}, \\
z(t)=\left(c-\frac{\lambda}{2(\lambda c-1)}\left(k_{1}^{2}-k_{2}^{2}\right)\right) t-\frac{\lambda}{(\lambda c-1)^{2}}\left[\frac{\left(k_{1}^{2}-k_{2}^{2}\right)}{4} \sin (2(\lambda c-1) t)\right. \\
\left.-\frac{k_{1} k_{2}}{2} \cos (2(\lambda c-1) t)\right]+\frac{1}{\lambda c-1}\left(k_{1} k_{3} \sin ((\lambda c-1) t)\right. \\
\left.-k_{2} k_{3} \cos ((\lambda c-1) t)\right)+k_{5}
\end{array}\right),
$$

where $k_{i}, i=1, \ldots, 5$ are constants.
Remark 5.2. These curves was considered by Lee in [8] according to corresponding metric g_{2} in (4).

5.2. V_{2}-magnetic curves

Direct computations give

$$
\begin{equation*}
V_{2} \wedge \mathbf{t}=-\frac{x x^{\prime}}{\lambda} e_{1}+\left(x y^{\prime}-\left(z^{\prime}+x y^{\prime}\right)\right) e_{2}-\frac{x^{\prime}}{\lambda} e_{3} \tag{33}
\end{equation*}
$$

The equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{2} \wedge \mathbf{t}$ concludes

$$
S_{2}:\left\{\begin{array}{l}
y^{\prime \prime}-x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\frac{x x^{\prime}}{\lambda} \tag{34}\\
\left(\lambda y^{\prime}+1\right)\left(z^{\prime}+x y^{\prime}\right)=x y^{\prime}-\frac{x^{\prime \prime}}{\lambda} \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=-\frac{x^{\prime}}{\lambda}
\end{array}\right.
$$

By integrating $\left(S_{2}\right)_{3}$, we obtain

$$
z^{\prime}+x y^{\prime}=-\frac{x}{\lambda}+c
$$

where c is a constant. Putting the last equation in $\left(S_{2}\right)_{1,2}$, we get

$$
\bar{S}_{2}:\left\{\begin{array}{l}
y^{\prime}=-\frac{x^{2}}{\lambda}+x c \tag{35}\\
x^{\prime \prime}+2 x^{3}-x-\lambda c\left(3 x^{2}-c \lambda x-1\right)=0
\end{array}\right.
$$

Without loss of generality, we can assume that $c=0$. This system \bar{S}_{2}, i.e., the equation $x^{\prime \prime}+2 x^{3}-x=0$ involves Jacobi elliptic functions. So, we write the following proposition.

Proposition 5.3. The Killing magnetic curves in $\left(H_{3}, g_{2}\right)$ corresponding to the Killing vector field $V_{2}=e_{1}+x e_{3}$ are solutions of the system of differential equations (34).

5.3. V_{3}-magnetic curves

We have

$$
\begin{equation*}
V_{3} \wedge \mathbf{t}=\left(y x^{\prime}+\left(z^{\prime}+x y^{\prime}\right)\right) e_{1}-\lambda y y^{\prime} e_{2}+y^{\prime} e_{3} . \tag{36}
\end{equation*}
$$

From the equation $\nabla_{\mathbf{t}} \mathbf{t}=V_{3} \wedge \mathbf{t}$, we get

$$
S_{3}:\left\{\begin{array}{l}
y^{\prime \prime}-x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=y x^{\prime}+\left(z^{\prime}+x y^{\prime}\right) \tag{37}\\
\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\lambda y y^{\prime} \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=y^{\prime}
\end{array}\right.
$$

By integrating $\left(S_{3}\right)_{3}$, we deduce

$$
z^{\prime}+x y^{\prime}=y+c
$$

where c is a constant. Putting the last equation in $\left(S_{3}\right)_{1,2}$, we have

$$
\bar{S}_{3}:\left\{\begin{array}{l}
x^{\prime}=-\lambda^{2} y^{2}-\lambda^{2} y c \tag{38}\\
y^{\prime \prime}-2 x^{\prime} y-y-c\left(x^{\prime}+1\right)=0
\end{array}\right.
$$

Without loss of generality, we can suppose that $c=0$. Then, the system \bar{S}_{3}, i.e., the equation $y^{\prime \prime}+2 \lambda^{2} y^{3}-y=0$ has solutions which include Jacobi elliptic functions. Thus, we give the proposition below.

Proposition 5.4. The Killing magnetic curves in $\left(H_{3}, g_{2}\right)$ corresponding to the Killing vector field $V_{3}=e_{2}-\lambda y e_{3}$ are solutions of the system of differential equations (37).

5.4. V_{4}-magnetic curves

We write

$$
\begin{equation*}
V_{4} \wedge \mathbf{t}=\left(-\frac{1}{2}\left(x^{2}+\lambda^{2} y^{2}\right) \frac{x^{\prime}}{\lambda}-\lambda y\left(z^{\prime}+x y^{\prime}\right)\right) e_{1}+\left(\left(x^{2}+\lambda^{2} y^{2}\right) \frac{y^{\prime}}{2}-x\left(z^{\prime}+x y^{\prime}\right)\right) e_{2}-\left(\frac{x x^{\prime}}{\lambda}+\lambda y y^{\prime}\right) e_{3} \tag{39}
\end{equation*}
$$

The equation $\nabla_{\mathfrak{t}} \mathbf{t}=V_{4} \wedge \mathbf{t}$ gives us

$$
S_{4}:\left\{\begin{array}{l}
y^{\prime \prime}-x^{\prime}\left(z^{\prime}+x y^{\prime}\right)=-\frac{1}{2}\left(x^{2}+\lambda^{2} y^{2}\right) \frac{x^{\prime}}{\lambda}-\lambda y\left(z^{\prime}+x y^{\prime}\right) \tag{40}\\
\frac{x^{\prime \prime}}{\lambda}+\lambda y^{\prime}\left(z^{\prime}+x y^{\prime}\right)=\frac{1}{2}\left(x^{2}+\lambda^{2} y^{2}\right) y^{\prime}-x\left(z^{\prime}+x y^{\prime}\right) \\
\left(z^{\prime}+x y^{\prime}\right)^{\prime}=-\frac{x x^{\prime}}{\lambda}-\lambda y y^{\prime}
\end{array}\right.
$$

By integrating $\left(S_{4}\right)_{3}$, we obtain

$$
\begin{equation*}
z^{\prime}+x y^{\prime}=-\frac{x^{2}}{2 \lambda}-\frac{\lambda y^{2}}{2}+c \tag{41}
\end{equation*}
$$

where c is a constant. Putting the last equation in $\left(S_{4}\right)_{1,2}$, we get

$$
\bar{S}_{4}:\left\{\begin{array}{l}
y^{\prime \prime}+\frac{x^{\prime}}{\lambda}\left(x^{2}+\lambda^{2} y^{2}\right)=\frac{1}{2} y\left(x^{2}+\lambda^{2} y^{2}\right)+c\left(-\lambda y+x^{\prime}\right) \tag{42}\\
x^{\prime \prime}-\lambda y^{\prime}\left(x^{2}+\lambda^{2} y^{2}\right)=\frac{1}{2} x\left(x^{2}+\lambda^{2} y^{2}\right)-c\left(\lambda x+\lambda^{2} y^{\prime}\right)
\end{array}\right.
$$

It seems a true challenge to solve the system \bar{S}_{4} in general case. However, we can find a special solution by considering $c=\lambda=1$. In this case,

$$
x(t)=\cos \frac{\sqrt{2}}{2} t, y(t)=\sin \frac{\sqrt{2}}{2} t
$$

will be a solution for the system \bar{S}_{4}. Using these relations in (41), we get

$$
z(t)=\frac{2-\sqrt{2}}{4} t-\frac{1}{4} \sin \sqrt{2} t+k_{1}
$$

where k_{1} is a constant. Therefore, we can state the last propositon of the paper.

Proposition 5.5. The space curves given by the parametric equations

$$
\gamma(t)=\left(\begin{array}{c}
x(t)=\cos \frac{\sqrt{2}}{2} t \\
y(t)=\sin \frac{\sqrt{2}}{2} t \\
z(t)=\frac{2-\sqrt{2}}{4} t-\frac{1}{4} \sin \sqrt{2} t+k_{1}
\end{array}\right)
$$

are V_{4}-magnetic curves in $\left(H_{3}, g_{2}\right)$, where k_{1} is an arbitrary constant.

6. Acknowledgement

The author would like to thank Professor Zlatko Erjavec and Professor Jun-ichi Inoguchi for their valuable suggestions. The author would also like to thank the anonymous referee for all helpful comments which have improved the quality of the initial manuscript.

References

[1] W. Batat, S. Rahmani, Isometries, geodesics and Jacobi fields of Lorentzian Heisenberg group, Mediterranean Journal of Mathematics 8 (2011) 411-430.
[2] C. Bejan, S.L. Druta Romaniuc, Walker manifolds and Killing magnetic curves, Differential Geometry and Its Applications 35 (2014) 106-116.
[3] G. Calvaruso, M. I. Munteanu, A. Perrone, Killing magnetic curves in three-dimensional almost paracontact manifolds, Journal of Mathematical Analysis and Applications 426 (1) (2015) 423-439.
[4] K. Derkaoui, F.Hathout, Explicit formulas for Killing magnetic curves in Heisenberg group, International Journal of Geometric Methods in Modern Physics (2021) https://doi.org/10.1142/S0219887821501358.
[5] Z. Erjavec, On Killing magnetic curves in SL(2, $\mathbb{R})$ geometry, Reports on Mathematical Physics 84 (3) (2019) 333-350
[6] Z. Erjavec, J. Inoguchi, Killing magnetic curves in Sol space, Mathematical Physics, Analysis and Geometry 21 (15) (2018).
[7] Z. Erjavec, J. Inoguchi, Killing magnetic curves in almost cosymplectic Sol space. Results in Mathematics 75:113 (2020)
[8] J-E. Lee, Slant curves and contact magnetic curves in Sasakian Lorentzian 3-manifolds. Symmetry 11 (6) 784 (2019).
[9] M. I. Munteanu, A. Nistor, The classification of Killing magnetic curves in $S^{2} \times \mathbb{R}$, Journal of Geometry and Physics 62 (2012) 170-182.
[10] Z. Ozdemir, I. Gok, Y. Yayli, F. N. Ekmekci, Notes on magnetic curves in 3D semi-Riemannian manifolds, Turkish Journal of Mathematics 39 (3) (2015) 412-426.
[11] C. Ozgur, On magnetic curves in 3-dimensional Heisenberg group, Proceedings of the Institute of Mathematics and Mechanics (PIMM) National Academy of Sciences of Azerbaijan 43 (2) (2017) 278-286.
[12] S.L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in cosymplectic manifolds, Reports on Mathematical Physics 78 (2016) 33-48.
[13] S. L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in Sasakian manifolds, Journal of Nonlinear Mathematical Physics 22 (3) (2015) 428-447.
[14] S. L. Druta-Romaniuc, M.I. Munteanu, Magnetic curves corresponding to Killing magnetic fields in E^{3}, Journal of Mathematical Physics 52 (2011) 113506.
[15] S. L. Druta-Romaniuc, M.I. Munteanu, Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis: Real World Application 14 (2013) 383-396.

[^0]: 2020 Mathematics Subject Classification. Primary 53C25; Secondary 53B30
 Keywords. Killing magnetic curves, Lorentzian-Heisenberg spaces
 Received: 15 July 2021; Revised: 17 August 2021; Accepted: 22 September 2021
 Communicated by Mića Stanković
 Email address: maltunbas@erzincan.edu.tr (Murat Altunbaş)

