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Abstract. For two central Drazin invertible elements a and b of a ring, we first prove that a + b is central
Drazin invertible under the condition ab = 0. Then we establish the relation between central Drazin
invertibility of a + b and 1 + acb, when a2b = aba and b2a = bab hold, and also when ab = ba is valid. When
a and b are two central group invertible elements, additive properties of central group inverses are studied
under the condition ab = ba and also abb© = baa©.

1. Introduction

Throughout this paper, R will denote an associative ring with unity 1. Let us recall that the center of
R is defined as C(R) = {x ∈ R : ax = xa f or all a ∈ R} and the commutant of an element a ∈ R is defined as
comm(a) = {x ∈ R : ax = xa}. Recall that an element a ∈ R is Drazin invertible [10] if there exists x ∈ R such
that ax = xa, xax = x, ak+1x = ak for some nonnegative integer k. The element x ∈ R is unique if it exists and
denoted by aD. The such smallest nonnegative integer k satisfying the above equations is called the Drazin
index of a, and denoted by ind(a). If k = 1, then x is called the group inverse of a, and denoted by x = a#. In
[10], Drazin proved that if a ∈ R is Drazin invertible, then for any b ∈ R, ab = ba implies aDb = baD.

In 2019, in order to study the commutating properties of Drazin inverses (see [11, Example 2.8]), Wu
and Zhao [19] introduced and studied a new class of Drazin inverses in a ring R, which were called central
Drazin inverses.

Definition 1.1. [19] An element a ∈ R is said to be central Drazin invertible if there exists x ∈ R such that
xa ∈ C(R), xax = x, ak+1x = ak for some nonnegative integer k.

According to [19], the central Drazin inverse is unique if it exists. Any x satisfying the above equations is
called the central Drazin inverse of a, and denoted by x = ac. The smallest nonnegative integer k satisfying
the above equations is still called the Drazin index of a. If k = 1, then x is called the central group inverse of
a and denoted by a©. They also proved that if a ∈ R is central Drazin invertible, then a is Drazin invertible
and ac = aD.

The topic concerning additive properties of generalized invertibility of elements is of great interest
and many authors have investigated this subject. The problem of Drazin invertibilty of the sum of two
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Drazin invertible elements was first considered by Drazin in his celebrated paper [10]. He presented that
(a + b)D = aD + bD for two Drazin invertible elements a, b ∈ R satisfying the condition ab = ba = 0. In 2001,
Hartwig et al.[12] gave the expression of (A + B)D in the case of the one-sided condition AB = 0 in complex
matrices. Afterwards, the result was extended to the bounded linear operators on an arbitrary complex
Banach space by Djordjević and Wei[9] in 2002, and was extended to morphisms in arbitrary additive
categories by Chen et al.[2] in 2009. More relevant results on Drazin inverses can be found in [1, 3–8, 15–17].

The relation between Drazin invertibility of a+ b and 1+ aDb for two Drazin invertible elements a and b
was studied widely. In 2011, Wei and Deng[18] considered the relations between Drazin inverses of A + B
and I + ADB for two commutative complex matrices A and B. In 2012, Zhuang et al.[22] extended the
result from complex matrices to rings. Under the conditions P2Q = PQP and Q2P = QPQ, Liu et al.[14]
characterized the relation between Drazin inverses of P +Q and I + PDQ for complex matrices P and Q by
using the methods of splitting complex matrices into blocks. The results in [22] and [14] were extended to
the condition of a2b = aba and b2a = bab in an associative ring by Zhu and Chen[21] in 2017.

The combinations of two group invertible elements were investigated by many scholars. For example,
in 2011, Liu et al.[13] investigated the group invertibility of linear combinations of two group invertible
matrices P,Q ∈ Cn×n under the following conditions: PQQ# = QPP# or QQ#P = PP#Q or QP#P = P. In 2020,
Zhou et al.[20] extended the results in [13] to Dedekind-finite ring, and gave the representations of (a + b)#

and (a − b)#.
Motivated by above papers, we investigate relevant additive properties for central Drazin inverses in

a ring. An outline of this paper is as follows. In Section 2, we consider central Drazin invertibility of the
sum of two central Drazin invertible elements. In Section 3, we prove that a + b is central Drazin invertible
if and only if 1 + acb is central Drazin invertible under the condition a2b = aba and b2a = bab for two central
Drazin invertible elements a and b, and their expressions are presented. In Section 4, additive properties of
two central group invertible elements are characterized.

2. Central Drazin invertibility of the sum of two central Drazin invertible elements

In [10, Corollary 2.1] and [2, Theorem 2.1], authors investigated Drazin invertibility of the sum of two
Drazin invertible elements in rings. In this section, we will study the relevant results for central Drazin
inverses in rings. The following lemmas will be used in the sequel.

Lemma 2.1. [19, Theorem 2.3] If a ∈ R is central Drazin invertible, then a is Drazin invertible and ac = aD. In
particular, the central Drazin inverse is unique when it exists.

Next, we consider the central Drazin invertibility of a + b under the condition ab = 0.

Lemma 2.2. [2, Theorem 2.1] Let a, b ∈ R be Drazin invertible with ab = 0. Then a + b is Drazin invertible. In
this case,

(a + b)D = (1 − bbD)
k2−1∑
i=0

bi(aD)iaD + bD
k1−1∑
j=0

(bD) ja j(1 − aaD),

where k1 = ind(a), k2 = ind(b).

Theorem 2.3. Let a, b ∈ R be central Drazin invertible with ab = 0. Then a + b is also central Drazin invertible. In
this case, (a + b)c = ac + bc.

Proof. Since a, b ∈ R are central Drazin invertible, we know that a, b ∈ R are Drazin invertible by Lemma 2.1.
Following Lemma 2.2, we get that a + b is also Drazin invertible with

(a + b)D = (1 − bbc)
k2−1∑
i=0

bi(ac)iac + bc
k1−1∑
j=0

(bc) ja j(1 − aac),



W.D. Li, J.L. Chen / Filomat 36:7 (2022), 2493–2502 2495

where k1 = ind(a), k2 = ind(b). From ab = 0, we have bac = bacaac = acabac = 0. Similarly bca = 0, acb = 0 and
bcac = 0. Then we can obtain

(a + b)D = (1 − bbc)ac + (1 − bbc)
k2−1∑
i=1

bi(ac)iac + bc(1 − aac) + bc
k1−1∑
j=1

(bc) ja j(1 − aac)

= ac + bc.

Thus (a+ b)D(a+ b) = (ac + bc)(a+ b) = aca+ acb+ bca+ bcb = aca+ bcb ∈ C(R). Therefore, a+ b is central Drazin
invertible with (a + b)c = ac + bc.

Proposition 2.4. Let a, b ∈ R be central group invertible with ab = 0. Then a + b is also central group invertible
with (a + b)© = a© + b©.

Proof. According to [2, Corollary 2.2], we get that a+ b is group invertible and (a+ b)# = (1− bb©)a©+ b©(1−
aa©) = a© + b©. Similarly to the proof of Theorem 2.3, we can obtain (a© + b©)(a + b) ∈ C(R), and thus a + b
is also central group invertible with (a + b)© = a© + b©.

3. The relation between central Drazin invertibility of a + b and 1 + acb

In this section, we will characterize the relation between central Drazin inverses of a + b and 1 + acb,
when a2b = aba and b2a = bab hold. As a corollary, the corresponding conclusion is given in the case when
ab = ba. First let us look at the following lemmas.

Lemma 3.1. Let a, b ∈ R be central Drazin invertible with a2b = aba and b2a = bab. Then

(i) {ab, acb, abc, acbc
} ⊆ comm(a).

(ii) {ba, bca, bac, bcac
} ⊆ comm(b).

Proof. (i) Obviously ab ∈ comm(a). Since aacb = (ac)2a2b = (ac)2aba = acba, we have acb ∈ comm(a). From
ba ∈ comm(b), then ba ∈ comm(bc). Thus, abca = a(bc)2ba = aba(bc)2 = a2b(bc)2 = a2bc, that is abc

∈ comm(a).
Note that abca = a2bc, then we can obtain aacbc = (ac)2a2bc = (ac)2abca = acbca, thus acbc

∈ comm(a).
(ii) It is available directly from symmetry of a and b.

Lemma 3.2. Let a, b ∈ R be central Drazin invertible with a2b = aba and b2a = bab. Then acb = bac and abc = bca.

Proof. By Lemma 3.1, we have acb = acaacb = acbaac = aacbac = baacac = bac. Similarly we can also obtain
abc = bca.

Lemma 3.3. Let a, b ∈ R be central Drazin invertible with a2b = aba and b2a = bab. Then {a, ac, ab, acb, abc, acbc
} ⊆

comm(1 + acb).

Proof. Since acba = aacb, we have (1 + acb)a = a(1 + acb), that is a ∈ comm(1 + acb), then we obtain ac
∈

comm(1 + acb). From (acb)ab = acb2a = b2aca = ac(ab)b = abacb, we get ab ∈ comm(1 + acb). Obviously
acb ∈ comm(1 + acb). Since abcacb = aacbbc = acbabc, it follows that abc

∈ comm(1 + acb). Finally from
acbacbc = acbcbac = acbcacb, we can obtain acbc

∈ comm(1 + acb).

Lemma 3.4. [21, Theorem 3.1] Let a, b ∈ R be Drazin invertible with a2b = aba and b2a = bab. Then ab is Drazin
invertible, and (ab)D = aDbD.

Proposition 3.5. Let a, b ∈ R be central Drazin invertible with a2b = aba and b2a = bab. Then ab is central Drazin
invertible, and (ab)c = acbc = bcac.
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Proof. It is easy to know that we only need to prove (ab)Dab ∈ C(R). In fact, since (ab)Dab = acbcab = aacbbc
∈

C(R), it follows that ab is central Drazin invertible with (ab)c = acbc. Moreover acbc = acbcbbc = bcbacbc =
bcbcbac = bcac.

Lemma 3.6. [21, Theorem 3.3] Let a, b ∈ R be Drazin invertible with a2b = aba, b2a = bab and ind(a) = k. Then
a + b is Drazin invertible if and only if 1 + aDb is Drazin invertible. In this case,

(a + b)D = aD(1 + aDb)D + aπb[aD(1 + aDb)D]2 +

k−1∑
i=0

(bD)i+1(−a)iaπ

+ bπa
k−2∑
i=0

(i + 1)(bD)i+2(−a)iaπ

and (1 + aDb)D = aπ + a2aD(a + b)D, where aπ = 1 − aaD, bπ = 1 − bbD.

Theorem 3.7. Let a, b ∈ R be central Drazin invertible with a2b = aba, b2a = bab and ind(a) = k. Then a + b is
central Drazin invertible if and only if 1 + acb is central Drazin invertible. In this case,

(a + b)c = ac(1 + acb)c +

k−1∑
i=0

(bc)i+1(−a)iaπ

and (1 + acb)c = aπ + a2ac(a + b)c, where aπ = 1 − aac.

Proof. (⇒): Obviously a, b and a + b are Drazin invertible by Lemma 2.1, then from Lemma 3.6, we know
that 1 + acb is Drazin invertible, and (1 + acb)D = aπ + a2ac(a + b)c. By Lemma 3.2, we have

(1 + acb)D(1 + acb) = [aπ + a2ac(a + b)c](1 + acb)

= aπ + aπacb + a2ac(a + b)c + a2ac(a + b)cacb
= aπ + a(a + b)caac + a(a + b)cbac

= aπ + a(a + b)c(a + b)ac

= aπ + (a + b)c(a + b)aac
∈ C(R).

Thus 1 + acb is central Drazin invertible. In this case, (1 + acb)c = aπ + a2ac(a + b)c.
(⇐): By Lemma 3.6, a + b is Drazin invertible, and

(a + b)D = ac(1 + acb)c + aπb[ac(1 + acb)c]2 +

k−1∑
i=0

(bc)i+1(−a)iaπ + bπa
k−2∑
i=0

(i + 1)(bc)i+2(−a)iaπ.

Also since
aπb[ac(1 + acb)c]2 = baπac(1 + acb)cac(1 + acb)c = 0,

and

bπa
k−2∑
i=0

(i + 1)(bc)i+2(−a)iaπ = a
k−2∑
i=0

(i + 1)bπbc(bc)i+1(−a)iaπ = 0,

we can obtain

(a + b)D = ac(1 + acb)c +

k−1∑
i=0

(bc)i+1(−a)iaπ.
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Now it suffices to prove that (a + b)D(a + b) ∈ C(R). In fact, by Lemma 3.3,

(a + b)D(a + b)

= [ac(1 + acb)c +

k−1∑
i=0

(bc)i+1(−a)iaπ](a + b)

= ac(1 + acb)ca + ac(1 + acb)cb +
k−1∑
i=0

(bc)i+1(−a)iaπa +
k−1∑
i=0

(bc)i+1(−a)iaπb

= (1 + acb)caca + (1 + acb)cacb +
k−1∑
i=0

(−1)i(bc)i+1ai+1aπ +
k−1∑
i=0

(−1)i(bc)i+1aiaπb

= (1 + acb)caca + (1 + acb)cacb +
k∑

i=1

(−1)i−1(bc)iaiaπ +
k−1∑
i=1

(−1)i(bc)iaiaπbcb + aπbcb

= (1 + acb)caca + (1 + acb)cacb +
k−1∑
i=1

(−1)i−1(bc)iaiaπ +
k−1∑
i=1

(−1)i(bc)iaiaπbcb + aπbcb

= (1 + acb)caca + (1 + acb)c(1 + acb − 1) +
k−1∑
i=1

(−1)i−1(bc)iaiaπbπ + aπbcb

= (1 + acb)c(1 + acb) − (1 + acb)caπ + aπbcb.

For arbitrary x ∈ R, since aπ ∈ C(R), we have (1 + acb)xaπ = xaπ(1 + acb), then (1 + acb)cxaπ = xaπ(1 + acb)c.
Hence (1 + acb)caπx = x(1 + acb)caπ, that is (1 + acb)caπ ∈ C(R), then (a + b)D(a + b) ∈ C(R). Therefore a + b is

central Drazin invertible with (a + b)c = ac(1 + acb)c +
k−1∑
i=0

(bc)i+1(−a)iaπ.

Remark 3.8. Let a, b ∈ R be central Drazin invertible. Then ab = ba implies a2b = aba and b2a = bab. However, the
reverse is not true in general.

For example, let a, b ∈ C4×4, and take

a =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , b =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

.
Then we can obtain a2 = 0, ac = 0, b2 = 0 and bc = 0. So after calculation, we have a2b = aba, b2a = bab, but ab , ba.

Remark 3.9. In general, ind(a+ b) , ind(1+ acb). For example, we take a, b as Remark 3.8. Then a+ b is nilpotent
and the nilpotent index is equal to 3, it follows that ind(a+b) = 3. However, 1+acb is invertible with ind(1+acb) = 0.

Proposition 3.10. Let a, b ∈ R be central Drazin invertible with ab = ba. Then a + b is central Drazin invertible if
and only if 1 + acb is central Drazin invertible. In this case,

(a + b)c = (1 + acb)cac + bc(1 + aaπbc)−1aπ (3.1)

= (1 + acb)cac +

k−1∑
i=0

(bc)i+1(−a)iaπ (3.2)

= ac(1 + acb)cbbc + bπ(1 + bbπac)−1ac + bc(1 + aaπbc)−1aπ (3.3)

= ac(1 + acb)cbbc +

l−1∑
i=0

(−b)i(ac)i+1bπ +
k−1∑
i=0

(bc)i+1(−a)iaπ (3.4)

and
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(1 + acb)c = aπ + a2aπ(a + b)c,

where aπ = 1 − aac, bπ = 1 − bbc, ind(a) = k, ind(b) = l.

Proof. Since ind(a) = k, it follows that (aaπbc)k = 0, then 1 + aaπbc is invertible and

(1 + aaπbc)−1 = 1 + (−aaπbc) + (−aaπbc)2 + · · · + (−aaπbc)k−1

=

k−1∑
i=0

(−aaπbc)i.

Then from Theorem 3.7, we have

(a + b)c = (1 + acb)cac + bc(1 + aaπbc)−1aπ.

Let ξ = 1 + acb. Then it suffices to prove

ξcac = acξcbbc + bπ(1 + bbπac)−1ac.

In fact, note that acbπ(1 + bbπac) = acbπ + acbπbbπac = ξacbπ. Then we have

[1 − (1 + bbπac)−1ξξπ]ξπacbπ = 0.

Since (1+ bbπac)−1ξξπ is nilpotent, we have 1− (1+ bbπac)−1ξξπ is invertible, thus ξπacbπ = 0. Hence we can
obtain

acbπ = ξcξacbπ = ξcacbπ(1 + bbπac),

then ξcacbπ = acbπ(1 + bbπac)−1. Therefore, ξcac = acξcbbc + bπ(1 + bbπac)−1ac is proved.

Similarly, we can obtain bπ(1 + bbπac)−1 = bπ
l−1∑
i=0

(ac)i(−b)i. This completes the proof.

Corollary 3.11. Let a, b ∈ R be central Drazin invertible with ind(a) = k, ind(b) = l and ab = ba. Suppose that
1 + acb is central Drazin invertible. Then the following statements hold.

(i) If acbc = 0, then (a + b)c =
k−1∑
i=0

(bc)i+1(−a)i +
l−1∑
i=0

(−b)i(ac)i+1.

(ii) If acb = 0, then (a + b)c = ac +
k−1∑
i=0

(bc)i+1(−a)i.

(iii) If ind(a) = 1, then (a + b)c = (1 + a©b)ca© + (1 − aa©)bc.

Proof. (i) Substitute acbc = 0 directly into (3.4) of Proposition 3.10, then the expression is obtained.
(ii) From acb = 0, we have bca = bcbbcaaac = bcaacbbca = 0. By (3.2) of Proposition 3.10, we can obtain

(a + b)c = ac +
k−1∑
i=0

(bc)i+1(−a)i.

(iii) Since ind(a) = 1 implies aaπ = 0, it follows that by (3.1) of Proposition 3.10 we have (a + b)c =
(1 + a©b)ca© + (1 − aa©)bc.

Remark 3.12. In the (iii) of Corollary 3.11, a + b may be not central group invertible in general.
For example, let R = Z2S3. We take a = (1)+(123)+(132), b = (13)+(123)+(132). It is easy to check that ab = ba,

a is central group invertible with a© = (1)+ (123)+ (132), b is central Drazin invertible and bc = (12)+ (13)+ (23),
which is not central group invertible. By calculation, we get that 1+ a©b = (1)+ (12)+ (13)+ (23) is central Drazin
invertible but not central group invertible, and (1+ a©b)c = (123)+ (132). Then by Corollary 3.11, a+ b = (1)+ (13)
is central Drazin invertible with (a + b)c = 0, but it is not central group invertible.
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4. Additive properties of central group invertibility

In this section, we prove that a + b is central group invertible if and only if 1 + a©b is central group
invertible, for two central group invertible elements a and b, under the condition ab = ba. Then, the explicit
representations of central group inverses of a + b and of a − b are given, under the condition abb© = baa©.

Lemma 4.1. Let a, b ∈ R be group invertible with ab = ba. Then the following statements hold.

(i) a, b, a# and b# commute.

(ii) If 1 + a#b is group invertible, then {a, b, a#, b#
} ⊆ comm((1 + a#b)#).

Proof. (i) Note that a#
∈ comm2(a) and b#

∈ comm2(b). Since ab = ba, we have a#b = ba# and b#a = ab#, then
b#a# = a#b#.

(ii) From (i), we have {a, b} ⊆ comm(1 + a#b), then the result is directly obtained.

Lemma 4.2. Let a, b ∈ R be group invertible with ab = ba. Then a + b is group invertible if and only if 1 + a#b is
group invertible. In this case,

(a + b)# = (1 + a#b)#a# + b#aπ

= a#(1 + a#b)#bb# + a#bπ + b#aπ

and (1 + a#b)# = aπ + a(a + b)#, where aπ = 1 − aa#, bπ = 1 − bb#.

Proof. The proof is similar to [22, Theorem 3].

Theorem 4.3. Let a, b ∈ R be central group invertible with ab = ba. Then a+ b is central group invertible if and only
if 1 + a©b is central group invertible. In this case,

(a + b)© = (1 + a©b)©a© + b©aπ

= a©(1 + a©b)©bb© + a©bπ + b©aπ

and (1 + a©b)© = aπ + a(a + b)©, where aπ = 1 − aa©, bπ = 1 − bb©.

Proof. (⇐): From Lemma 2.1 and Lemma 4.2, it is clear that a + b is group invertible, and (a + b)# =
(1 + a©b)©a© + b©aπ

Let φ = 1 + a©b and x = φ©a© + b©aπ. Next we show x(a + b) ∈ C(R). In fact,

x(a + b) = φ©a©a + φ©a©b + b©aπb

= φ©a©a + φ©φ − φ© + aπb©b

= φφ© − φ©aπ + aπb©b.

For arbitrary x ∈ R, since aπ ∈ C(R), we have φxaπ = xaπφ, then φ©xaπ = xaπφ©. Thus φ©aπx = xφ©aπ.
Now we get φ©aπ ∈ C(R), that is x(a + b) ∈ C(R). Therefore a + b is central group invertible, and (a + b)© =
(1 + a©b)©a© + b©aπ.

(⇒): Similarly from Lemma 2.1 and Lemma 4.2, we have 1 + a©b is group invertible, and (1 + a©b)# =
aπ + a(a + b)©. Then

(1 + a©b)#(1 + a©b) = aπ + a(a + b)© + a(a + b)©a©b

= aπ + aa©a(a + b)© + aa©b(a + b)©

= aπ + aa©(a + b)(a + b)© ∈ C(R).

Thus 1 + a©b is central group invertible, and (1 + a©b)© = aπ + a(a + b)©.

Remark 4.4. Let a, b be central group invertible. Then either condition of a2b = aba or b2a = bab implies ab = ba. In
fact, according to the proof of Lemma 3.2, we have a©b = ba©, thus ab = ba.
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Given any Dedekind-finite ring R with 2 ∈ R−1, Zhou et al.[20] proved that if a, b ∈ R are group invertible
with abb# = baa# or bb#a = aa#b, then a + b and a − b are also group invertible. Next, we investigate central
group invertibility of a+b and a−b under the condition of abb© = baa©, and give their explicit representations.
Moreover, it is worth noting that we can drop the condition that the ring R is Dedekind-finite ring.

Theorem 4.5. Let a, b ∈ R be central group invertible with abb© = baa© and 2 ∈ R−1. Then

(i) (a + b)© = a© + b© − 3
2 a©bb©.

(ii) (a − b)© = a© − b©.

Proof. (i) Since abb© = baa©, we have

a©b = a©aa©b = aa©bb©,

b©a = b©bb©a = bb©aa©,

ab© = ab©bb© = baa©b© = aa©bb©,

ba© = ba©aa© = abb©a© = bb©aa©.

Thus a©b = b©a = ab© = ba©. Also we have

a©ab© = a©ba©,

a©ab© = a©abb©b© = a©aa©bb© = a©bb©,

a©ba© = a©ab© = a©bb©,

a©a©b = a©ba© = a©bb©.

Let x = a© + b© − 3
2 a©bb©. Using the above equations, we can get

x(a + b) = (a© + b© −
3
2

a©bb©)(a + b)

= a©a + a©b + b©a + b©b −
3
2

a©bb©a −
3
2

a©bb©b

= a©a + a©b + b©a + b©b −
3
2

a©b −
3
2

a©b

= aa© + bb© − a©b

= aa© + bb© − aa©bb© ∈ C(R).

Similarly (a + b)x = aa© + bb© − a©b. In addition, we have

x(a + b)x

= (a©a + b©b − a©b)(a© + b© −
3
2

a©bb©)

= a© + a©ab© −
3
2

a©bb© + b©ba© + b© −
3
2

a©bb© − a©ba© − a©bb© +
3
2

a©ba©bb©

= a© + a©ab© −
3
2

a©bb© + a©bb© + b© −
3
2

a©bb© − a©ba© − a©bb© +
3
2

a©a©b

= a© + a©bb© −
3
2

a©bb© + a©bb© + b© −
3
2

a©bb© − a©bb© − a©bb© +
3
2

a©b©b

= a© + b© −
3
2

a©bb©

= x
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and
(a + b) − (a + b)2x

= (a + b) − (a + b)(aa© + bb© − a©b)

= a + b − aaa© − abb© + aa©b − baa© − bbb© + ba©b

= a + b − a − abb© + abb© − abb© − b + abb©

= 0.

Hence, x is the central group inverse of a + b, and (a + b)© = a© + b© − 3
2 a©bb©.

(2) Let y = a© − b©. Then we have

y(a − b) = (a© − b©)(a − b)

= a©a − a©b − b©a + b©b

= a©a + b©b − 2aa©bb© ∈ C(R).

Similarly (a − b)y = aa© + bb© − 2a©b. Also we have

y(a − b)y = (a©a + b©b − 2a©b)(a© − b©)

= a©aa© − a©ab© + b©ba© − b©bb© − 2a©ba© + 2a©bb©

= a© − a©ab© + a©bb© − b© − 2a©ab© + 2a©bb©

= a© − b©

= y

and
(a − b) − (a − b)2y = (a − b) − (a − b)(aa© + bb© − 2a©b)

= a − b − aaa© − abb© + 2aa©b + baa© + bbb© − 2ba©b

= a − b − a − abb© + 2abb© + abb© + b − 2abb©

= 0.

Hence y is the central group inverse of a − b, and (a − b)© = a© − b©.

Remark 4.6. There exist a, b ∈ R such that a, b are central group invertible with abb© = baa©. For example, let
R = Z2S3. We take a = (1) + (123) + (132), b = (1) + (123), then we can obtain a© = (1) + (123) + (132) and
b© = (1) + (132). After calculation, we have abb© = baa© = 0.

Remark 4.7. From the proof of Theorem 4.5, it is easy to obtain that abb© = baa© implies ab = ba. However the
reverse is not true in general. For example, let R = Z2S3. We take a = (12) + (13), b = (123) + (132), then
a© = (12) + (13), b© = (123) + (132). By calculation, we have ab = ba, but abb© , baa©.

Remark 4.8. If the condition 2 ∈ R−1 in Theorem 4.5 is replaced with 2 = 0, then it is easy to check that (a + b)© =
a© + b©.
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[22] G. F. Zhuang, J. L. Chen, D. S. Cvetković-Ilić, Y. M. Wei, Additive property of Drazin invertibility of elements in a ring, Linear

Multilinear Algebra 60(8) (2012) 903–910.


