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Abstract. This paper has aim to characterize Fredholmness and Weylness of upper triangular operator
matrices having arbitrary dimension n ≥ 2. We present various characterization results in the setting of
infinite dimensional Hilbert spaces, thus extending some known results from Cao X. et al. (Acta Math. Sin.
(Engl. Ser.) 22 (2006), no. 1, 169–178 and J. Math. Anal. Appl. 304 (2005), no. 2, 759–771) and Zhang et
al. (J. Math. Anal. Appl. 392 (2012), no. 2, 103–110) to the case of arbitrary dimension n ≥ 2. We pose our
results without using separability assumption, thus improving perturbation results from Wu X. et al. (Ann.
Funct. Anal. 11 (2020), no. 3, 780–798 and Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 7, 783–796).

1. Introduction and notation

This article is concerned with partial upper triangular operator matrices of arbitrary dimension n ≥ 2.
Term ”partial” means that some of the entries of a matrix are given, while the others are unknown. These
operators arise naturally in many research areas of operator theory. Indeed, suppose that an operator T
acting on a Hilbert spaceH is studied with respect to an orthogonal decomposition ofH . In other words,

let M be a closed subspace of H . Then we have H = M ⊕M⊥ and T =
[
T1 T2
T3 T4

]
, where T1 : M → M,

T2 : M⊥
→ M, T3 : M → M⊥, T4 : M⊥

→ M⊥. Among all closed subspaces of H we distinguish those
which are invariant for T. If M is a such subspace, then T(M) ⊆ M and T takes the upper triangular form

T =
[
T1 T2
0 T4

]
. We can implement this reasoning for an arbitrary number of closed subspaces, thus obtaining

upper triangular operators of dimension n > 2. Spectral properties of block operators are extensively studied
by numerous authors (see [1], [2], [4]-[14]) and we continue this study for upper triangular operators of an
arbitrary dimension.

Article is organized as follows. In the rest of this section we give notation and some basics on Fredholm
theory with a few auxiliary results. Sections 2 and 3 deal with characterizing Weylness and Fredholmness
in the setting of arbitrary infinite dimensional Hilbert spaces, respectively.

LetH ,H1, ...,Hn be Hilbert spaces. We use notationB(Hi,H j) for the collection of all linear and bounded
operators fromHi toH j, where B(H) := B(H ,H) for short. If T ∈ B(Hi,H j), byN(T) and R(T) we denote
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the kernel and the range of T, respectively. It is well known that N(T) is closed, thus complemented in
Hilbert spaceHi. By T∗ ∈ B(H j,Hi) we denote the adjoint of T.

Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn) be given. Partial upper triangular operator matrix of
dimension n is

Td
n(A) =



D1 A12 A13 ... A1,n−1 A1n
0 D2 A23 ... A2,n−1 A2n
0 0 D3 ... A3,n−1 A3n
...

...
...
. . .

...
...

0 0 0 ... Dn−1 An−1,n
0 0 0 ... 0 Dn


∈ B(H1 ⊕H2 ⊕ · · · ⊕ Hn), (1.1)

where A := (A12, A13, ..., Ai j, ..., An−1,n) is an operator tuple consisting of unknown variables Ai j ∈ B(H j,Hi),
1 ≤ i < j ≤ n, n ≥ 2. We denote by Bn the collection of all described tuples A = (Ai j). This is a notation used
in [12], [13]. One easily verifies that for Td

n(A) having form (1.1), its adjoint operator matrix Td
n(A)∗ is given

by

Td
n(A)∗ =



D∗1 0 0 ... 0 0
A∗12 D∗2 0 ... 0 0
A∗13 A∗23 D∗3 ... 0 0
...

...
...

. . .
...

...
A∗1,n−1 A∗2,n−1 A∗3,n−1 ... D∗n−1 0
A∗1n A∗2n A∗3n ... A∗n−1,n D∗n


∈ B(H1 ⊕H2 ⊕ · · · ⊕ Hn). (1.2)

Topic that interests us is a part of Fredholm theory. Here we give some basics, using notation from
[15]. Let T ∈ B(H), α(T) = dimN(T) and β(T) = dimH/R(T). Quantities α(T) and β(T) are called the
nullity and the deficiency of T, respectively, and in the case where at least one of them is finite we define
ind(T) = α(T)−β(T) to be the index of T. Families of upper and lower semi-Fredholm operators, respectively,
are defined as

Φ+(H) =
{
T ∈ B(H) : α(T) < ∞ and R(T) is closed

}
and

Φ−(H) = {T ∈ B(H) : β(T) < ∞}.

The set of Fredholm operators is

Φ(H) = Φ+(H) ∩Φ−(H) = {T ∈ B(H) : α(T) < ∞ and β(T) < ∞}.

Put
Φ−+(H) = {T ∈ Φ+(H) : ind(T) ≤ 0}

and
Φ+−(H) = {T ∈ Φ−(H) : ind(T) ≥ 0}.

The previous two collections are called the sets of upper and lower Weyl operators, respectively.
Corresponding spectra of an operator T ∈ B(H) are defined as follows:

-the upper semi-Fredholm spectrum: σSF+(T) = {λ ∈ C : λ − T < Φ+(H)};
-the lower semi-Fredholm spectrum: σSF−(T) = {λ ∈ C : λ − T < Φ−(H)};
-the essential spectrum: σe(T) = {λ ∈ C : λ − T < Φ(H)};
-the upper semi-Weyl spectrum: σaw(T) = {λ ∈ C : λ − T < Φ−+(H)};
-the lower semi-Weyl spectrum: σsw(T) = {λ ∈ C : λ − T < Φ+

−
(H)};

We write ρSF+(T), ρSF−(T), ρe(T), ρaw(T), ρsw(T) for their complements, respectively.
We list some elementary results from functional analysis.
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Lemma 1.1. For T ∈ B(H) with closed range the following holds:
(a) α(T) = β(T∗), β(T) = α(T∗);
(b) T ∈ Φ+(H) if and only if T∗ ∈ Φ−(H);
(c) T ∈ Φ−(H) if and only if T∗ ∈ Φ+(H);
(d) ind(T∗) = −ind(T).

Lemma 1.2. Let Td
n(A) ∈ B(H1 ⊕ · · · ⊕ Hn). Then:

(i) σSF+(D1) ⊆ σSF+(Td
n(A));

(ii) σSF−(Dn) ⊆ σSF−(Td
n(A)).

Lemma 1.3. Let T ∈ B(H). Then R(T) is closed if and only if R(T∗) is closed.

Theorem 1.4. ([3]) For T ∈ B(H) the following implication holds:

β(T) < ∞⇒ R(T) is closed (thus complemented inH).

2. Weylness of Td
n (A)

In this section we assume H1, ...,Hn to be arbitrary infinite dimensional Hilbert space. We generalize
results of [2],[14] from n = 2 to an arbitrary dimension of upper triangular operators, and we pose
perturbation results of [13] without assuming separability of underlying spaces.

2.1. Weylness of Td
n(A)

We start with a result which deals with the upper Weyl spectrum of Td
n(A).

Theorem 2.1. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1);

(b) R(Ds) is closed for 2 ≤ s ≤ n and(
α(Ds) ≤ β(Ds−1) f or 2 ≤ s ≤ n,

n∑
s=1

β(Ds) = ∞
) (2.1)

or
(
Ds ∈ Φ+(Hs) for 2 ≤ s ≤ n and

n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
;

(ii) There exists A ∈ Bn such that Td
n(A) ∈ Φ−+(H1 ⊕ · · · ⊕ Hn);

(iii) (a) D1 ∈ Φ+(H1);
(b)
(
β(D j) = ∞ for some j ∈ {1, ...,n} and α(Ds) < ∞ for 2 ≤ s ≤ j

)
or
(
Ds ∈ Φ+(Hs) for 2 ≤ s ≤ n and

n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 2.2. If j = 1 in (iii)(b), we simply omit condition ”α(Ds) < ∞ for 2 ≤ s ≤ j” there.

Proof: (ii)⇒ (iii)
Assume that Td

n(A) is upper Weyl. Then Td
n(A) is upper Fredholm, hence D1 ∈ Φ+(H1) (Lemma 1.2).

Assume that (iii)(b) fails. We have two possibilities. On the one hand, assume that for 2 ≤ s ≤ n we have
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β(Ds) < ∞. It means (Theorem 1.4) that R(Ds) is closed for 1 ≤ s ≤ n. Again, we have two possibilities.

Either there exists some i ∈ {2, ...,n}with α(Di) = ∞, or we have
n∑

s=1
α(Ds) >

n∑
s=1
β(Ds).

First suppose α(Di) = ∞ for some i ∈ {2, ...,n}.We use a method from [13]. We know that for each A ∈ Bn,
operator matrix Td

n(A) as an operator from N(D1)⊥ ⊕ N(D1) ⊕ N(D2)⊥ ⊕ N(D2) ⊕ N(D3)⊥ ⊕ N(D3) ⊕ · · · ⊕
N(Dn)⊥ ⊕N(Dn) into R(D1)⊕R(D1)⊥ ⊕R(D2)⊕R(D2)⊥ ⊕ · · · ⊕ R(Dn−1)⊕R(Dn−1)⊥ ⊕R(Dn)⊕R(Dn)⊥ admits
the following block representation

Td
n(A) =



D(1)
1 0 A(1)

12 A(2)
12 A(1)

13 A(2)
13 ... A(1)

1n A(2)
1n

0 0 A(3)
12 A(4)

12 A(3)
13 A(4)

13 ... A(3)
1n A(4)

1n
0 0 D(1)

2 0 A(1)
23 A(2)

23 ... A(1)
2n A(2)

2n
0 0 0 0 A(3)

23 A(4)
23 ... A(3)

2n A(4)
2n

0 0 0 0 D(1)
3 0 ... A(1)

3n A(2)
3n

0 0 0 0 0 0 ... A(3)
3n A(4)

3n
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 ... A(1)
n−1,n A(2)

n−1,n

0 0 0 0 0 0 ... A(3)
n−1,n A(4)

n−1,n

0 0 0 0 0 0 ... D(1)
n 0

0 0 0 0 0 0 ... 0 0



(2.2)

Obviously, D(1)
1 , D(1)

2 , ...,D
(1)
n from (2.2) are invertible. Hence, there exist invertible operator matrices U and

V so that

UTd
n(A)V =



D(1)
1 0 0 0 0 0 ... 0 0
0 0 0 B(4)

12 0 B(4)
13 ... 0 B(4)

1n
0 0 D(1)

2 0 0 0 ... 0 0
0 0 0 0 0 B(4)

23 ... 0 B(4)
2n

0 0 0 0 D(1)
3 0 ... 0 0

0 0 0 0 0 0 ... 0 B(4)
3n

...
...

...
...

...
...
. . .

...
...

0 0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0 B(4)

n−1,n

0 0 0 0 0 0 ... D(1)
n 0

0 0 0 0 0 0 ... 0 0



(2.3)

Next, it is clear that (2.3) is upper Weyl if and only if

0 B(4)
12 B(4)

13 B(4)
14 ... B(4)

1n
0 0 B(4)

23 B(4)
24 ... B(4)

2n
0 0 0 B(4)

34 ... B(4)
3n

...
...

...
...
. . .

...

0 0 0 0 ... B(4)
n−1,n

0 0 0 0 ... 0


:



N(D1)
N(D2)
N(D3)
N(D4)
...

N(Dn)


→



R(D1)⊥

R(D2)⊥

R(D3)⊥
...

R(Dn−1)⊥

R(Dn)⊥


(2.4)

is upper Weyl. Since
i−1∑
s=1
β(Ds) < ∞ and α(Di) = ∞, it follows that

α





B(4)
1i

B(4)
2i

B(4)
3i
...

B(4)
i−1,i




= ∞,
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and hence operator defined in (2.4) is not upper Weyl for every A ∈ Bn. This proves the desired.

Now assume α(Ds) < ∞ for 2 ≤ s ≤ n. Then we have
n∑

s=1
α(Ds) >

n∑
s=1
β(Ds), and for each A ∈ Bn, Td

n(A) has

representation as (2.2), and we still use (2.3) and (2.4). Since Ds, 1 ≤ s ≤ n are upper Fredholm, we conclude

that Td
n(A) is upper Weyl if and only if (2.4) is upper Weyl. From

n∑
s=1
β(Ds) <

n∑
s=1
α(Ds), we know (2.4) is not

upper Weyl for every A ∈ Bn.
On the other hand, assume that there is j ∈ {2, ...,n} with β(D j) = ∞, and assume we have chosen the

smallest such j. In that case β(Ds) < ∞ for 1 ≤ s ≤ j − 1, hence R(Ds) is closed for 1 ≤ s ≤ j − 1. Now, we
easily conclude it is impossible that α(Ds) < ∞ for 2 ≤ s ≤ j − 1, otherwise (iii)(b) would not fail. Therefore,
α(D j) = ∞ for some j ∈ {2, ..., j − 1} and be proceed with (2.2), (2.3), (2.4) applied to Td

j−1(A).
(i)⇒ (ii)

If Ds ∈ Φ+(Hs) for 2 ≤ s ≤ n and
n∑

s=1
α(Ds) ≤

n∑
s=1
β(Ds), we trivially choose A = (Ai j) = 0. Assume that

this is not the case. Otherwise, it holds α(D1) < ∞, R(Ds) is closed for all 1 ≤ s ≤ n and (2.1) holds. We
find A ∈ Bn such that α(Td

n(A)) < ∞ and R(Td
n(A)) is closed. We choose A = (Ai j)1≤i< j≤n so that Ai j = 0

if j − i , 1, that is we place all nonzero operators of tuple A on the superdiagonal. It remains to define
Ai j for j − i = 1, 1 ≤ i < j ≤ n. First notice that Ai,i+1 : Hi+1 → Hi. Since all of diagonal entries have
closed ranges, we know that Hi+1 = N(Di+1) ⊕ N(Di+1)⊥, Hi = R(Di)⊥ ⊕ R(Di), and from assumption (2.1)
we get α(Di+1) ≤ β(Di). It follows that there is a left invertible operator Ji : N(Di+1) → R(Di)⊥. We put

Ai,i+1 =

[
Ji 0
0 0

]
:
[
N(Di+1)
N(Di+1)⊥

]
= Hi+1 →Hi =

[
R(Di)⊥

R(Di)

]
, and we implement this procedure for all 1 ≤ i ≤ n− 1.

Notice that R(Di) is complemented to R(Ai,i+1) for each 1 ≤ i ≤ n − 1.
Now we have chosen our A, we show that N(Td

n(A)) � N(D1), implying α(Td
n(A)) = α(D1) < ∞. Let us

put Td
n(A)x = 0, where x = x1 + · · · + xn ∈ H1 ⊕ · · · ⊕ Hn. The previous equality is then equivalent to the

following system of equations 
D1x1 + A12x2
D2x2 + A23x3

...
Dn−1xn−1 + An−1,nxn

Dnxn


=


0
0
...
0
0


.

The last equation gives xn ∈ N(Dn). Since R(Ds) is complemented to R(As,s+1) for all 1 ≤ s ≤ n − 1, we have
Dsxs = As,s+1xx+1 = 0 for all 1 ≤ s ≤ n − 1. That is, xi ∈ N(Di) for every 1 ≤ i ≤ n, and Jsxs+1 = 0 for every
1 ≤ s ≤ n − 1. Due to left invertibility of Js we get xs = 0 for 2 ≤ s ≤ n, which proves the claim. Therefore,
α(Td

n(A)) = α(D1) < ∞.
Secondly, we show that R(Td

n(A)) is closed. It is not hard to see that

R(Td
n(A)) = R(D1) ⊕ R(J1) ⊕ R(D2) ⊕ R(J2) ⊕ · · · ⊕ R(Dn−1)⊕

R(Jn−1) ⊕ R(Dn).
(2.5)

Furthermore, due to left invertibility of Ji’s, there exist closed subspaces Ui of R(Di)⊥ such that R(Di)⊥ =
R(Ji) ⊕Ui, 1 ≤ i ≤ n − 1. It means that

H1 ⊕H2 ⊕ · · · ⊕ Hn = R(D1) ⊕ R(J1) ⊕U1 ⊕ R(D2) ⊕ R(J2) ⊕U2 ⊕ · · · ⊕

R(Dn−1) ⊕ R(Jn−1) ⊕Un−1 ⊕ R(Dn) ⊕ R(Dn)⊥.
(2.6)

Comparing equalities (2.5) and (2.6), we conclude that R(Td
n(A)) is closed.

We have proved that Td
n(A) is upper Fredholm. Notice that β(Td

n(A)) = dim(U1) + dim(U2) + · · · +
dim(Un−1)+ β(Dn). Now, with respect to (2.1), either β(Dn) = ∞ or we can choose at least one Ji such that its
codimension is infinite, that is dim Ui = ∞, i ∈ {1, ...,n− 1}. In either case we get β(Td

n(A)) = ∞ and it follows
that Td

n(A) is upper Weyl. □
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Corollary 2.3. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Then

σSF+(D1) ∪
( n+1⋃

k=2

∆k

)
⊆⋂

A∈Bn

σaw(Td
n(A)) ⊆

σSF+(D1) ∪
( n+1⋃

k=2

∆′k

)
∪

( n⋃
k=2

∆′′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk − λ) = ∞ and

k−1∑
s=1

β(Ds − λ) < ∞
}
, 2 ≤ k ≤ n,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

β(Ds − λ) <
n∑

s=1

α(Ds − λ)
}
,

∆′k := {λ ∈ C : α(Dk − λ) > β(Dk−1 − λ)}, 2 ≤ k ≤ n,

∆′n+1 := ∆n+1,

∆′′k :=
{
λ ∈ C : R(Dk − λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 2.4. Obviously, ∆k ⊆ ∆
′

k for 2 ≤ k ≤ n + 1.

Theorem 2.5. Let D1 ∈ B(H1),D2 ∈ B(H2). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1);

(b)
(
α(D2) ≤ β(D1), β(D1) + β(D2) = ∞ and R(D2) is closed

)
or
(
D2 ∈ Φ+(H2) and α(D1) + α(D2) ≤ β(D1) +

β(D2)
)
;

(ii) There exists A ∈ B2 such that Td
2(A) ∈ Φ−+(H1 ⊕H2);

(iii) (a) D1 ∈ Φ+(H1);
(b)
(
β(D1) = ∞ or (β(D2) = ∞ and α(D1) < ∞)

)
or
(
D2 ∈ Φ+(H2) and α(D1) + α(D2) ≤ β(D1) + β(D2)

)
.

Then (i)⇒ (ii)⇒ (iii).

Corollary 2.6. Let D1 ∈ B(H1), D2 ∈ B(H2). Then

σSF+(D1) ∪ ∆2 ∪ ∆3 ⊆

⋂
A∈Bn

σaw(Td
2(A)) ⊆ σSF+(D1) ∪ ∆′2 ∪ ∆3 ∪ ∆

′′

2 ,

where
∆2 :=

{
λ ∈ C : α(D2 − λ) = ∞ and β(D1 − λ) < ∞

}
,

∆3 :=
{
λ ∈ C : α(D1 − λ) + α(D2 − λ) > β(D1 − λ) + β(D2 − λ)

}
,

∆′2 := {λ ∈ C : α(D2 − λ) ≥ β(D1 − λ)},

∆′′2 :=
{
λ ∈ C : R(D2 − λ) is not closed

}
.

Remark 2.7. Notice that ∆2 ⊆ ∆
′

2.

Statements concerning the lower Weyl spectrum of Td
n(A) we get by duality.
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Theorem 2.8. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Consider the following statements:
(i) (a) Dn ∈ Φ−(Hn);

(b) R(Ds) is closed for 1 ≤ s ≤ n − 1 and(
β(Ds) ≤ α(Ds+1) f or 1 ≤ s ≤ n − 1,

n∑
s=1

α(Ds) = ∞
) (2.7)

or
(
Ds ∈ Φ−(Hs) for 1 ≤ s ≤ n − 1 and

n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
;

(ii) There exists A ∈ Bn such that Td
n(A) ∈ Φ+

−
(H1 ⊕ · · · ⊕ Hn);

(iii) (a) Dn ∈ Φ−(Hn);
(b)
(
α(D j) = ∞ for some j ∈ {2, ...,n} and β(Ds) < ∞ for j ≤ s ≤ n − 1

)
or
(
Ds ∈ Φ−(Hs) for 1 ≤ s ≤ n − 1 and

n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 2.9. If j = n in (iii)(b), we simply omit condition ”β(Ds) < ∞ for j ≤ s ≤ n − 1”.

Proof. The result immediately follows from Theorem 2.1, having in mind the statements of Lemma 1.1 and
Lemma 1.3. □

Corollary 2.10. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Then

σSF−(Dn) ∪
( n−1⋃

k=1

∆k

)
∪ ∆n+1 ⊆⋂

A∈Bn

σsw(Td
n(A)) ⊆

σSF−(Dn) ∪
( n−1⋃

k=1

∆′k

)
∪ ∆n+1 ∪

( n−1⋃
k=1

∆′′k

)
,

where

∆k :=
{
λ ∈ C : β(Dk − λ) = ∞ and

n∑
s=k+1

α(Ds − λ) < ∞
}
, 1 ≤ k ≤ n − 1,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

α(Ds − λ) <
n∑

s=1

β(Ds − λ)
}
,

∆′k := {λ ∈ C : β(Dk − λ) > α(Dk+1 − λ)}, 1 ≤ k ≤ n − 1,

∆′′k :=
{
λ ∈ C : R(Dk − λ) is not closed

}
, 2 ≤ k ≤ n − 1.

Remark 2.11. Obviously, ∆k ⊆ ∆
′

k for 1 ≤ k ≤ n − 1.

Theorem 2.12. Let D1 ∈ B(H1), D2 ∈ B(H2). Consider the following statements:
(i) (a) D2 ∈ Φ−(H2);

(b)
(
β(D1) ≤ α(D2), α(D1) + α(D2) = ∞ and R(D1) is closed

)
or
(
D1 ∈ Φ−(H1) and β(D1) + β(D2) ≤ α(D1) +
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α(D2)
)
;

(ii) There exists A ∈ B2 such that Td
2(A) ∈ Φ+

−
(H1 ⊕H2);

(iii) (a) D2 ∈ Φ−(H2);
(b)
(
α(D2) = ∞ or (α(D1) = ∞ and β(D2) < ∞)

)
or (D1 ∈ Φ−(H1) and β(D1) + β(D2) ≤ α(D1) + α(D2)).

Then (i)⇒ (ii)⇒ (iii).

Corollary 2.13. Let D1 ∈ B(H1), D2 ∈ B(H2). Then

σSF−(D2) ∪ ∆1 ∪ ∆3 ⊆

⋂
A∈B2

σsw(Td
2(A)) ⊆ σSF−(D2) ∪ ∆′1 ∪ ∆3 ∪ ∆

′′

1 ,

where
∆1 :=

{
λ ∈ C : β(D1 − λ) = ∞ and α(D2 − λ) < ∞

}
,

∆3 :=
{
λ ∈ C : α(D1 − λ) + α(D2 − λ) < β(D1 − λ) + β(D2 − λ)

}
,

∆′1 := {λ ∈ C : β(D1 − λ) ≥ α(D2 − λ)},

∆′′1 :=
{
λ ∈ C : R(D1 − λ) is not closed

}
.

Remark 2.14. Notice that ∆1 ⊆ ∆
′

1.

3. Fredholmness of Td
n (A)

Now, we deal with characterizations of Fredholmness of Td
n(A). Since (upper, lower) Weyl operators

form a subclass of (upper, lower) Fredholm operators, all theorems to follow will be reminiscent to theorems
of Section 2. Therefore, corresponding proofs are a special case of the proofs already seen in the previous
section, and so we omit them here.

We still assume H1, ...,Hn to be arbitrary infinite dimensional Hilbert space. We generalize results of
[1],[14] from n = 2 to an arbitrary dimension of upper triangular operators, and we pose perturbation
results of [12] without assuming separability of underlying spaces.

We start with a result which deals with the upper Fredholm spectrum of Td
n(A).

Theorem 3.1. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1);

(b) R(Ds) is closed for 2 ≤ s ≤ n and

α(Ds) ≤ β(Ds−1) f or 2 ≤ s ≤ n (3.1)

or Ds ∈ Φ+(Hs) for 2 ≤ s ≤ n;

(ii) There exists A ∈ Bn such that Td
n(A) ∈ Φ+(H1 ⊕ · · · ⊕ Hn);

(iii) (a) D1 ∈ Φ+(H1);
(b)
(
β(D j) = ∞ for some j ∈ {1, ...,n − 1} and α(Ds) < ∞ for 2 ≤ s ≤ j

)
or Ds ∈ Φ+(Hs) for 2 ≤ s ≤ n.

Then (i)⇒ (ii)⇒ (iii).

Remark 3.2. If j = 1 in (iii)(b), we simply omit condition ”α(Ds) < ∞ for 2 ≤ s ≤ j” there.
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Corollary 3.3. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Then

σSF+(D1) ∪
( n⋃

k=2

∆k

)
⊆⋂

A∈Bn

σSF+(Td
n(A)) ⊆

σSF+(D1) ∪
( n⋃

k=2

(∆′k ∩ ∆
′)
)
∪

( n⋃
k=2

∆′′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk − λ) = ∞ and

k−1∑
s=1

β(Ds − λ) < ∞
}
, 2 ≤ k ≤ n,

∆′k := {λ ∈ C : α(Dk − λ) > β(Dk−1 − λ)}, 2 ≤ k ≤ n,

∆′ :=
{
λ ∈ C :

n∑
s=2

α(Ds − λ) = ∞
}
,

∆′′k :=
{
λ ∈ C : R(Dk − λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 3.4. Obviously, ∆k ⊆ ∆
′

k ∩ ∆
′ for 2 ≤ k ≤ n.

Theorem 3.5. Let D1 ∈ B(H1),D2 ∈ B(H2). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1);

(b)
(
α(D2) ≤ β(D1) and R(D2) is closed

)
or D2 ∈ Φ+(H2);

(ii) There exists A ∈ B2 such that Td
2(A) ∈ Φ+(H1 ⊕H2);

(iii) (a) D1 ∈ Φ+(H1);
(b) β(D1) = ∞ or D2 ∈ Φ+(H2).

Then (i)⇒ (ii)⇒ (iii).

Corollary 3.6. Let D1 ∈ B(H1), D2 ∈ B(H2). Then

σSF+(D1) ∪ ∆2 ⊆

⋂
A∈Bn

σSF+(Td
2(A)) ⊆ σSF+(D1) ∪ ∆′2 ∪ ∆

′′

2 ,

where
∆2 :=

{
λ ∈ C : α(D2 − λ) = ∞ and β(D1 − λ) < ∞

}
,

∆′2 := {λ ∈ C : α(D2 − λ) ≥ β(D1 − λ)},

∆′′2 :=
{
λ ∈ C : R(D2 − λ) is not closed

}
.

Remark 3.7. Notice that ∆2 ⊆ ∆
′

2.

Statements concerning the lower Fredholm spectrum of Td
n(A) we get by duality.

Theorem 3.8. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Consider the following statements:
(i) (a) Dn ∈ Φ−(Hn);

(b) R(Ds) is closed for 1 ≤ s ≤ n − 1 and

β(Ds) ≤ α(Ds+1) f or 1 ≤ s ≤ n − 1 (3.2)
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or Ds ∈ Φ−(Hs) for 1 ≤ s ≤ n − 1;

(ii) There exists A ∈ Bn such that Td
n(A) ∈ Φ−(H1 ⊕ · · · ⊕ Hn);

(iii) (a) Dn ∈ Φ−(Hn);
(b)
(
α(D j) = ∞ for some j ∈ {2, ...,n} and β(Ds) < ∞ for j ≤ s ≤ n − 1

)
or Ds ∈ Φ−(Hs) for 1 ≤ s ≤ n − 1.

Then (i)⇒ (ii)⇒ (iii).

Remark 3.9. If j = n in (iii)(b), we simply omit condition ”β(Ds) < ∞ for j ≤ s ≤ n − 1” there.

Corollary 3.10. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Then

σSF−(Dn) ∪
( n−1⋃

k=1

∆k

)
⊆⋂

A∈Bn

σSF−(Td
n(A)) ⊆

σSF−(Dn) ∪
( n−1⋃

k=1

(∆′k ∩ ∆
′
)
∪

( n−1⋃
k=1

∆′′k

)
,

where

∆k :=
{
λ ∈ C : β(Dk − λ) = ∞ and

n∑
s=k+1

α(Ds − λ) < ∞
}
, 1 ≤ k ≤ n − 1,

∆′k := {λ ∈ C : β(Dk − λ) > α(Dk+1 − λ)}, 1 ≤ k ≤ n − 1,

∆′ := {λ ∈ C :
n−1∑
s=1

β(Ds − λ) = ∞},

∆′′k :=
{
λ ∈ C : R(Dk − λ) is not closed

}
, 2 ≤ k ≤ n − 1.

Remark 3.11. ∆k ⊆ ∆
′

k ∩ ∆
′ for 1 ≤ k ≤ n − 1.

Theorem 3.12. Let D1 ∈ B(H1), D2 ∈ B(H2). Consider the following statements:
(i) (a) D2 ∈ Φ−(H2);

(b)
(
β(D1) ≤ α(D2) and R(D1) is closed

)
or D1 ∈ Φ−(H1);

(ii) There exists A ∈ B2 such that Td
2(A) ∈ Φ−(H1 ⊕H2);

(iii) (a) D2 ∈ Φ−(H2);
(b) α(D2) = ∞ or D1 ∈ Φ−(H1).

Then (i)⇒ (ii)⇒ (iii).

Corollary 3.13. Let D1 ∈ B(H1), D2 ∈ B(H2). Then

σSF−(D2) ∪ ∆1 ⊆

⋂
A∈B2

σSF−(Td
2(A)) ⊆ σSF−(D2) ∪ ∆′1 ∪ ∆

′′

1 ,

where
∆1 :=

{
λ ∈ C : β(D1 − λ) = ∞ and α(D2 − λ) < ∞

}
,

∆′1 := {λ ∈ C : β(D1 − λ) ≥ α(D2 − λ)},

∆′′1 :=
{
λ ∈ C : R(D1 − λ) is not closed

}
.



N. Sarajlija / Filomat 36:8 (2022), 2507–2518 2517

Remark 3.14. Notice that ∆1 ⊆ ∆
′

1.

Last topic is the class Φ(H1 ⊕ · · · ⊕ Hn) and its corresponding essential spectrum.

Theorem 3.15. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1) and Dn ∈ Φ−(Hn);

(b)
(
R(Ds) is closed for 2 ≤ s ≤ n−1 and

(
α(Ds) = β(Ds−1) for 2 ≤ s ≤ n or α(Ds) ≤ β(Ds−1) < ∞ for 2 ≤ s ≤ n

))
or
(
D j ∈ Φ+(H j) for 2 ≤ j ≤ n and Dk ∈ Φ−(Hk) for 1 ≤ k ≤ n − 1

)
;

(ii) There exists A ∈ Bn such that Td
n(A) ∈ Φ(H1 ⊕ · · · ⊕ Hn);

(iii) (a) D1 ∈ Φ+(H1) and Dn ∈ Φ−(Hn);
(b)
(
β(D j) = ∞ for some j ∈ {1, ...,n − 1} and α(Ds) < ∞ for 2 ≤ s ≤ j, α(Dk) = ∞ for some k ∈ {2, ...,n}, and

β(Ds) < ∞ for k ≤ s ≤ n − 1, k > j
)

or
(
D j ∈ Φ+(H j) for 2 ≤ j ≤ n and Dk ∈ Φ−(Hk) for 1 ≤ k ≤ n − 1

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 3.16. If j = 1 and/or k = n in (iii)(b), condition that is ought to hold for 2 ≤ s ≤ j and/or k ≤ s ≤ n − 1 is
omitted there.

Proof. (ii)⇒ (iii)
Let Td

n(A) be Fredholm for some A ∈ Bn. Then Td
n(A) is both left and lower Fredholm, and so by

employing Theorems 3.1 and 3.8 we easily get the desired.
(i)⇒ (ii)
If D j ∈ Φ+(H j) for 2 ≤ j ≤ n and Dk ∈ Φ−(Hk) for 1 ≤ k ≤ n − 1 choose trivially A = 0. Otherwise,

this part follows the argument as seen in the proof of Theorem 2.1. Namely, assumptions of (i)(b) ensure
the existence of left invertible Ji’s, and so we choose A = (Ai j) as shown there. We shall again have
α(Td

n(A)) = α(D1) < ∞, and due to our assumptions we can choose all Ui’s to be finite dimensional.
Therefore, β(Td

n(A)) = dim U1 + · · · + dim Un−1 + β(Dn) < ∞, having in mind that Dn ∈ Φ−(Hn). □

Corollary 3.17. Let D1 ∈ B(H1), D2 ∈ B(H2), ...,Dn ∈ B(Hn). Then

σSF+(D1) ∪ σSF−(Dn) ∪
( n−1⋃

k=2

∆k

)
∪ ∆n ⊆⋂

A∈Bn

σe(Td
n(A)) ⊆

σSF+(D1) ∪ σSF−(Dn) ∪
(( n⋃

k=2

δ′k
)
∩

( n⋃
k=2

∆′k

))
∪

( n−1⋃
k=2

∆′′k

)
,

where

∆k =
{
λ ∈ C : α(Dk − λ) = ∞ and

k−1∑
s=1

β(Ds − λ) < ∞
}
∪

{
λ ∈ C : β(Dk − λ) = ∞ and

n∑
s=k+1

α(Ds − λ) < ∞
}
, 2 ≤ k ≤ n − 1,

∆n =
{
λ ∈ C : α(Dn − λ) = ∞ and

n−1∑
s=1

β(Ds − λ) < ∞
}
∪

{
λ ∈ C : β(D1 − λ) = ∞ and

n∑
s=2

α(Ds − λ) < ∞
}
,
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δ′k := {λ ∈ C : β(Dk−1 − λ) = ∞ or α(Dk − λ) > β(Dk−1 − λ)}, 2 ≤ k ≤ n,

∆′k := {λ ∈ C : α(Ds − λ) , β(Ds−1 − λ)}, 2 ≤ k ≤ n,

∆′′k := {λ ∈ C : R(Ds − λ) is not closed}, 2 ≤ k ≤ n − 1.

Remark 3.18. Obviously, ∆k ⊆ ∆
′

k ∩ δ
′

k for each 2 ≤ k ≤ n.

Theorem 3.19. Let D1 ∈ B(H1), D2 ∈ B(H2). Consider the following statements:
(i) (a) D1 ∈ Φ+(H1) and D2 ∈ Φ−(H2);

(b)
(
α(D2) = β(D1) or α(D2) ≤ β(D1) < ∞

)
or
(
D2 ∈ Φ+(H2) and D1 ∈ Φ−(H1)

)
.

(ii) There exists A ∈ B2 such that Td
2(A) ∈ Φ(H1 ⊕H2).

(iii) (a) D1 ∈ Φ+(H1) and D2 ∈ Φ−(H2);
(b)
(
α(D2) = β(D1) = ∞

)
or
(
D2 ∈ Φ+(H2) and D1 ∈ Φ−(H1)

)
.

Then (i)⇒ (ii)⇒ (iii).

Corollary 3.20. Let D1 ∈ B(H1), D2 ∈ B(H2). Then

σSF+(D1) ∪ σSF−(D2) ∪ ∆ ⊆
⋂

A∈B2

σe(Td
2(A)) ⊆ σSF+(D1) ∪ σSF−(D2) ∪ ∆′,

where
∆ = {λ ∈ C : α(D2 − λ) = ∞ and β(D1 − λ) < ∞}∪

{λ ∈ C : β(D1 − λ) = ∞ and α(D2 − λ) < ∞},

∆′ = {λ ∈ C : α(D2 − λ) , β(D1 − λ)}∩
{λ ∈ C : β(D1 − λ) = ∞ or α(D2 − λ) > β(D1 − λ)}.

Remark 3.21. Notice that ∆ ⊆ ∆′.
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