On Hom-Leibniz Superalgebras

Wen Teng ${ }^{\text {a,b }}$, Taijie You ${ }^{\text {a }}$, Yuanyuan $K^{\text {c }}$
${ }^{a}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
${ }^{b}$ School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, P. R. of China
${ }^{c}$ School of Artificial Intelligence, Jianghan University, Wuhan, 430056, P. R. China

Abstract

In this paper, we define a new type of cohomology for Hom-Leibniz superalgebras which controls deformations of Hom-Leibniz superalgebras. The cohomology and the associated deformation theory for Hom-Leibniz superalgebras as developed here are also extended to equivariant context, under the presence of finite group actions on Hom-Leibniz superalgebras.

1. Introduction

A Hom-Leibniz algebra is a triple $(L,[],, \alpha)$, where α is a linear self-map, in which the bilinear bracket satisfies a α-twisted variant of the Leibniz identity, called the Hom-Leibniz identity. When α is the identity map, the Hom-Leibniz identity reduces to the usual Leibniz identity, and L is a Leibniz algebra which are been introduced by Loday [1]. Leibniz algebras were studied in [11]. The notion of Hom-Leibniz algebras was introduced by Makhlouf and Silvestrov [8]. Hom-Leibniz algebras were studied extensively in [3, 6, 12, 21]. Furthermore, Hom-Leibniz algebras were generalized to Hom-Leibniz superalgebras by literature [9, 10, 14, 15] as a noncommutative generalization of Hom-Lie superalgebras. When α is the identity map, the Hom-Leibniz superalgebras reduces to the usual Leibniz superalgebras. Leibniz superalgebras were studied in [5, 7, 13].

Nowadays, much researches on certain algebraic objects are concerned with their formal deformations theories. The deformation theory was introduced by Gerstenhaber for rings and algebras in a series of papers [16-19]. Recently, the deformation theory of other algebras has been studied by several authors [4-6, 13, 20]. Equivariant deformation theory of various algebras has been studied in [21--23].

Purpose of this paper is to introduce α-type cohomology, equivariant deformation cohomology and equivariant formal deformation theory of Hom-Leibniz superalgebras based on some work in [9, 21]. This paper is organized as follows. In Section 2, we introduce the Hom-Leibniz superalgebras related known concepts. In Section 3, we introduce the α-type cohomology for Hom-Leibniz superalgebras. In Section 4, we introduce the Deformation theory of Hom-Leibniz superalgebras. In Section 5, we introduce Group action and equivariant cohomology of Hom-Leibniz superalgebras. In Section 6, we introduce Equivariant formal deformation of Hom-Leibniz superalgebras.

[^0]
2. Preliminaries

Our aim in this section is to recall some definitions and results related to Hom-Leibniz superalgebras. Let \mathbb{K} be a field of characteristic zero. A vector space L is said to be a \mathbb{Z}_{2}-graded if we are given a family $\left(L_{\bar{i}}\right)_{\bar{i} \in \mathbb{Z}_{2}}$ of vector subspace L such that $L=L_{\overline{0}} \oplus L_{\overline{1}}$. We will denote by $\mathcal{H}(L)$ the set of all homogeneous elements of L. The symbol $|x|$ always implies that x is a \mathbb{Z}_{2}-homogeneous element and $|x|$ is the \mathbb{Z}_{2}-degree. Moreover, the \mathbb{Z}_{2}-graded \mathbb{K}-vector space $\operatorname{End}_{\mathbb{K}}(L)$ has a natural direct sum decomposition $\operatorname{End}_{\mathbb{K}}(L)=\operatorname{End}_{\mathbb{K}}(L)_{\overline{0}} \oplus \operatorname{End}_{\mathbb{K}}(L)_{\overline{1}}$, where $\operatorname{End}_{\mathbb{K}}(L)_{\bar{j}}=\left\{\phi \in \operatorname{End}_{\mathbb{K}}(L) \mid \phi\left(L_{\bar{i}}\right) \subseteq L_{\bar{i}+\bar{j}}\right\}, j=0,1$. Elements of $\operatorname{End}_{\mathbb{K}}(L)_{\bar{j}}$ are homogeneous of degree j.

Definition 2.1. [9] A Hom-Leibniz superalgebra is a triple ($L,[],, \alpha$) consisting of a \mathbb{Z}_{2}-graded \mathbb{K}-vector space $L=L_{\overline{0}} \oplus L_{\overline{1}}, a \mathbb{K}$-bilinear map $[]:, L \otimes L \rightarrow L$ and $\alpha \in \operatorname{End}_{\mathbb{K}}(L)_{\overline{0}}$ satisfying

$$
\begin{aligned}
& {\left[L_{\bar{i}}, L_{\bar{j}}\right] \subseteq L_{\bar{i}+\bar{j}}, \bar{i}, \bar{j} \in \mathbb{Z}_{2}} \\
& \alpha([x, y])=[\alpha(x), \alpha(y)] \\
& {[[x, y], \alpha(z)]=[\alpha(x),[y, z]]-(-1)^{|x \| y|}[\alpha(y),[x, z]]}
\end{aligned}
$$

for all $x, y, z \in \mathcal{H}(L)$. Furthermore, if α is an algebra automorphism, we call it a regular Hom-Leibniz superalgebra.
This is in fact a right Hom-Leibniz superalgebra. The dual notion of left Hom-Leibniz superalgebra is made out of the dual relation $[\alpha(x),[y, z]]=[[x, y], \alpha(z)]-(-1)^{|y| z \mid}[[x, z], \alpha(y)]$. In this paper, we are considering only right Hom-Leibniz superalgebras.

Example 2.2. Clearly, every Hom-Lie superalgebra is a Hom-Leibniz superalgebra. A Hom-Leibniz superalgebra L is a Hom-Lie superalgebra if $[x, y]=-(-1)^{|x| y \mid}[y, x]$ for all $x, y \in \mathcal{H}(L)$.

Example 2.3. [10] Let $L=L_{\overline{0}} \oplus L_{\overline{1}}$ be a \mathbb{Z}_{2}-graded \mathbb{K}-vector space, where $L_{\overline{0}}$ is one dimensional subspace of L generated by $\{x\}$ and $L_{\overline{1}}$ is two-dimensional generated by $\{y, z\}$ and the nonzero product is given by $[y, x]=y$. For $a, b \in \mathbb{K}$, we consider $\alpha \in \operatorname{End}_{\mathbb{K}}(L)_{\overline{0}}$ defined $\alpha(x)=a x, \alpha(y)=a y, \alpha(z)=b z$. for any $a \in \mathbb{K}$, there is the corresponding Hom-Leibniz superalgebra $\left(L,[,]_{\alpha}=\alpha \circ[],, \alpha\right)$ with the nonzero product $[y, x]_{\alpha}=a y$. It is not a Leibniz superalgebra when $a \neq 0,1$.

A morphism between Hom-Leibniz superalgebras $\left(L_{1},[,]_{1}, \alpha_{1}\right)$ and $\left(L_{2},[,]_{2}, \alpha_{2}\right)$ is an even linear map $\varphi: L_{1} \rightarrow L_{2}$ which satisfies for all $x, y \in \mathcal{H}\left(L_{1}\right)$,

$$
\varphi\left([x, y]_{1}\right)=[\varphi(x), \varphi(y)]_{2}, \quad \varphi \circ \alpha_{1}=\alpha_{2} \circ \varphi .
$$

Definition 2.4. A Hom-supermodule is a \mathbb{Z}_{2}-graded vector space M together with an even linear map $\beta: M \rightarrow M$ such that \mathbb{Z}_{2}-graded vector space operations are compatible with β. We write a Hom-supermodule as (M, β).

Definition 2.5. [10] Let $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra. A representation (L-bimodule) is a Homsupermodule (M, β) together with two L-actions (left and right multiplications), $\mu_{l}: L \otimes M \rightarrow M$ and $\mu_{r}: M \otimes L \rightarrow M$ satisfying the following conditions:

$$
\begin{aligned}
\mu_{l}\left(L_{\bar{i}}, M_{\bar{j}}\right) & \subseteq M_{\bar{i}+\bar{j}} \\
\mu_{r}\left(M_{\bar{i}}, L_{\bar{j}}\right) & \subseteq M_{\bar{i}+\bar{j}} \\
\beta\left(\mu_{l}(x, m)\right) & =\mu_{l}(\alpha(x), \beta(m)), \\
\beta\left(\mu_{r}(m, x)\right) & =\mu_{r}(\beta(m), \alpha(x)), \\
\mu_{l}([x, y], \beta(m)) & =\mu_{l}\left(\alpha(x), \mu_{l}(y, m)\right)-(-1)^{|x| y \mid} \mu_{l}\left(\alpha(y), \mu_{l}(x, m)\right), \\
\mu_{r}\left(\mu_{l}(x, m), \alpha(y)\right) & =\mu_{l}\left(\alpha(x), \mu_{r}(m, y)\right)-(-1)^{|x||m|} \mu_{r}(\beta(m),[x, y]), \\
\mu_{r}\left(\mu_{r}(m, x), \alpha(y)\right) & =\mu_{r}(\beta(m),[x, y])-(-1)^{|m||x|} \mu_{l}\left(\alpha(x), \mu_{r}(m, y)\right),
\end{aligned}
$$

for all $\bar{i}, \bar{j} \in \mathbb{Z}_{2}, x, y \in \mathcal{H}(L)$ and $m \in \mathcal{H}(M)$.

With the above notations, we recall the cohomology of Hom-Leibniz superalgebras ($L,[],, \alpha$) defined in [9]. Let

$$
C_{\alpha, \beta}^{n}(L, M)=\left\{\phi: L^{\otimes n} \rightarrow M \mid \beta \circ \phi=\phi \circ \alpha^{\otimes n}\right\} .
$$

Clearly, $C_{\alpha, \beta}^{n}(L, M)=C_{\alpha, \beta}^{n}(L, M)_{\overline{0}} \oplus C_{\alpha, \beta}^{n}(L, M)_{\overline{1}}$, where $C_{\alpha, \beta}^{n}(L, M)_{\overline{0}}$ and $C_{\alpha, \beta}^{n}(L, M)_{\overline{1}}$ are submodules containing elements of degree 0 and 1, respectively. For $n \geq 1, \delta^{n}: C_{\alpha, \beta}^{n}(L, M) \rightarrow C_{\alpha, \beta}^{n+1}(L, M)$ is defined as follows:

$$
\begin{aligned}
& \delta^{n}(\phi)\left(x_{1}, x_{2}, \cdots, x_{n+1}\right) \\
= & \sum_{i=1}^{n}(-1)^{i+1+\left|x_{i}\right|\left(|\phi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)}\left[\alpha^{n-1}\left(x_{i}\right), \phi\left(x_{1}, \cdots, \widehat{x_{i}} \cdots, x_{n+1}\right)\right] \\
& +\sum_{1 \leq i<j \leq n+1}(-1)^{i+\left|x_{i}\right|\left(\left|x_{i+1}\right|+\cdots+\left|x_{j-1}\right|\right)} \phi\left(\alpha\left(x_{1}\right), \cdots, \widehat{\alpha\left(x_{i}\right)}, \cdots,\left[x_{i}, x_{j}\right], \alpha\left(x_{j+1}\right), \cdots, \alpha\left(x_{n+1}\right)\right) \\
& +(-1)^{n+1}\left[\phi\left(x_{1}, \cdots, x_{n}\right), \alpha^{n-1}\left(x_{n+1}\right)\right],
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n+1} \in \mathcal{H}(L)$, where $\widehat{x_{i}}$ means that x_{i} is omitted. Clearly, for all $n \geq 1, \delta \circ \delta=0,\left(C_{\alpha, \beta}^{*}(L, M), \delta\right)$ is a cochain complex. The space of n-cocycles, n-coboundaries, and n-th cohomology are defined as:
(1) $Z_{\alpha, \beta}^{n}(L, M)=\operatorname{Ker}\left(\delta^{n}\right), Z_{\alpha, \beta}^{n}(L, M)_{j}=C_{\alpha, \beta}^{n}(L, M)_{\bar{j}} \cap Z_{\alpha, \beta}^{n}(L, M), j=0,1$,
(2) $B_{\alpha, \beta}^{n}(L, M)=\operatorname{Im}\left(\delta^{n-1}\right), \quad B_{\alpha, \beta}^{n}(L, M)_{\bar{j}}=C_{\alpha, \beta}^{n}(L, M)_{\bar{j}} \cap B_{\alpha, \beta}^{n}(L, M), j=0,1$,
(3) $H_{\alpha, \beta}^{n}(L, M)=Z_{\alpha, \beta}^{n}(L, M) / B_{\alpha, \beta}^{n}(L, M)=H_{\alpha, \beta}^{n}(L, M)_{\overline{0}} \oplus H_{\alpha, \beta}^{n}(L, M)_{\overline{1}}$, where $H_{\alpha, \beta}^{n}(L, M)_{j}=Z_{\alpha, \beta}^{n}(L, M)_{j} / B_{\alpha, \beta}^{n}(L, M)_{j}, j=0,1$.

3. α-type cohomology for Hom-Leibniz superalgebras

Similarly to [21], we define a cohomology for Hom-Leibniz superalgebras. Let $\gamma(x, y)=[x, y]$ and we define the complex for the cohomology of (L, γ, α) with values in (M, β) is given by

$$
\begin{aligned}
\widetilde{C}^{n}(L, M) & =C_{\gamma}^{n}(L, M) \oplus C_{\alpha}^{n}(L, M) \\
& =\operatorname{Hom}_{\mathbb{K}}\left(L^{\otimes n}, M\right) \oplus \operatorname{Hom}_{\mathbb{K}}\left(L^{\otimes n-1}, M\right), \text { for all } n \geq 2 . \\
\widetilde{C}^{1}(L, M) & =C_{\gamma}^{1}(L, M) \oplus C_{\alpha}^{1}(L, M)=\operatorname{Hom}_{\mathbb{K}}(L, M) \oplus\{0\} . \\
\widetilde{C}^{n}(L, M) & =\{0\} \text { for all } n \leq 0 .
\end{aligned}
$$

Here $\operatorname{Hom}_{\mathbb{K}}\left(L^{0}, M\right)=\operatorname{Hom}_{\mathbb{K}}(\mathbb{K}, M)=\{\underline{0}\}$, instead of \mathbb{K} as usual, otherwise α^{-1} would be needed in the definition of the differential. Clearly, $\widetilde{C}^{n}(L, M)=\widetilde{C}^{n}(L, M)_{\overline{0}} \oplus \widetilde{C}^{n}(L, M)_{\overline{1}}$. We write (ϕ, φ) or $\phi+\varphi$ with $\phi \in C_{\gamma}^{n}(L, M)$ and $\varphi \in C_{\alpha}^{n}(L, M)$ for an element in $\widetilde{C}^{n}(L, M)$. We define four maps with domain and range given in the following diagram:

$$
\begin{align*}
&\left(\partial_{\gamma \gamma} \phi\right)\left(x_{1}, \cdots, x_{n+1}\right) \tag{3.1}\\
&= \sum_{i=1}^{n}(-1)^{i+1+\left|x_{i}\right|\left(|\varphi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)}\left[\alpha^{n-1}\left(x_{i}\right), \phi\left(x_{1}, \cdots, \widehat{x_{i}} \cdots, x_{n+1}\right)\right] \\
&+\sum_{1 \leq i<j \leq n+1}(-1)^{i+\left|x_{i}\right|\left(\left|x_{i+1}\right|+\cdots+\left|x_{j-1}\right|\right)} \phi\left(\alpha\left(x_{1}\right), \cdots, \widehat{\alpha\left(x_{i}\right)}, \cdots,\left[x_{i}, x_{j}\right], \alpha\left(x_{j+1}\right), \cdots, \alpha\left(x_{n+1}\right)\right) \\
&+(-1)^{n+1}\left[\phi\left(x_{1}, \cdots, x_{n}\right), \alpha^{n-1}\left(x_{n+1}\right)\right], \\
&= \sum_{i=1}^{n-1}(-1)^{i+1+\left|x_{i}\right|\left(|\varphi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)}\left[\alpha^{n-2}\left(x_{i}\right), \varphi\left(x_{1}, \cdots, \widehat{x_{i}} \cdots, x_{n}\right)\right] \tag{3.2}\\
&+\sum_{1 \leq i<j \leq n}(-1)^{i+\left|x_{i}\right|\left(\left|x_{i+1}\right|+\cdots+\left|x_{j-1}\right|\right)} \varphi\left(\alpha\left(x_{1}\right), \cdots, \widehat{\alpha\left(x_{i}\right)}, \cdots,\left[x_{i}, x_{j}\right], \alpha\left(x_{j+1}\right), \cdots, \alpha\left(x_{n}\right)\right) \\
&\left.\quad+(-1)^{n}\left[\varphi\left(x_{1}, \cdots, x_{n-1}\right), \alpha^{n-2}\left(x_{n}\right)\right], x_{n}\right) \\
& \quad\left(\partial_{\gamma \alpha} \phi\right)\left(x_{1}, \cdots, x_{n}\right)=\beta\left(\phi\left(x_{1}, \cdots, x_{n}\right)\right)-\phi\left(\alpha\left(x_{1}\right), \cdots, \alpha\left(x_{n}\right)\right), \\
&\left(\partial_{\alpha \gamma \gamma} \varphi\right)\left(x_{1}, \cdots, x_{n+1}\right) \tag{3.3}\\
&=\sum_{1 \leq i<j \leq n}(-1)^{j+\left|x_{i}\right|\left(|\varphi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)+\left|x_{j}\right|\left(|\varphi|+\left|x_{1}\right|+\cdots+\left|x_{j-1}\right|\right)+\left|x_{i}\right|\left|x_{j}\right|}\left[\left[\alpha^{n-2}\left(x_{i}\right), \alpha^{n-2}\left(x_{j}\right)\right], \varphi\left(x_{1}, \cdots, x_{i-1}, \widehat{x_{i},}, x_{i+1}, \cdots, \widehat{x_{j}}, \cdots, x_{n+1}\right)\right] \tag{3.4}\\
&+\sum_{i=1}^{n}(-1)^{i+\left|x_{i}\right|\left(|\varphi|+\left|x_{i+1}\right|+\cdots+\left|x_{n}\right|\right)}\left[\varphi\left(x_{1}, \cdots, \widehat{x_{i}} \cdots, x_{n}\right),\left[\alpha^{n-2}\left(x_{i}\right), \alpha^{n-2}\left(x_{n+1}\right)\right]\right],
\end{align*}
$$

where $x_{1}, \cdots, x_{n+1} \in \mathcal{H}(L)$. We set

$$
\begin{equation*}
\partial(\phi, \varphi)=\left(\partial_{\gamma \gamma}+\partial_{\gamma \alpha}\right)(\phi)-\left(\partial_{\alpha \alpha}+\partial_{\alpha \gamma}\right)(\varphi)=\left(\partial_{\gamma \gamma} \phi-\partial_{\alpha \gamma} \varphi, \partial_{\gamma \alpha} \phi-\partial_{\alpha \alpha} \varphi\right) . \tag{3.5}
\end{equation*}
$$

The following theorem is similar to the Hom-Leibniz algebras case [21] and we overleap its proof.
Theorem 3.1. Let (L, γ, α) be a Hom-Leibniz superalgebra and (M, β) be an L-bimodule. Further, let $\partial: \widetilde{C}^{n}(L, M) \rightarrow$ $\widetilde{C}^{n+1}(L, M)$ be a map defined by (3.5). Then the pair $\left(\widetilde{C^{*}}(L, M), \partial\right)$ is a cochain complex.

We denote the cohomology of $\left(\widetilde{C}^{*}(L, M), \partial\right)$ by $\left(\widetilde{H}^{*}(L, M), \partial\right)$ and call it an α-type cohomology of (L, γ, α) with values in (M, β).

Remark 3.2. (1)Note that α-type cohomology for Hom-Leibniz superalgebras generalizes the cohomology introduced in [9]. To show this we consider only those elements in $\widetilde{C}^{n}(L, M)$ where second summand is zero, that is, $\widetilde{C}_{\alpha}^{n}(L, M)=\{0\}$. Thus, we define a subcomplex of $\widetilde{C}^{n}(L, M)$ as follows:

$$
C_{\alpha, \beta}^{n}(L, M)=\left\{(\phi, 0) \in \widetilde{C}^{n}(L, M) \mid \partial_{\gamma \alpha} \phi=0\right\}=\left\{\phi \in C_{\gamma}^{n}(L, M) \mid \beta \circ \phi=\phi \circ \alpha^{\otimes n}\right\}
$$

The map $\partial_{\gamma \gamma}$ defines a differential on this complex and this complex is same as the complex defined in [9]. Thus, α-type cohomology generalizes the cohomology developed in [9].
(2) Note that any Hom-Leibniz superalgebra ($L,[],, \alpha$) can be considered as a bimodule over itself by taking $\mu_{l}=\mu_{r}=[],, M=L$ and $\beta=\alpha$. At this point, we denote the n-th cohomology $\widetilde{H}^{n}(L, L)=\widetilde{H}^{n}(L, M)$.

4. Deformation theory of Hom-Leibniz superalgebras

In this section, we introduce one-parameter formal deformation theory for Hom-Leibniz superalgebras and discuss how an α-type cohomology controls deformations.

Definition 4.1. A one-parameter formal deformation of Hom-Leibniz superalgebra ($L,[],, \alpha$) is given by a $\mathbb{K}[[t]]-$ bilinear map $m_{t}: L[[t]] \times L[[t]] \rightarrow L[[t]]$ and a $\mathbb{K}[[t]]$-linear map $\alpha_{t}: L[[t]] \rightarrow L[[t]]$ of the forms

$$
m_{t}(x, y)=\sum_{i \geq 0} m_{i}(x, y) t^{i} \text { and } \alpha_{t}(z)=\sum_{i \geq 0} \alpha_{i}(z) t^{i}
$$

for all $x, y, z \in \mathcal{H}(L)$, such that,
(1) For all $i \geq 0, m_{i} \in \operatorname{Hom}_{\mathbb{K}}(L \times L, L)_{\overline{0}}$ and $\alpha_{i} \in \operatorname{Hom}_{\mathbb{K}}(L, L)_{\overline{0}}$.
(2) $m_{0}(x, y)=[x, y], \alpha_{0}=\alpha$.
(3) $\left|m_{t}(x, y)\right|=|x|+|y|,\left|\alpha_{t}(z)\right|=|z|$.
(4) $m_{t}\left(m_{t}(x, y), \alpha_{t}(z)\right)=m_{t}\left(\alpha_{t}(x), m_{t}(y, z)\right)-(-1)^{|x \| y|} m_{t}\left(\alpha_{t}(y), m_{t}(x, z)\right)$.
(5) $\alpha_{t}\left(m_{t}(x, y)\right)=m_{t}\left(\alpha_{t}(x), \alpha_{t}(y)\right)$.

Remark 4.2. Equations (4)(5) are equivalent to $(n=0,1,2, \cdots)$

$$
\begin{align*}
& \sum_{\substack{i+j+k=n \\
i, j, k \geq 0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x||y|} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right)=0 ; \\
& \sum_{\substack{i+j=n \\
i, j \geq 0}} \alpha_{i}\left(m_{j}(x, y)\right)-\sum_{\substack{i+j \in=n \\
i, j, k \geq 0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)=0 . \tag{4.1}
\end{align*}
$$

For a Hom-Leibniz superalgebra ($L,[],, \alpha$), an α_{j}-associator is a map,

$$
\begin{aligned}
\circ_{\alpha_{j}}: \operatorname{Hom}_{\mathbb{K}}(L \times L, L)_{\overline{0}} \times \operatorname{Hom}_{\mathbb{K}}(L \times L, L)_{\overline{0}} & \rightarrow \operatorname{Hom}_{\mathbb{K}}(L \times L \times L, L)_{\overline{0}}, \\
\left(m_{i}, m_{k}\right) & \mapsto m_{i} \circ_{\alpha_{j}} m_{k},
\end{aligned}
$$

defined as

$$
\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z)=m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x \| y|} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)
$$

By using α_{j}-associator, the equation(4.1) may be written as

$$
\sum_{i, j, k \geq 0}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right) t^{i+j+k}=0 ; \quad \sum_{n \geq 0}\left(\sum_{\substack{i+j+k=n \\ i, j, k \geq 0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)\right) t^{n}=0 .
$$

Thus, for $n=0,1,2, \cdots$, we have the following infinite equations:

$$
\begin{equation*}
\sum_{\substack{i+j+k=n \\ i, j, k \geq 0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)=0 \tag{4.3}
\end{equation*}
$$

We can rewrite the Equation(4.3) as follows:

$$
\begin{equation*}
\left(\partial_{\gamma \gamma} m_{n}-\partial_{\alpha \gamma} \alpha_{n}\right)(x, y, z)=-\sum_{\substack{i+j+k=n \\ i, j, k>0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{align*}
\partial_{\gamma \gamma} m_{n}(x, y, z)= & {\left[m_{n}(x, y), \alpha(z)\right]-\left[\alpha(x), m_{n}(y, z)\right]+(-1)^{|x \| y|}\left[\alpha(y), m_{n}(x, z)\right] } \\
& -m_{n}(\alpha(x),[y, z])+m_{n}([x, y], \alpha(z))+(-1)^{|x||y|} m_{n}(\alpha(y),[x, z]), \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\partial_{\alpha \gamma} \alpha_{n}(x, y, z)=-\left[[x, y], \alpha_{n}(z)\right]+\left[\alpha_{n}(x),[y, z]\right]-(-1)^{|x|| || |}\left[\alpha_{n}(y),[x, z]\right] . \tag{4.6}
\end{equation*}
$$

From the multiplicativity of α_{t}, we have

$$
\begin{equation*}
\sum_{\substack{i+j=n \\ i, j \geq 0}} \alpha_{i}\left(m_{j}(x, y)\right)-\sum_{\substack{i+j+k=n \\ i, k<k \geq 0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)=0 . \tag{4.7}
\end{equation*}
$$

We can rewrite the Equation (4.17) as follows:

$$
\begin{equation*}
\left(\partial_{\alpha \alpha} \alpha_{n}-\partial_{\gamma \alpha} m_{n}\right)(x, y)=-\sum_{\substack{i+j+k=n \\ i, j, k<0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)+\sum_{\substack{i+j=n \\ i, j>0}} \alpha_{i}\left(m_{j}(x, y)\right), \tag{4.8}
\end{equation*}
$$

where

$$
\begin{align*}
\partial_{\alpha \alpha} \alpha_{n}(x, y) & =\left[\alpha(x), \alpha_{n}(y)\right]+\left[\alpha_{n}(x), \alpha(y)\right]-\alpha_{n}([x, y]), \tag{4.9}\\
\partial_{\gamma \alpha} m_{n}(x, y) & =\alpha m_{n}(x, y)-m_{n}(\alpha(x), \alpha(y)) . \tag{4.10}
\end{align*}
$$

For $n=0$,

$$
m_{0} \circ_{\alpha_{0}} m_{0}=0, \quad[[x, y], \alpha(z)]-[\alpha(x),[y, z]]+(-1)^{|x| y \mid}[\alpha(y),[x, z]]=0 .
$$

From the Equation (4.7) we have

$$
\alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

This just shows α is multiplicative.
For $n=1$, from the Equation (4.3) we have

$$
\begin{aligned}
& m_{0} \circ_{\alpha_{0}} m_{1}+m_{1} \circ_{\alpha_{0}} m_{0}+m_{0} \circ_{\alpha_{1}} m_{0}=0, \\
& {\left[m_{1}(x, y), \alpha(z)\right]-\left[\alpha(x), m_{1}(y, z)\right]+(-1)^{|x||y|}\left[\alpha(y), m_{1}(x, z)\right]} \\
& +m_{1}([x, y], \alpha(z))-m_{1}(\alpha(x),[y, z])+(-1)^{x \|||| |} m_{1}(\alpha(y),[x, z]) \\
& +\left[[x, y], \alpha_{1}(z)\right]-\left[\alpha_{1}(x),[y, z]\right]+(-1)^{|x||y| y}\left[\alpha_{1}(y),[x, z]\right]=0 .
\end{aligned}
$$

This is same as

$$
\partial_{\gamma \gamma} m_{1}(x, y, z)-\partial_{\alpha \gamma} \alpha_{1}(x, y, z)=0 .
$$

Now from the multiplicative part of the deformation, we have

$$
\left[\alpha(x), \alpha_{1}(y)\right]+\left[\alpha_{1}(x), \alpha(y)\right]+m_{1}(\alpha(x), \alpha(y))-\alpha\left(m_{1}(x, y)\right)-\alpha_{1}([x, y])=0 .
$$

This is same as

$$
\partial_{\alpha \alpha} \alpha_{1}(x, y)-\partial_{\gamma \alpha} m_{1}(x, y)=0 .
$$

Thus, we have

$$
\partial\left(m_{1}, \alpha_{1}\right)=0 .
$$

Definition 4.3. The infinitesimal of the deformation $\left(m_{t}, \alpha_{t}\right)$ is the pair $\left(m_{1}, \alpha_{1}\right)$. Suppose more generally that $\left(m_{n}, \alpha_{n}\right)$ is the first non-zero term of $\left(m_{t}, \alpha_{t}\right)$ after $\left(m_{0}, \alpha_{0}\right)$, such $\left(m_{n}, \alpha_{n}\right)$ is called a n-infinitesimal of the deformation.

Therefore, we have the following theorem.
Theorem 4.4. Let $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra, and $\left(L_{t}, m_{t}, \alpha_{t}\right)$ be its one-parameter deformation then the infinitesimal of the deformation is a 2-cocycle of the α-type cohomology.

Now we discuss obstructions of deformations for Hom-Leibniz superalgebras from the cohomological point of view.

Definition 4.5. A n-deformation of a Hom-Leibniz superalgebra is a formal deformation of the forms

$$
m_{t}=\sum_{i=0}^{n} m_{i} t^{i} \text { and } \alpha_{t}=\sum_{i=0}^{n} \alpha_{i} t^{i}
$$

for all $x, y, z \in \mathcal{H}(L)$, such that,
(1) For all $0 \leq i \leq n, m_{i} \in \operatorname{Hom}_{\mathbb{K}}(L \times L, L)_{\overline{0}}$ and $\alpha_{i} \in \operatorname{End}_{\mathbb{K}}(L)_{\overline{0}}$.
(2) $m_{0}(x, y)=[x, y], \alpha_{0}=\alpha$.
(3) $\left|m_{t}(x, y)\right|=|x|+|y|,\left|\alpha_{t}(z)\right|=|z|$.
(4) $m_{t}\left(m_{t}(x, y), \alpha_{t}(z)\right)=m_{t}\left(\alpha_{t}(x), m_{t}(y, z)\right)-(-1)^{|x| y \mid} m_{t}\left(\alpha_{t}(y), m_{t}(x, z)\right)$.
(5) $\alpha_{t}\left(m_{t}(x, y)\right)=m_{t}\left(\alpha_{t}(x), \alpha_{t}(y)\right)$.

We say a n-deformation $\left(m_{t}, \alpha_{t}\right)$ of a Hom-Leibniz superalgebra is extendable to a $(n+1)$-deformation if there is an element $m_{n+1} \in C_{\gamma}^{2}(L, L)$ and $\alpha_{n+1} \in C_{\alpha}^{2}(L, L)$ such that

$$
\overline{m_{t}}=m_{t}+m_{n+1} t^{n+1}, \quad \overline{\alpha_{t}}=\alpha_{t}+\alpha_{n+1} t^{n+1}
$$

and $\left(\overline{m_{t}}, \overline{\alpha_{t}}\right)$ satisfies (1)-(5). The $(n+1)$-deformation $\left(\overline{m_{t}}, \overline{\alpha_{t}}\right)$ gives us the following equations.

$$
\begin{align*}
& \sum_{\substack{i+j+k=n+1 \\
i, j, k \geq 0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x| y \mid} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right)=0 ; \tag{4.11}\\
& \sum_{\substack{i+j+k=n+1 \\
j, j, k \geq 0}} \alpha_{i}\left(m_{j}(x, y)\right)-\sum_{\substack{i+j+k=n+1 \\
i, j, k \geq 0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)=0 . \tag{4.12}
\end{align*}
$$

This is same as the following equations

$$
\begin{aligned}
& \left(\partial_{\gamma \gamma} m_{n+1}-\partial_{\alpha \gamma} \alpha_{n+1}\right)(x, y, z) \\
= & -\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x||y|} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right) \\
= & -\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z) . \\
& \left(\partial_{\alpha \alpha} \alpha_{n+1}-\partial_{\gamma \alpha} m_{n+1}\right)(x, y)=-\sum_{\substack{i+j+k=n+1 \\
j, j, k>0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)+\sum_{\substack{i+i=n+1 \\
i, j>0}} \alpha_{i}\left(m_{j}(x, y)\right) .
\end{aligned}
$$

We define the n-th obstruction to extend a deformation of Hom-Leibniz superalgebra of order n to order $n+1$ as $\mathrm{Obs}^{n}=\left(\mathrm{Obs}_{\gamma}^{n}, \mathrm{Obs}_{\alpha}^{n}\right)$, where

$$
\begin{align*}
\operatorname{Obs}_{\gamma}^{n}(x, y, z): & =-\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z)=\left(\partial_{\gamma \gamma} m_{n+1}-\partial_{\alpha \gamma} \alpha_{n+1}\right)(x, y, z) \tag{4.13}\\
\operatorname{Obs}_{\alpha}^{n}(x, y): & =-\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)+\sum_{\substack{i+j=n+1 \\
i, j>0}} \alpha_{i}\left(m_{j}(x, y)\right) \\
& =\left(\partial_{\alpha \alpha} \alpha_{n+1}-\partial_{\gamma \alpha} m_{n+1}\right)(x, y) . \tag{4.14}
\end{align*}
$$

Thus, $\left(\mathrm{Obs}_{\gamma}{ }^{n}, \mathrm{Obs}_{\alpha}^{n}\right) \in \widetilde{C^{3}}(L, L)$ and $\left(\mathrm{Obs}_{\gamma}^{n}, \mathrm{Obs}_{\alpha}^{n}\right) \in \partial\left(m_{n+1}, \alpha_{n+1}\right)$.
Theorem 4.6. A deformation of order n extends to a deformation of order $n+1$ if and only if cohomology class of Obs ${ }^{n}$ vanishes.

The proof of the above theorem is similar to the Hom-Leibniz algebra case [21].

Proposition 4.7. If $\widetilde{H}^{3}(L, L)=0$ then any 2-cocycle gives a one-parameter formal deformation of $(L,[],, \alpha)$.
Definition 4.8. Suppose $L_{t}=\left(L, m_{t}, \alpha_{t}\right)$ and $L_{t}^{\prime}=\left(L, m_{t}^{\prime}, \alpha_{t}^{\prime}\right)$ be two one-parameter Hom-Leibniz superalgebra deformations of $(L,[],, \alpha)$, where $m_{t}=\sum_{i \geq 0} m_{i} t^{i}, \alpha_{t}=\sum_{i \geq 0} \alpha_{i} t^{i}$ and $m_{t}^{\prime}=\sum_{i \geq 0} m_{i}^{\prime} t^{i}, \alpha_{t}^{\prime}=\sum_{i \geq 0} \alpha_{i}^{\prime} t^{i}$. Two deformations L_{t} and L_{t}^{\prime} are said to be equivalent if there exists a $\mathbb{K}[[t]]$-linear isomorphism $\Psi_{t}: L[[t]] \rightarrow L[[t]]$ of the form $\Psi_{t}=\sum_{i \geq 0} \psi_{i} t^{i}$, where $\psi_{0}=\operatorname{Id}$ and $\psi_{i}: L \rightarrow L$ are \mathbb{K}-linear maps such that the following relations holds:

$$
\begin{align*}
& \left|\Psi_{t}(x)\right|=|x| \\
& \Psi_{t}\left(m_{t}^{\prime}(x, y)\right)=m_{t}\left(\Psi_{t}(x), \Psi_{t}(y)\right) \tag{4.15}\\
& \alpha_{t}\left(\Psi_{t}(x)\right)=\Psi_{t}\left(\alpha_{t}^{\prime}(x)\right) \tag{4.16}
\end{align*}
$$

for all $x, y \in \mathcal{H}(L)$.
The above equations (4.15) and (4.16) are equivalent to the following equations:

$$
\begin{align*}
& \sum_{i \geq 0} \psi_{i}\left(\sum_{j \geq 0} m_{j}^{\prime}(x, y) t^{j}\right) t^{i}=\sum_{i \geq 0} m_{i}\left(\sum_{j \geq 0} \psi_{j}(x) t^{j}, \sum_{k \geq 0} \psi_{k}(y) t^{k}\right) t^{i}, \tag{4.17}\\
& \sum_{i \geq 0} \alpha_{i}\left(\sum_{j \geq 0} \psi_{j}(x) t^{j}\right) t^{i}=\sum_{i \geq 0} \psi_{i}\left(\sum_{j \geq 0} \alpha_{j}^{\prime}(x) t^{j}\right) t^{i} . \tag{4.18}
\end{align*}
$$

Comparing constant terms on both sides of the above equations, we have

$$
m_{0}^{\prime}(x, y)=m_{0}(x, y)=[x, y], \alpha_{0}(x)=\alpha_{0}^{\prime}(x)=\alpha(x)
$$

Now comparing coefficients of t, we have

$$
\begin{align*}
& m_{1}^{\prime}(x, y)+\psi_{1}\left(m_{0}^{\prime}(x, y)\right)=m_{1}(x, y)+m_{0}\left(\psi_{1}(x), y\right)+m_{0}(x, \psi(y)) \tag{4.19}\\
& \alpha_{1}(x)+\alpha_{0}\left(\psi_{1}(x)\right)=\alpha_{1}^{\prime}(x)+\psi_{1}\left(\alpha_{0}^{\prime}(x)\right) \tag{4.20}
\end{align*}
$$

The Equations (4.19) and (4.20) are same as

$$
\begin{aligned}
& m_{1}^{\prime}(x, y)-m_{1}(x, y)=\left[\psi_{1}(x), y\right]+\left[x, \psi_{1}(y)\right]-\psi_{1}([x, y])=\partial_{\gamma \gamma} \psi_{1}(x, y) . \\
& \alpha_{1}^{\prime}(x)-\alpha_{1}(x)=\alpha\left(\psi_{1}(x)\right)-\psi_{1}(\alpha(x))=\partial_{\gamma \alpha} \psi_{1}(x) .
\end{aligned}
$$

Thus, we have the following proposition.
Proposition 4.9. Two equivalent deformations have cohomologous infinitesimals.
The proof of the above proposition is similar to the Hom-Leibniz algebra case [21].
Definition 4.10. A deformation L_{t} of a Hom-Leibniz superalgebra L is called trivial if L_{t} is equivalent to $L . A$ Hom-Leibniz superalgebra L is called rigid if it has only trivial deformation upto equivalence.
Proposition 4.11. A non-trivial deformation of a Hom-Leibniz superalgebra is equivalent to a deformation whose infinitesimal is not a coboundary.
Proposition 4.12. Let $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra. If $\widetilde{H}^{2}(L, L)=0$ then L is rigid.

5. Group action and equivariant cohomology

Definition 5.1. Let G be a finite group and $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra. We say group G acts on the Hom-Leibniz superalgebra L from the left if there is a funtion

$$
\Phi: G \times L \rightarrow L
$$

satisfying
(1)For each $g \in G, x \in \mathcal{H}(L)$, the map $\Phi_{g}=\Phi(g):, L \rightarrow L, x \mapsto g x$ is a \mathbb{K}-linear map and $\left|\Phi_{g}(x)\right|=|x|$, that is $\Phi_{g} \in \operatorname{End}_{\mathbb{K}}(L)_{\overline{0}}$.
(2) ex $=x$ for all $x \in \mathcal{H}(L)$, where e denotes identity element of the group G.
(3) $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2}(x)\right)$ for all $g_{1}, g_{2} \in G$ and $x \in \mathcal{H}(L)$.
(4) For all $g \in G$ and $x, y \in \mathcal{H}(L), g[x, y]=[g x, g y]$ and $\alpha(g x)=g \alpha(x)$.

We denote an action as above by $(G, L,[],, \alpha)$.
Proposition 5.2. Let G be a finite group and $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra. The group G acts on L from the left if and only if there is a group homomorphism

$$
\Psi: G \rightarrow I s o_{\mathrm{HLs}}(L), g \mapsto \Phi_{g},
$$

where $\mathrm{Iso}_{\mathrm{HLs}}(L)$ denotes group of ismorphisms of Hom-Leibniz superalgebras from L to L.
Proof. For an action $(G, L,[],, \alpha)$, we define a map $\Psi: G \rightarrow I s o_{H L s}(L)$ by $\Psi(g)=\Phi_{g}$. One can verify easily that Ψ is a group homomorphism. Now, let $\Psi: G \rightarrow I s O_{H L s}(L)$ be a group homomorphism. Define a map $\Phi: G \times L \rightarrow L$, by $(g, x) \mapsto \Psi(g)(x)$. It can be easily seen that this is an action of G on the Hom-Leibniz superalgebra L.

Let M, M^{\prime} be Hom-Leibniz superalgebras equipped with actions of group G. We say an even \mathbb{K}-linear map $f: M \rightarrow M^{\prime}$ is equivariant if for all $g \in G$ and $x \in \mathcal{H}(M), f(g x)=g f(x)$. We write the set of all equivariant maps from M to M^{\prime} as $\operatorname{Hom}_{\mathbb{K}}^{G}\left(M, M^{\prime}\right)$.

Definition 5.3. A G-Hom-supermodule is a Hom-supermodule (M, β) together with an action of G on M, and $\beta: M \rightarrow M$ is an equivariant map. We denote an equivariant Hom-supermodule as triple (G, M, β).

Definition 5.4. Let $(G, L,[],, \alpha)$ be a Hom-Leibniz superalgebra equipped with an action of a finite group G. A G-bimodule over L is a G-Hom-supermodule (G, M, β) together with two L-actions (left and right multiplications), $\mu_{l}: L \otimes M \rightarrow M$ and $\mu_{l}: M \otimes L \rightarrow M$ such that μ_{l}, μ_{r} satisfying the following conditions:

$$
\begin{aligned}
\mu_{l}\left(g L_{\bar{i}}, g M_{\bar{j}}\right) & \subseteq g M_{\bar{i}+\bar{j}} \\
\mu_{r}\left(g M_{\bar{i}}, g L_{\bar{j}}\right) & \subseteq g M_{\bar{i}+\bar{j}} \\
\mu_{l}(g x, g m) & =g \mu_{l}(x, m), \\
\mu_{r}(g m, g x) & =g \mu_{r}(m, x), \\
\beta\left(\mu_{l}(x, m)\right) & =\mu_{l}(\alpha(x), \beta(m)), \\
\beta\left(\mu_{r}(m, x)\right) & =\mu_{r}(\beta(m), \alpha(x)), \\
\mu_{l}([x, y], \beta(m)) & =\mu_{l}\left(\alpha(x), \mu_{l}(y, m)\right)-(-1)^{|x \| y|} \mu_{l}\left(\alpha(y), \mu_{l}(x, m)\right), \\
\mu_{r}\left(\mu_{l}(x, m), \alpha(y)\right) & =\mu_{l}\left(\alpha(x), \mu_{r}(m, y)\right)-(-1)^{|x||m|} \mu_{r}(\beta(m),[x, y]) \\
\mu_{r}\left(\mu_{r}(m, x), \alpha(y)\right) & =\mu_{r}(\beta(m),[x, y])-(-1)^{|m||x|} \mu_{l}\left(\alpha(x), \mu_{r}(m, y)\right) .
\end{aligned}
$$

for all $\bar{i}, \bar{j} \in \mathbb{Z}_{2}, x, y \in \mathcal{H}(L), m \in \mathcal{H}(M)$ and $g \in G$.
We now introduce an equivariant cohomology of Hom-Leibniz superalgebras L equipped with an action of a finite group G.

Set

$$
\widetilde{C}_{G}^{n}(L, M):=\left\{\left(c_{\gamma}, c_{\alpha}\right) \in \widetilde{C}^{n}(L, M) \mid c_{\gamma}\left(g x_{1}, \cdots, g x_{n}\right)=g c_{\gamma}\left(x_{1}, \cdots, x_{n}\right), c_{\alpha}\left(g x_{1}, \cdots, g x_{n-1}\right)=g c_{\alpha}\left(x_{1}, \cdots, x_{n-1}\right)\right\},
$$

for all $x_{1}, \cdots, x_{n} \in \mathcal{H}(L)$. Here $\widetilde{C}^{n}(L, M)$ is n-cochain group of the Hom-Leibniz superalgebra ($L,[],, \alpha$) and $\widetilde{C}_{G}^{n}(L, M)$ consists of all n-cochains which are equivariant. Clearly, $\widetilde{C}_{G}^{n}(L, M)=\widetilde{C}_{G}^{n}(L, M)_{\overline{0}} \oplus \widetilde{C}_{G}^{n}(L, M)_{\overline{1}}$, $\widetilde{C}_{G}^{n}(L, M)$ is a submodule of $\widetilde{C}^{n}(L, M)$ and $\left(c_{\gamma}, c_{\alpha}\right) \in \widetilde{C}_{G}^{n}(L, M)$ is called an invariant n-cochain.

Lemma 5.5. If an n-cochain $\left(c_{\gamma}, c_{\alpha}\right)$ is invariant then $\partial\left(c_{\gamma}, c_{\alpha}\right)$ is also an invariant $(n+1)$-cochain.
Proof. Let $\left(c_{\gamma}, c_{\alpha}\right) \in \widetilde{C}_{G}^{n}(L, M)$ and $g \in G, x_{1}, \cdots, x_{n} \in \mathcal{H}(L)$. By definition, we have

$$
c_{\gamma}\left(g x_{1}, \cdots, g x_{n}\right)=g c_{\gamma}\left(x_{1}, \cdots, x_{n}\right), \quad c_{\alpha}\left(g x_{1}, \cdots, g x_{n-1}\right)=g c_{\alpha}\left(x_{1}, \cdots, x_{n-1}\right) .
$$

It is enough to show that the four differentials $\partial_{\gamma \gamma}, \partial_{\gamma \alpha}, \partial_{\alpha \alpha}, \partial_{\alpha \gamma}$ respect the group action. Observe that

$$
\begin{aligned}
& \partial_{\gamma \gamma}\left(c_{\gamma}\right)\left(g x_{1}, g x_{2}, \cdots, g x_{n+1}\right) \\
= & \sum_{i=1}^{n}(-1)^{i+1+\left|x_{i}\right|\left(|\phi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)}\left[\alpha^{n-1}\left(g x_{i}\right), c_{\gamma}\left(g x_{1}, \cdots, \widehat{g x_{i}} \cdots, g x_{n+1}\right)\right] \\
& \left.+\sum_{1 \leq i<j \leq n+1}(-1)^{i+\left|x_{i}\right| \mid\left(x_{i+1}\left|+\cdots+\left|x_{j-1}\right|\right)\right.} c_{\gamma}\left(\alpha\left(g x_{1}\right), \cdots, \widehat{\alpha\left(g x_{i}\right.}\right), \cdots,\left[g x_{i}, g x_{j}\right], \alpha\left(g x_{j+1}\right), \cdots, \alpha\left(g x_{n+1}\right)\right) \\
& +(-1)^{n+1}\left[c_{\gamma}\left(g x_{1}, \cdots, g x_{n}\right), \alpha^{n-1}\left(g x_{n+1}\right)\right] \\
= & \sum_{i=1}^{n}(-1)^{i+1+\left|x_{i}\right|\left(|\phi|+\left|x_{1}\right|+\cdots+\left|x_{i-1}\right|\right)}\left[g \alpha^{n-1}\left(x_{i}\right), g c_{\gamma}\left(x_{1}, \cdots, \widehat{x_{i}} \cdots, x_{n+1}\right)\right] \\
& +\sum_{1 \leq i<j \leq n+1}(-1)^{i+\left|x_{i}\right| \mid\left(x_{i+1}\left|+\cdots+\left|x_{j-1}\right|\right)\right.} g c_{\gamma}\left(\alpha\left(x_{1}\right), \cdots, \widehat{\alpha\left(x_{i}\right)}, \cdots,\left[x_{i}, x_{j}\right], \alpha\left(x_{j+1}\right), \cdots, \alpha\left(x_{n+1}\right)\right) \\
= & \quad+(-1)^{n+1}\left[g c_{\gamma}\left(x_{1}, \cdots, x_{n}\right), g \alpha^{n-1}\left(x_{n+1}\right)\right] \\
& g\left(\partial_{\gamma \gamma} c_{\gamma}\right)\left(x_{1}, x_{2}, \cdots, x_{n+1}\right) .
\end{aligned}
$$

Similarly, it is easy to show that

$$
\begin{aligned}
\partial_{\alpha \alpha}\left(c_{\alpha}\right)\left(g x_{1}, g x_{2}, \cdots, g x_{n}\right) & =g\left(\partial_{\alpha \alpha} c_{\alpha}\right)\left(x_{1}, x_{2}, \cdots, x_{n}\right), \\
\partial_{\gamma \alpha}\left(c_{\gamma}\right)\left(g x_{1}, g x_{2}, \cdots, g x_{n}\right) & =g\left(\partial_{\gamma \alpha} c_{\gamma}\right)\left(x_{1}, x_{2}, \cdots, x_{n}\right), \\
\partial_{\alpha \gamma}\left(c_{\alpha}\right)\left(g x_{1}, g x_{2}, \cdots, g x_{n+1}\right) & =g\left(\partial_{\alpha \gamma} c_{\alpha}\right)\left(x_{1}, x_{2}, \cdots, x_{n+1}\right) .
\end{aligned}
$$

Therefore, $\partial\left(c_{\gamma}, c_{\alpha}\right) \in \widetilde{C}_{G}^{n+1}(L, M)$.
The cochain complex $\left(\widetilde{C}_{G}^{*}(L, M), \partial\right)$ is called an equivariant cochain complex of $(G, L,[],, \alpha)$. We define n-th equivariant cohomology group of $(G, L,[],, \alpha)$ with values in (M, β) is given by

$$
\widetilde{H}_{G}^{n}(L, M):=H^{n}\left(\widetilde{C_{G}^{*}}(L, M)\right)
$$

Remark 5.6. Any Hom-Leibniz superalgebra $(G, L,[],, \alpha)$ equipped with an action of a finite group G is a G-bimodule over itself, that is $M=L, \beta=\alpha$. At this point, we denote the cohomology $\widetilde{H}_{G}^{n}(L, L)=\widetilde{H}_{G}^{n}(L, M)$.

6. Equivariant formal deformation of Hom-Leibniz superalgebra

Definition 6.1. An equivariant one-parameter formal deformation of $(G, L,[],, \alpha)$ is given by a $\mathbb{K}[[t]]$-bilinear map $m_{t}: L[[t]] \times L[[t]] \rightarrow L[[t]]$ and a $\mathbb{K}[[t]]$-linear map $\alpha_{t}: L[[t]] \rightarrow L[[t]]$ of the forms

$$
m_{t}(x, y)=\sum_{i \geq 0} m_{i}(x, y) t^{i} \text { and } \alpha_{t}(z)=\sum_{i \geq 0} \alpha_{i}(z) t^{i}
$$

for all $x, y, z \in \mathcal{H}(L)$, such that,
(1) For all $i \geq 0, m_{i} \in \operatorname{Hom}_{\mathbb{K}}^{G}(L \otimes L, L)_{\overline{0}}$ and $\alpha_{i} \in \operatorname{End}_{\mathbb{K}}^{G}(L)_{\overline{0}}$.
(2) $m_{0}(x, y)=[x, y], \alpha_{0}=\alpha$.
(3) $\left|m_{t}(x, y)\right|=|x|+|y|,\left|\alpha_{t}(z)\right|=|z|$.
(4) $m_{t}\left(m_{t}(x, y), \alpha_{t}(z)\right)=m_{t}\left(\alpha_{t}(x), m_{t}(y, z)\right)-(-1)^{|x| y \mid} m_{t}\left(\alpha_{t}(y), m_{t}(x, z)\right)$.
(5) $\alpha_{t}\left(m_{t}(x, y)\right)=m_{t}\left(\alpha_{t}(x), \alpha_{t}(y)\right)$.

Remark 6.2. Equations (4)(5) are equivalent to $(n=0,1,2, \cdots)$

$$
\begin{align*}
& \sum_{\substack{i+j+k=n \\
i, j, k \geq 0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x| y \mid} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right)=0 ; \tag{6.1}\\
& \sum_{\substack{i+j, k=n \\
i, j, k \geq 0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)-\sum_{\substack{i+j=n \\
i, j \geq 0}} \alpha_{i}\left(m_{j}(x, y)\right)=0 . \tag{6.2}
\end{align*}
$$

Definition 6.3. An equivariant 2-cochain $\left(m_{1}, \alpha_{1}\right)$ is called an equivariant infinitesimal of the equivariant deformation $\left(m_{t}, \alpha_{t}\right)$. Suppose more generally that $\left(m_{n}, \alpha_{n}\right)$ is the first non-zero term of $\left(m_{t}, \alpha_{t}\right)$ after $\left(m_{0}, \alpha_{0}\right)$, such $\left(m_{n}, \alpha_{n}\right)$ is called an equivariant n-infinitesimal of the equivariant deformation.

Proposition 6.4. Let G be a finite group and $(L,[],, \alpha)$ be a Hom-Leibniz superalgebra, suppose $\left(G, L_{t}, m_{t}, \alpha_{t}\right)$ is its equivariant one-parameter deformation, then the equivariant infinitesimal of an equivariant deformation is a two-cocycle of the equivariant cohomology.

Proof Let $\left(m_{n}, \alpha_{n}\right)$ is an equivariant n-infinitesimal of the equivariant deformation. Thus, for all $1 \leq i \leq$ $n-1, x, y, z \in \mathcal{H}(L) m_{i}(x, y)=0, \alpha_{i}(z)=0$. By the equation (6.1), have

$$
\begin{aligned}
& m_{0}\left(m_{n}(x, y), \alpha_{0}(z)\right)-m_{0}\left(\alpha_{0}(x), m_{n}(y, z)\right)+(-1)^{|x||y|} m_{0}\left(\alpha_{0}(y), m_{n}(x, z)\right)+ \\
& m_{n}\left(m_{0}(x, y), \alpha_{0}(z)\right)-m_{n}\left(\alpha_{0}(x), m_{0}(y, z)\right)+(-1)^{|x| l|y|} m_{n}\left(\alpha_{0}(y), m_{0}(x, z)\right)+ \\
& m_{0}\left(m_{0}(x, y), \alpha_{n}(z)\right)-m_{0}\left(\alpha_{n}(x), m_{0}(y, z)\right)+(-1)^{|x| l|y|} m_{0}\left(\alpha_{n}(y), m_{0}(x, z)\right) \\
= & \left(\partial_{\gamma \gamma} m_{n}-\partial_{\alpha \gamma} \alpha_{n}\right)(x, y, z)=0 .
\end{aligned}
$$

By the equation (6.2), have

$$
\begin{aligned}
& m_{0}\left(\alpha_{0}(x), \alpha_{n}(y)\right)+m_{0}\left(\alpha_{n}(x), \alpha_{0}(y)\right)+m_{n}\left(\alpha_{0}(x), \alpha_{0}(y)\right)-\alpha_{0}\left(m_{n}(x, y)\right)-\alpha_{n}\left(m_{0}(x, y)\right) \\
= & \left(\partial_{\alpha \alpha} \alpha_{1}-\partial_{\gamma \alpha} m_{1}\right)(x, y)=0 .
\end{aligned}
$$

Therefore, $\partial^{2}\left(m_{n}, \alpha_{n}\right)=0$.
Definition 6.5. An equivariant n-deformation of a Hom-Leibniz superalgebra equipped with a finite group action is a formal deformation of the forms

$$
m_{t}=\sum_{i=0}^{n} m_{i} t^{i} \text { and } \alpha_{t}=\sum_{i=0}^{n} \alpha_{i} t^{i}
$$

for all $x, y, z \in \mathcal{H}(L)$, such that,
(1) For all $0 \leq i \leq n, m_{i} \in \operatorname{Hom}_{\mathbb{K}}^{G}(L \otimes L, L)_{\overline{0}}$ and $\alpha_{i} \in \operatorname{End}_{\mathbb{K}}^{G}(L)_{\overline{0}}$.
(2) $m_{0}(x, y)=[x, y], \alpha_{0}=\alpha$.
(3) $\left|m_{t}(x, y)\right|=|x|+|y|,\left|\alpha_{t}(z)\right|=|z|$.
(4) $m_{t}\left(m_{t}(x, y), \alpha_{t}(z)\right)=m_{t}\left(\alpha_{t}(x), m_{t}(y, z)\right)-(-1)^{|x \| y|} m_{t}\left(\alpha_{t}(y), m_{t}(x, z)\right)$.
(5) $\alpha_{t}\left(m_{t}(x, y)\right)=m_{t}\left(\alpha_{t}(x), \alpha_{t}(y)\right)$.

We say an equivariant n-deformation $\left(m_{t}, \alpha_{t}\right)$ of a Hom-Leibniz superalgebra ($G, L,[],, \alpha$) is extendable to an equivariant $(n+1)$-deformation if there is an element $\left(m_{n+1}, \alpha_{n+1}\right) \in \widetilde{C}_{G}^{n+1}(L, L)$ such that

$$
\begin{aligned}
& \overline{m_{t}}=m_{t}+m_{n+1} t^{n+1}, \\
& \overline{\alpha_{t}}=\alpha_{t}+\alpha_{n+1} t^{n+1},
\end{aligned}
$$

and $\left(\overline{m_{t}}, \overline{\alpha_{t}}\right)$ satisfies (1)-(5). The $(n+1)$-deformation $\left(\overline{m_{t}}, \overline{\alpha_{t}}\right)$ gives us the following equations.

$$
\begin{align*}
& \sum_{\substack{i+j+k=n+1 \\
i, k, k \geq 0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x||y|} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right)=0 ; \tag{6.3}\\
& \sum_{\substack{i+j+k=n+1 \\
i, k, k \geq 0}} \alpha_{i}\left(m_{j}(x, y)\right)-\sum_{\substack{i+j+k=n+1 \\
i, j, k \geq 0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)=0 . \tag{6.4}
\end{align*}
$$

This is same as the following equations

$$
\begin{aligned}
& \left(\partial_{\gamma \gamma} m_{n+1}-\partial_{\alpha \gamma} \alpha_{n+1}\right)(x, y, z) \\
= & -\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i}\left(m_{k}(x, y), \alpha_{j}(z)\right)-m_{i}\left(\alpha_{j}(x), m_{k}(y, z)\right)+(-1)^{|x||y|} m_{i}\left(\alpha_{j}(y), m_{k}(x, z)\right)\right) \\
= & -\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z) . \\
& \left(\partial_{\alpha \alpha} \alpha_{n+1}-\partial_{\gamma \alpha} m_{n+1}\right)(x, y)=-\sum_{\substack{i+j+k=n+1 \\
j, j, k>0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)+\sum_{\substack{i+j=n+1 \\
i, j>0}} \alpha_{i}\left(m_{j}(x, y)\right) .
\end{aligned}
$$

We define the n-th obstruction to extend a deformation of Hom-Leibniz superalgebra of order n to order $n+1$ as $\operatorname{Obs}_{G}^{n}=\left(\operatorname{Obs}_{G, \gamma,}^{n}, \operatorname{Obs}_{G, \alpha}^{n}\right)$, where

$$
\begin{align*}
\operatorname{Obs}_{G, \gamma}^{n}(x, y, z): & =-\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}}\left(m_{i} \circ_{\alpha_{j}} m_{k}\right)(x, y, z)=\left(\partial_{\gamma \gamma} m_{n+1}-\partial_{\alpha \gamma} \alpha_{n+1}\right)(x, y, z) \tag{6.5}\\
\operatorname{Obs}_{G, \alpha}^{n}(x, y): & =-\sum_{\substack{i+j+k=n+1 \\
i, j, k>0}} m_{i}\left(\alpha_{j}(x), \alpha_{k}(y)\right)+\sum_{\substack{i+j=n+1 \\
i, j>0}} \alpha_{i}\left(m_{j}(x, y)\right) \\
& =\left(\partial_{\alpha \alpha} \alpha_{n+1}-\partial_{\gamma \alpha} m_{n+1}\right)(x, y) . \tag{6.6}
\end{align*}
$$

Lemma 6.6. Let $\left(m_{t}, \alpha_{t}\right)$ is an equivariant n-deformations, then for all $n \geq 1 \mathrm{Obs}_{G}^{n} \in \widetilde{\mathrm{C}}_{G}^{3}(L, L)$ is a cocycle.
The proof of the above lemma is similar to the Hom-Leibniz algebra case [21].
Similar to the non-equivariant case, we have the following theorem for equivariant deformations.
Theorem 6.7. An equivariant deformation of order n extends to an equivariant deformation of order $n+1$ if and only if cohomology class of Obs_{G}^{n} vanishes.

Proposition 6.8. If $\widetilde{H}_{G}^{3}(L, L)=0$ then any equivariant 2 -cocycle gives an equivariant one-parameter formal deformation of $(G, L,[],, \alpha)$.
Definition 6.9. Let $L_{t}^{G}=\left(G, L, m_{t}, \alpha_{t}\right)$ and $L_{t}^{\prime G}=\left(G, L, m_{t}^{\prime}, \alpha_{t}^{\prime}\right)$ be two equivariant one-parameter Hom-Leibniz superalgebra deformations of $(G, L,[],, \alpha)$, where $m_{t}=\sum_{i \geq 0} m_{i} t^{i}, \alpha_{t}=\sum_{i \geq 0} \alpha_{i} t^{i}$ and $m_{t}^{\prime}=\sum_{i \geq 0} m_{i}^{\prime} t^{i}, \alpha_{t}^{\prime}=\sum_{i \geq 0} \alpha_{i}^{\prime} t^{i}$. Two deformations L_{t}^{G} and $L_{t}^{\prime G}$ are said to be equivalent if there exists a $\mathbb{K}[[t]]$-linear isomorphism $\Psi_{t}: L[[t]] \rightarrow L[[t]]$ of the form $\Psi_{t}=\sum_{i \geq 0} \psi_{i} t^{t}$, where $\psi_{0}=\mathrm{Id}$ and $\psi_{i}: L \rightarrow L$ are equivariant \mathbb{K}-linear maps such that the following relations holds:

$$
\begin{align*}
& \left|\Psi_{t}(x)\right|=|x| \\
& \Psi_{t}\left(m_{t}^{\prime}(x, y)\right)=m_{t}\left(\Psi_{t}(x), \Psi_{t}(y)\right) \tag{6.7}\\
& \alpha_{t}\left(\Psi_{t}(x)\right)=\Psi_{t}\left(\alpha_{t}^{\prime}(x)\right) \tag{6.8}
\end{align*}
$$

for all $x, y \in \mathcal{H}(L)$.
The above equations (6.7) and (6.8) are equivalent to the following equations:

$$
\begin{align*}
& \sum_{i \geq 0} \psi_{i}\left(\sum_{j \geq 0} m_{j}^{\prime}(x, y) t^{j}\right) t^{i}=\sum_{i \geq 0} m_{i}\left(\sum_{j \geq 0} \psi_{j}(x) t^{j}, \sum_{k \geq 0} \psi_{k}(y) t^{k}\right) t^{i}, \tag{6.9}\\
& \sum_{i \geq 0} \alpha_{i}\left(\sum_{j \geq 0} \psi_{j}(x) t^{j}\right) t^{i}=\sum_{i \geq 0} \psi_{i}\left(\sum_{j \geq 0} \alpha_{j}^{\prime}(x) t^{j}\right) t^{i} . \tag{6.10}
\end{align*}
$$

Comparing coefficients of infinitesimals on both sides of the above equations, we have the following proposition.

Proposition 6.10. Equivariant infinitesimals of two equivalent equivariant deformations determine the same cohomology class.

Proposition 6.11. Let $(G, L,[],, \alpha)$ be a Hom-Leibniz superalgebra equipped with an action of finite group G. If $\widetilde{H}_{G}^{2}(L, L)=0$ then L is equivariantly rigid.

References

[1] J. Loday, Une version non commutative des alg'ebres de Lie: les alg'ebres de Leibniz, Enseign. Math. 39(3-4) (1993) 269-293 (in French).
[2] B. Guan, L. Chen, B. Sun, On Hom-Lie Superalgebras, Adv. Appl. Clifford Algebras 29(2019) 1-16.
[3] Y. Cao, L. Chen, B. Sun, On split regular Hom-Leibniz algebras, Journal of Algebra and Its Applications 17(10) (2018) 1850185 (18 pages).
[4] J. Zhu, L. Chen, Cohomology and Deformations of 3-Dimensional Heisenberg Hom-Lie Superalgebras, Czechoslovak Mathematical Journal 71(146) (2021) 335-350.
[5] L. Chen, Y. Yi, M. Chen, Y. Tang, Cohomology and 1-Parameter Formal Deformations of Hom- δ-Lie Triple Systems, Adv. Appl. Clifford Algebras 29(4)(2019) (14 pages)
[6] S. Attan, H. Hounnon, B. Kpamegan, Representations and formal deformations of Hom-Leibniz algebras, Asian-European J. Math. 14(2) (2021) 2150013(14pages).
[7] D. Liu, N. Hu, Leibniz superalgebras and central extensions, J. Algebra Appl. 5(6) (2006) 765-780.
[8] A. Makhlouf, S.D. Silvestrov. Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008) 51-64.
[9] E. Abdaoui, S. Mabrouk, A. Makhlouf, Cohomology of Hom-Leibniz and n-ary Hom-Nambu-Lie superalgebras, 2014, http://arxiv.org/abs/1406.3776.
[10] C. Wang, Q. Zhang, Z. Wei, Hom-Leibniz superalgebras and hom-Leibniz poisson superalgebras, Hacettepe Journal of Mathematics and Statistics 44(5) (2015) 1163-1179.
[11] G. Mukherjee, R. Saha, Cup-product for equivariant Leibniz cohomolgy and Zinbiel algebra, Algebra Colloquium 26(2) (2019) 271-284.
[12] R. Saha, Cup-product in Hom-Leibniz cohomology and Hom-Zinbiel algebras, Communications in Algebra 48(10) (2020) 42244234.
[13] R. Yadav, Cohomology and Deformation of Leibniz Superalgebras, 2021, http://arxiv.org/abs/2101.07652.
[14] D. Gaparayi, S. Attan, and A. N. Issa, On Hom-Leibniz and Hom-Lie-Yamaguti superalgebras, 2018, http://arxiv.org/abs/1805.04998v1.
[15] Z. Shen, Z. Wei, Q. Zhang, Hom-Leibniz Superalgebras, Chin. Quart. J. of Math. 29(4)(2014) 583-591.
[16] M. Gerstenhaber, On the deformation of rings and algebras. Ann. Math. 79 (1964) 59-103.
[17] M. Gerstenhaber, On the deformation of rings and algebras.II. Ann. Math. 84 (1966) 1-19.
[18] M. Gerstenhaber, On the deformation of rings and algebras.III. Ann. Math. 88 (1968) 1-34.
[19] M. Gerstenhaber, On the deformation of rings and algebras.IV. Ann. Math. 99 (1974) 257-276.
[20] A. Mandal, S. Mishra, Deformation of hom-Lie-Rinehart algebras, Communications in Algebra 48(4)(2020) 1653-1670.
[21] G. Mukherjee, R. Saha, Equivariant one-parameter formal deformations of Hom-Leibniz algebras, Communications in Contemporary Mathematics, (Online) DOI:10.1142/S0219199720500820.
[22] R. Yadav, N. Behera, R. Bhutia, Equivariant one-parameter deformations of Lie triple systems, J. Algebra 568 (2021) 467-479.
[23] G. Mukherjee, R. Yadav, Equivariant one-parameter deformations of associative algebras, J. Algebra Appl. 19(6) (2020) 2050114 (18pages).

[^0]: 2020 Mathematics Subject Classification. 16E40; 17A30; 55N91
 Keywords. Hom-Leibniz superalgebra, Group action, equivariant cohomology, formal deformation.
 Received: 08 July 2021, Revised: 22 December 2021; Accepted: 07 January 2022
 Communicated by Dragana Cvetković-Ilić
 Corresponding author: Yuanyuan Ke
 Research supported by the Natural Science Foundation of China (No.11901245), Guizhou Provincial Science and Technology Foundation (No. [2020]1Y005).

 Email address: keyy086@126.com (Yuanyuan Ke)

