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Abstract. We establish some relationships between an m-accretive operator and its Moore-Penorse inverse.
We derive some perturbation result the Moore-Penorse inverse of a maximal accretive operator. As an
application we give a factorization theorem for a quadratic pencil of accretive operators. Also, we study a
result of existence, uniqueness, and maximal regularity of the strict solution for complete abstract second
order differential equation. Illustrative examples are also given.

1. introduction

The Moore-Penrose inverse of a linear operator in Hilbert space is a useful generalization of the ordinary
inverse. This generalized inverse is an important theoretical and practical tool in algebra and analysis
(Markov chains, singular differential and difference equations, iterative methods...), see [4, 31]. In particular,
in [11, 12] (and the references therein) the perturbation analysis for the Moore-Penrose inverse of closed
operators has been considered. Also, the expression of the generalized inverse of the perturbed operator
has been investigated. In the paper [19] necessary and sufficient conditions for the cone nonnegativity of
Moore–Penrose inverses of unbounded Gram operators are derived. These conditions include statements
on acuteness of certain closed convex cones in infinite-dimensional real Hilbert spaces. In [3] a complete
description of the left quotient and the right quotient of two bounded operators operators is given via the
Moore-Penrose inverse. The objectives of this paper are to derive the properties of m-accretive operators via
the Moore-Penrose inverse and establish some interesting results, especially for the perturbation analysis
of Moore-Penrose inverses as well as of maximal accretive operators. Recall that a linear operator T with
domain D(T) in a complex Hilbert space H , is called accretive if its numerical range W(T) is contained
in the closed right half-plane, and if further has no proper accretive extensions in H , it called maximal
accretive, m-accretive for short. In particular, every m-accretive operator is accretive and closed densely
defined, its adjoint is also m-accretive (cf. [16], p. 279). This class is of particular interest and related to
the semi-group theory in follwing sens: an operator T is m-accretive if and only if −T generates a strongly
continuous contraction semigroup (Theorem of Lumer-Phillips).
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In this paper, we explore the following two questions, the first what can be said about the m-accretivity
of the Moore-Penrose of an m-accretive operator and conversely? the second concern the perturbation
problem: Let T be m-accretive operator with a bounded Moore-Penrose inverse, what condition on the
operator S can guarantee that T + S is m-accretive and its Moore-Penrose inverse exists and it has the
simplest expression?

In this work, we give a certain answers to the mentioned problems. This paper is organized as follows: In
section 2, we establish some relationships between an m-accretive operator and its Moore-Penorse inverse.
In section 3, we consider the perturbation for the m-accretive operator and its Moore-Penrose inverse. We
prove that under weaker conditions that considered perturbation does not change the null space and the
range space, consequently the perturbed operator is a closed EP operator. Utilizing this result, we study a
class of a quadratic operator pencilQ(λ) = λ2I−2λT−S, (λ ∈ C), where the coefficients of which are accretive
operators. Our aim, in Section 4, is to investigate a canonical factorization like (λI −Z1)(λI −Z2) for of such
pencils based on the perturbation theory of accretive operators. We also obtain a criterion in order that the
linear factors, into which the pencil splits, generates an holomorphic semi-group of contraction operators.
As an illustration, in section 5, we establish a theorem of existence, uniqueness, and maximal regularity of
the strict solution of an abstract second order evolutionary equations generated by such pencils.

2. Accretive operator and the Moore-Penrose inverse

Throughout this paper H is a complex Hilbert space with inner product < ·, · > and norm ∥ · ∥. For a
closed linear operator T on H we denote by D(T), R(T), N(T), σ(T) and ρ(T) the domain, the range, the
kernel, the spectrum and the resolvent set of T, respectively. The space of bounded linear operators onH is
denoted by B(H). For two possibly unbounded linear operators T, S onH their product TS is defined on
its natural domainD(TS) := {x ∈ D(S) : Sx ∈ D(T)} and their sum T+S is defined inD(T+S) = D(T)∩D(S).
An inclusion T ⊆ S denotes inclusion of graphs, i.e., it means that S extends T. A possibly unbounded
operator T on H commutes with a bounded operator S ∈ B(H) if the graph of T is S × S-invariant, or
equivalently if ST ⊆ TS.

Recall that a linear operator T with domainD(T) inH is said to be accretive if

Re < Tx, x >≥ 0 for all x ∈ D(T)

or, equivalently if
∥(λ + T)x∥ ≥ λ∥x∥ for all x ∈ D(T) and λ > 0.

An accretive operator T is called maximal accretive, or m-accretive for short, if T has no proper accretive
extensions inH . The following conditions are equivalent:

1. T is m-accretive.
2.

(λ + T)−1
∈ B (H) and

∥∥∥(λ + T)−1
∥∥∥ ≤ 1

λ
for λ > 0.

3. T is accretive densely defined and R(λ + T) = H for some (and hence for every) λ > 0;
4. T is accretive densely defined and closed, and T∗ is accretive;
5. −T generates contractive one-parameter semigroup T (t) = exp(−tT), t ≥ 0.

In particular, a bounded accretive operator is m-accretive.
The numerical range of a linear operator T : D(T)→H it is defined by

W(T) := {< Tx, x >: x ∈ D(T), with ∥x∥ = 1}, (1)

It is well-known that W(T) is a convex set of the complex plane (the Toeplitz-Hausdorff theorem), and in
general is neither open nor closed, even for a closed operator T. Clearly, an operator T is accretive when
W(T) is contained in the closed right half-plane

W(T) ⊂ C+ := {z ∈ C : Re(z) ≥ 0}.
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Further, if T is m-accretive operator then W(T) has the so-called spectral inclusion property

σ(T) ⊂W(T). (2)

Recall that a linear operator T in H is called sectorial with vertex z = 0 and semi-angle ω ∈ [0, π/2), or
ω-accretive for short, if its numerical range is contained in a closed sector with semi-angle ω,

W(T) ⊂ S(ω) :=
{
z ∈ C : | arg z| ≤ ω

}
(3)

or, equivalently,
|Im < Tx, x > |≤ tanωRe < Tx, x > for all x ∈ D(T).

An ω-accretive operator T is called m-ω-accretive, if it is m-accretive. We have T is m-ω-accretive if and
only if the operators e±iθT is m-accretive for θ = π

2 − ω, 0 < ω ≤ π/2. The resolvent set of an m-ω-accretive
operator T contains the set C \ S(ω) and

∥(T − λI)−1
∥ ≤

1
dist (λ,S(ω))

, λ ∈ C \ S(ω).

In particular, m-π/2-accretivity means m-accretivity. A 0-accretive operator is symmetric. An operator is
positive if and only if it is m-0-accretive.

It is known that the C0-semigroupT (t) = exp(−tT), t ≥ 0, has contractive and holomorphic continuation
into the sector S(π/2ω) if and only if the generator T is m-ω-accretive, see [16, Theorem V-3.35].

Recall that for bounded operator T, we have

Re(T) =
1
2

(T + T∗) and Im(T) =
1
2i

(T − T∗),

where Re(T) and Im(T) are self-adjoint operators and called it the real and imaginary parts of T, with

T = Re(T) + iIm(T),

Such decomposition is unique and called the cartesian decomposition of T. In this case, T is accretive if
Re(T) is a nonnegative operator.

The spectral radius and the numerical radius of a bounded operator T are defined, respectively, by

r(T) = sup
λ∈σ(T)

|λ|

and
w(T) = sup

∥x∥=1
|< Tx, x >| .

The next results is a generalization of [1, Lemma 2. and Theorem 2.] from matrices to bounded operators.

Lemma 2.1. Let T ∈ B(H) such that Re(T) ≥ δI, for some δ > 0. Denote byS = Im(T)(Re(T))−1. Then there exists
λ0 ∈ σ(S), |λ0| = r(S) = w(S) = ∥S∥ such that T is a sectorial operator with semiangle ω = arctan |λ0| and

|λ0| ≤

√
∥T∥2

δ2 − 1. (4)

Proof. By assumption,
< Re(T)x, x >≥ δ ∥x∥2

for all x ∈ H . Hence we get

|< Im(T)x, x >| ≤ ∥Im(T)∥ ∥x∥2 ≤
1
δ
∥Im(T)∥ < Re(T)x, x > .
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Thus, T is sectorial operator with a vertex at the origin with a semiangle ω. In particular, for Re(T)−
1
2 x, we

have ∣∣∣∣< Im(T)Re(T)−
1
2 x,Re(T)−

1
2 x >
∣∣∣∣ ≤ ∥∥∥∥Re(T)−

1
2 Im(T)Re(T)−

1
2

∥∥∥∥ ∥x∥2
this implies that tan(ω) = ∥T ∥, where T = Re(T)−

1
2 Im(T)Re(T)−

1
2 . Since T is a self-adjoint operator we have

r(T ) = w(T ) = ∥T ∥. Thus assert the existence of a λ0 ∈ σ(T ) such that |λ0| = r(T ) = w(T ) = ∥T ∥. Since

T = Re(T)−
1
2SRe(T)

1
2 = Re(T)

1
2S
∗Re(T)−

1
2 ,

the self-adjoint operatorsT andS have the same spectrum (which is real ) and hence have the same closure
of the numerical range. This shows that λ0 ∈ σ(S), with |λ0| = w(T ) = w(S) and hence ω = arctan |λ0|.

Now, assume thatλ0 is an eigenvalue ofT with |λ0| = ∥T ∥, there exists u ∈ H with ∥u∥ = 1 andTu = λ0u.
We have

Re(T)−
1
2 TRe(T)−

1
2 = (I + iT )

and ∥∥∥∥Re(T)−
1
2 TRe(T)−

1
2

∥∥∥∥2 ≥ ∥(I + iT )u∥2 = 1 + ∥T ∥2 = 1 + |λ0|
2 ,

which implies that

|λ0|
2
≤
∥T∥2

δ2 − 1.

Now we consider the general case. Let ε > 0. It follows from the spectral theorem that there exists a
self-adjoint bounded operator P such that ∥P∥ ≤ ε and the operator T + P has an eigenvalue such that the
modulus equals ∥T + P∥. As above, we take the operator I + i(T + P) instead of (I + iT ), we get

∥T∥2

δ2 + ε
2
≥ 1 + |λ0|

2 .

Letting ε −→ 0, we obtain (4).

If we assume, in Lemma 2.1, that the numerical range of T is closed, then λ0 ∈ W(T), but the extreme
points of the numerical range are in the point spectrum, so λ0 must be an eigenvalue of T . So, we have the
following

Corollary 2.2. Let T ∈ B(H) with closed numerical range such that Re(T) ≥ δI, for some δ > 0. Denote by
S = Im(T)(Re(T))−1. Then there exists λ0 ∈ σp(S), |λ0| = w(S) such that T is a sectorial operator with semiangle
ω = arctan |λ0| and λ0 verifies (4).

Remark 2.3. 1. Since Re(T) is strongly nonnegative, we know that

σ(S) ⊆ {
β

α
: α ∈W(Re(T)), β ∈W(Im(T))}.

So λ0 =
β0

α0
for α0 ∈W(Re(T)) and β0 ∈W(Im(T)).

2. As we can see from the proof above that T can be represented as

T = Re(T)
1
2 (I + iT )Re(T)

1
2

with T = Re(T)−
1
2 Im(T)Re(T)−

1
2 and tan(ω) = ∥T ∥. This is exactly the representation given in [16, Theorem

VI-3.2]. In our case the selfadjoint operator is uniquely determined.

Next, in order to give some new results about accretive operator by using the Moore-Penrose inverse,
let recall the definition of this generalized inverse for a closed densely defined operator.
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Definition 2.4. [4] Let T be a closed densely defined onH . Then there exists a unique closed densely defined operator
T†, with domainD(T†) = R(T) ⊕ R(T)⊥ such that

TT†T = T onD(T), T†TT† = T† onD(T†),

TT† = P
R(T) onD(T†), T†T = PN(T)⊥ onD(T),

with PM denotes the orthogonal projection onto a closed subspaceM.

This unique operator T† is called the Moore-Penrose inverse of T. (or the Maximal Tseng generalized
Inverse in the terminology of [4]). Clearly,

1. N(T†) = R(T)⊥,
2. R(T†) = N(T)⊥ ∩D(T).

As a consequence of the closed graph theorem T† is bounded if and only if R(T) is closed inH , see [4].
Now, if we assume that T is an m-accretive operator, then

N(T) = N(T∗) and N(T) ⊆ D(T) ∩D(T∗). (5)

Thus R(T) = R(T∗) and H = R(T) ⊕ N(T). Consequently, the operator T is written in a matrix form with
respect to mutually orthogonal subspaces decomposition as follows

T =
[
T1 0
0 0

]
:
[
R(T)
N(T)

]
−→

[
R(T)
N(T)

]
;

with T1 is an operator on R(T)∩D(T) is injective with dense range in R(T). Also, its Moore-Penrose inverse
is given by

T† =
[
T−1

1 0
0 0

]
:
[
R(T)
N(T)

]
−→

[
R(T)
N(T)

]
,

with T−1
1 from R(T) to R(T) ∩D(T) is closed operator densely defined on R(T) and N(T†) = N(T) = N(T∗).

Further, R(T) is closed if and only if T−1
1 is bounded from R(T) to R(T) ∩D(T).

In the next result, we redefine a bounded sectorial operator with semiangle< π/2 via the Moore-Penrose
inverse.

Lemma 2.5. Let T ∈ B(H). T is a sectorial operator with semiangle ω, 0 ≤ ω < π/2, if and only if the following
two conditions are fulfilled:

1. Re(T) ≥ 0.
2. R(T) ⊂ R(Re(T)).

In this case, ω = arctan |λ0| for some λ0 ∈ σ(S), |λ0| = w(S) where S = Im(T)(Re(T))†.

Proof. Let T ∈ B(H) be a sectorial operator with semiangle ω. Therefore Re(T) is a nonnegative and
N(T) = N(T∗) = N(Re(T)). It follows that R(T) = R(Re(T)).

Conversely, let the two conditions of the theorem hold. ThenN(T) = N(T∗) ⊂ N(Re(T)), indeed, if Tx = 0
for some x , 0, then Re < Tx, x >=< Re(T)x, x >= 0. Consequently, Re(T)x = 0 and T∗x = 2Re(T)x − Tx = 0.
SinceH = N(Re(T)) ⊕ R(Re(T)), we get

R(Re(T)) ⊂ R(T) = R(T∗)

with R(T) reduces T. By (2) we obtain R(Re(T)) = R(T) = R(T∗). It follows that the subspace R(T) reduces
also the operator Re(T). Moreover, the restriction of Re(T) to R(T) is strongly nonnegative. So by Lemma
2.1, the restriction of T to R(T) is sectorial operator with semiangle ω = arctan |λ0| such that λ0 ∈ σ(S

|R(T))

and |λ0| = sup
∥x∥=1

∣∣∣∣< S|R(T)x, x >
∣∣∣∣, where S

|R(T) = Im(T)(Re(T)
|R(T))

−1P
|R(T). In this case S = Im(T)(Re(T))†.
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Now, we consider an unbounded operator T.

Proposition 2.6. If T is m-accretive operator, then T† is m-accretive.

Proof. By assumption,
Re < Tx, x >≥ 0 for all x ∈ D(T) ∩N(T)⊥ = R(T†).

Hence
Re < y,T†y >≥ 0 for all y ∈ R(T).

Now let x ∈ D(T†) = R(T) ⊕N(T), then x = x1 + x2, with x1 ∈ R(T) and x2 ∈ N(T). Therefore,

Re < x,T†x >= Re < x1,T†x1 >≥ 0,

which implies
Re < x,T†x >≥ 0 for all x ∈ D(T†).

Since T† is closed densely defined and (T†)∗ is accretive, it follows that T† is m-accretive.

It well known that by [4, Theorem 2; p 341], T†† = T, this yields to

Corollary 2.7. T† is m-accretive operator if and only if T is m-accretive.

Corollary 2.8. T is m-accretive operator with closed range if and only if T† is bounded and accretive.

Corollary 2.9. If T is m-accretive operator with closed range, then T is an EP (Equal Projections) operator, that is,
T† bounded and TT† = T†T onD(T).

Proposition 2.10. Let T be an accretive bounded operator. If W(T) ⊆ D and W(T†) ⊆ D , then T is unitary on
R(T).

Proof. It well known by [9, Theorem 1.3-1] that the numerical radius is equivalent to the usual operator
norm;

w(T) ≤ ∥T∥ ≤ 2w(T).

Hence, the assumption that w(T†) ≤ 1 implies that T† is bounded. ThusR(T) is closed. Since T is m-accretive,
then R(T) = R(T∗) = N(T)⊥. We consider the restriction of T from R(T) into itself. Since T†

|R(T) = (T|R(T))−1,
w((TR(T))−1) = w(T†

|R(T)) = w(T†) ≤ 1. Combining this with w(T|R(T)) = w(T) ≤ 1 and applying [30, Corollary
1.] to (T|R(T))−1 and T|R(T), we conclude that T|R(T) is unitary on R(T).

3. A perturbation results

In the following, we shall consider the perturbation of Moore-Penrose inverse of m-accretive opera-
tors. This gives an example of EP-operators, see [14, Theorem 3.12]. The part about the Moore-Penrose
invertibility of the operator T + S appears to be new.

Theorem 3.1. Let T is m-accretive operator and S is bounded and accretive. We have

1. T + S is m-accretive.
2. If R(T) is closed, R(S) ⊆ R(T) and

∥∥∥T†S∥∥∥ < 1. Then

• R(T + S) = R(T) is closed andN(T + S) = N(T).
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• T + S is an EP operator, and

(T + S)† = (I + T†S)−1T† = T†(I + ST†)−1.

In particular,
T† = (T + S)†(I + ST†),

and ∥∥∥(T + S)† − T†
∥∥∥ ≤ ∥S∥ ∥∥∥T†∥∥∥2

1 −
∥∥∥T†S∥∥∥ .

Proof. (1) Clearly, the operator T + S, withD(T + S) = D(T), is densely defined, closed and accretive. Since
also its adjoint operator (T + S)∗ = T∗ + S∗ is accretive, the operator T + S is m-accretive.

(2) IfR(S) ⊆ R(T), then it is obvious thatR(T+S) ⊆ R(T) and TT†S = PR(T)S = S. Conversely, let y ∈ R(T),
so y = Tx for some x ∈ D(T). The condition

∥∥∥T†S∥∥∥ < 1 implies that (I + T†S)−1 exists and bounded. Hence,
there exists u ∈ D(T) such that x = (I + T†S)u. This shows that y = T(I + T†S)u = Tu + Su ∈ R(T + S). Hence
R(T) ⊆ R(T + S). Consequently, R(T + S) = R(T) is closed.

Since T and T + S are m-accretive with closed ranges, then

N(T + S) = R(T + S)⊥ = R(T)⊥ = N(T).

Now we prove that (T + S)† = (I + T†S)−1T†. Since, R(T + S) is closed and N(T + S) = R(T + S) , by
Corollary 2.9, it follows that T + S is an EP operator.

Put T = (I + T†S)−1T†. We show that T satisfies all the axioms of the Definition 2.4. First let us remark
that, since (I + T†S)−1 is invertible,D(T) = D(T†) = R(T) ⊕N(T),N(T) = N(T†) = R(T)⊥ = N(T + S).

Let v ∈ R(T), then there exists u ∈ D(T) such that v = Tu = (I + T†S)−1T†u. Hence T†u = v + T†Sv ∈
R(T) ∩D(T). So v = T†u − T†Sv ∈ D(T).

Now for v ∈ D(T),

T(T + S)v = (I + T†S)−1T†(T + S)v

= (I + T†S)−1T†(T + TT†S)v (since S = TT†S)

= (I + T†S)−1T†T(I + T†S)v

= (I + T†S)−1PN(T)⊥ (I + T†S)v

= (I + T†S)−1PR(T)(I + T†S)v

= (I + T†S)−1(I + T†S)v
= v = PR(T)v
= PR(T+S)v
= PN(T+S)⊥v.

and for u ∈ D(T),

(T + S)Tu =(T + S)(I + T†S)−1T†u

=(T + TT†S)(I + T†S)−1T†u (since S = TT†S)

=T(I + T†S)(I + T†S)−1T†u

=TT†u = PR(T)u
=PR(T+S)u.

The uniqueness of (T + S)† follows from Definition 2.4.



F. Bouchelaghem, M. Benharrat / Filomat 36:7 (2022), 2475–2491 2482

Since R(S) ⊆ R(T), by Neumann series, we have

(I + T†S)−1T† =
∞∑

n=0

(−T†S)nT† =
∞∑

n=0

T†(−ST†)n = T†(I + ST†)−1. (6)

For the last inequality, we can see that

(T + S)† − T† = (I + ST†)−1T† − (I + ST†)(I + ST†)−1T†

= [I − (I + ST†)](I + ST†)−1T†

= (−ST†)(I + ST†)−1T†.

Hence we get the desired inequality.

Similarly, we have

Theorem 3.2. Let T is m-accretive operator and S is bounded and accretive, then the Theorem 3.1 hold true, if R(T)
is closed,N(T) ⊆ N(S) and

∥∥∥ST†
∥∥∥ < 1.

Proof. (1) Since the operator T + S is m-accretive, its adjoint operator (T + S)∗ = T∗ + S∗ is also m-accretive.
(2) If R(T∗) is closed and N(T) ⊆ N(S), then it is obvious that the last inclusion gives R(S∗) ⊆ R(T∗).

Also, the condition
∥∥∥ST†

∥∥∥ < 1 implies
∥∥∥(ST†)∗

∥∥∥ = ∥∥∥(T∗)†S∗∥∥∥ < 1, and conversely. Hence by Theorem 3.1,
R(T+S) = R(T∗+S∗) = R(T∗) = R(T) is closed andN(T+S) = N(T∗+S∗) = N(T∗) = N(T). Now, we proceed
as in the proof of Theorem 3.1.

Remark 3.3. Recall that the reduced minimum modulus of a non-zero operator T is defined by

γ(T) = inf{∥Tx∥ : x ∈ N(T)⊥ ∩D(T), ∥x∥ = 1}.

If T = 0 then we take γ(T) = ∞. Note that (see [16]), R(T) is closed if an only if γ(T) > 0. In that case, γ(T) =
1∥∥∥T†∥∥∥ ,

where T† is the Moore-Penrose inverse of T. Let us remark that if we assume that ∥S∥ <
1
γ(T)

instead the condition∥∥∥T†S∥∥∥ < 1, then the Theorem 3.1 hold true.

Proposition 3.4. Let T be an accretive such that T2 is m-accretive. Then

(i) T is m-accretive. Further, if T is θ-accretive with θ < π/4, then T2 is m-2θ-accretive.

(ii) If R(T) is closed, then R(T2) is closed and γ(T2) ≥
γ(T)2

2
.

Proof. (i) Since T is an accretive operator, by [13, Theorem 1.2], we have ,

∥Tx∥2 ≤ ν ∥x∥2 +
1
ν

∥∥∥T2x
∥∥∥2 , (7)

for all x ∈ D(T2) and an arbitrary ν > 0. Choosing ν > 0 so large that
1
ν
< 1, we obtain T is T2-bounded with

lower bound < 1. Then T2 + T with domainD(T2) is m-accretive. Now, let us remark that

(
1
4

I + T2 + T)x = (
1
2

I + T)2x

for all x ∈ D(T2). Since the operator on the left-hand side is invertible, then ( 1
2 I + T)2 is invertible, so 1

2 I + T
is also invertible. It follows that T is m-accretive. Now, we applied [6, Theorem 4.].
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(ii) By the Landau-Kolmogorov inequality, [18, Theorem.], applied to T, we have

∥Tx∥2 ≤ 2
∥∥∥T2x
∥∥∥ ∥x∥ ,

for all x ∈ N(T2)⊥ ∩D(T2). It follows that

∥x∥2 γ(T)2
≤ ∥Tx∥2 ≤ 2

∥∥∥T2x
∥∥∥ ∥x∥ ,

and hence ∥∥∥T2x
∥∥∥ ≥ γ(T)2

2
∥x∥ ,

for all x ∈ N(T2)⊥ ∩D(T2). Now by the definition of γ(T2) we obtain γ(T2) ≥
γ(T)2

2
.

By Proposition 3.4, Theorem 3.1 and Theorem 3.2,

Corollary 3.5. Let T2 be m-accretive, T accretive with closed range and S is bounded and accretive. If R(S) ⊆ R(T)
and
∥∥∥(T†)2S

∥∥∥ < 1. (orN(T) ⊆ N(S) and
∥∥∥S(T2)†

∥∥∥ < 1 ). Then

• R(T2 + S) = R(T2) = R(T) is closed andN(T2 + S) = N(T2) = N(T).

• H = R(T2 + S) ⊕N(T2 + S).

• T2 + S is an EP operator, and

(T2 + S)† = (I + (T†)2S)−1(T†)2 = (T†)2(I + S(T†)2)−1.

If further, T is injective, then T, T2 and T2 + S are invertible, and

(T2 + S)−1 = (I + T−2S)−1T−2 = T−2(I + ST−2)−1.

Proof. Since T2 is m-accretive, then T is also m-accretive by Proposition 3.4. Hence N(T2) = N(T) and
R(T2) = R(T). By [3, Lemma 5.5], we have (T†)2 = (T2)†. Now the result is obtained by Theorem 3.1 and
Theorem 3.2.

Remark 3.6. • By Remark 3.3, the Corollary 4.2 hold true if we assume
∥∥∥T†S∥∥∥ < γ(T) instead

∥∥∥(T†)2S
∥∥∥ < 1.

• Ôta showed in [27, Theorem 2.1] that, if T is closed and an accretive such that there is a positive integer n with
D(Tn) is dense inH and R(Tn) ⊂ D(T), then T is bounded . In particular, for a closed and accretive operator
T, if R(T) is contained inD(T), or inD(T∗), then T is automatically bounded, see also [27, Theorem 3.3].

• In general, if T2 is m-accretive; then T fails to be accretive. Take T = i
d
dx

on L2(R). The operator T has its

spectrum on both sides of the origin. But T2 = −
d2

dx2 is a nonegative selfadjoint operator.

4. An application to quadratic operator pencil

Consider in the Hilbert spaceH the following quadratic operator pencil

Q(λ) = λ2I − 2λT − S, (8)

where λ ∈ C is the spectral parameter and the two operators T and S with domain D(T) and D(S),
respectively.

One of the approaches to study the spectral properties of quadratic operator pencil (8) consists of the
reducing them to a first order system in a suitable space, [7, 28]. However, as it was pointed out in [32],
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this way may be unpractical in the situation when the space is difficult to construct or it is complicated for
applications. In addition, as it was mentioned in [33–35], the direct treatment of higher order problems
allows to get more general results. An useful approach to address the study and computation of the spectral
structure of quadratic operators pencil is through the use of factorization. This method was developed by
Krein and Langer [15], for a quadratic pencils of self-adjoint operators and by Langer [20], for self-adjoint
polynomial operator pencils, see also [8, 10, 20]. The main idea of this approach consist to factoring them
and studying the spectral properties of the factors. Of particular interest is the separation of spectral
values of Qn between the spectra of the roots. Such separation may be complicated, even in the case of
eigenvalues, see [29] and references therein. The problem is of great importance in spectral theory of such
general operators. Moreover, its understanding is crucial in the study of performance properties of many
systems.

The purpose of this section is to extend some earlier factorization results essentially those given in
[10, 15, 22, 24] for the self-adjoint quadratic operators case, to (8) based on the perturbation theory of
accretive operators together with the uniquely determined fractional powers of the maximal accretive
operators. We also obtain a criterion in order that the linear factors, into which the pencil splits, generates
a holomorphic semi-group of contraction operators.

We mention that if T is m-accretive, then for each α ∈ (0, 1) the fractional powers Tα, 0 < α < 1, are
defined by the following Balakrishnan formula, see [2],

Tαx =
sin(πα)
π

∫
∞

0
λα−1T(λ + T)−1xdt,

for all x ∈ D(T). The operators Tα are m-(απ)/2-accretive and, if α ∈ (0, 1/2), then D(Tα) = D(T∗α). It was
proved in [17, Theorem 5.1] that, if T is m-accretive, thenD(T1/2)∩D(T∗1/2) is a core of both T1/2 and T∗1/2 and
the real part ReT1/2 := (T1/2+T∗1/2)/2 defined onD(T1/2) ∩D(T∗1/2) is a selfadjoint operator. Further, by [17,
Corollary 2],

D(T) = D(T∗) =⇒ D(T1/2) = D(T∗1/2) = D(T1/2
R ) = D[ϕ], (9)

where ϕ is the closed form associated with the sectorial operator T via the first representation theorem
[16, Sect. VI.2.1] and TR is the non-negative selfadjoint operator associated with the real part of ϕ given by
Reϕ := (ϕ + ϕ∗)/2, see [2, 16, 17, 23, 25, 26].

Our result of this section read as follows

Theorem 4.1. Let T2 be m-accretive, T is accretive and S is accretive bounded operator.Then, we have

1. The operator ∆ = T2 + S with domainD(T2) is m-accretive.
2. ∆ admits a fractional powers ∆α m-(απ/2)-accretive for each 0 < α < 1.
3. Z1 = T+∆

1
2 and Z2 = T−∆

1
2 with domainD(T)∩D(∆

1
2 ) are T2-bounded with lower bound < 1 and closable

operators. Further, Z1 is accretive densely defined.
If further,D(∆

1
2 ) ⊂ D(T), then

4. Z1 is m-π/4-accretive and for any ε > 0, there exists r > 0, such that −Z2 + r is m-(π/4 + ε)-accretive.
In particular, −Z1 and Z2 − r generates holomorphic C0-semigroup of contraction operators T1(z) and T2(z) of
angle

π
4

and π/4 − ε, respectively.

5. The spectra of Z1 and Z2 are separated,
σ(Z1) ∩ σ(Z2) = ∅.

6. If T(D(T2)) ⊂ D(T2) and ∆
1
2 (D(T2)) ⊂ D(T2), then Q take the following form,

Q(λ)x =
1
2

(λI − Z1)(λI − Z2)x +
1
2

(λI − Z2)(λI − Z1)x, (10)

for all x ∈ D(T2).
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In particular, if TS = ST onD(T2), then Q admits the following canonical factorization

Q(λ)x = (λI − Z1)(λI − Z2)x = (λI − Z2)(λI − Z1)x, (11)

for all x ∈ D(T2).

Proof. (1) An immediate consequence of Theorem 3.1-(1).
(2) ∆ admits fractional powers ∆α m-(απ/2)-accretive for each 0 < α < 1, see [2, 17].
(3) By (2); ∆ admits unique root ∆

1
2 m-(π/4)-accretive operator withD(T2) is a core of ∆

1
2 . So we define

the following operators
Z1 = T + ∆

1
2

and
Z2 = T − ∆

1
2

with domain D(T) ∩ D(∆
1
2 ). Both of Z1 and Z2 are densely defined on H with numerical range is not the

whole complex plane, it follows that Z1 and Z2 are closable operators. Now, we prove that Z1 and Z2 are
T2-bounded with lower bound < 1.

By Proposition 3.4, T is also m-accretive. Hence, by [13, Theorem 1.2], we have for an arbitrary ρ1 > 0
and ρ2 > 0,

∥Tx∥2 ≤ ρ1 ∥x∥2 +
1
ρ1

∥∥∥T2x
∥∥∥2 , (12)

and ∥∥∥∥∆ 1
2 x
∥∥∥∥2 ≤ ρ2 ∥x∥2 +

1
ρ2
∥∆x∥2 , (13)

for all x ∈ D(T2) (cf. by [25, Chap. 2, Theorem 6.10]).
By (12) and (13), it follows that

∥Zix∥2 ≤ 2 ∥Tx∥2 + 2
∥∥∥∥Λ 1

2 x
∥∥∥∥2

≤ 2(ρ1 ∥x∥2 +
1
ρ1

∥∥∥T2x
∥∥∥2) + 2(ρ2 ∥x∥2 +

1
ρ2
∥Λx∥2)

≤ 2(ρ1 ∥x∥2 +
1
ρ1

∥∥∥T2x
∥∥∥2) + 2ρ2 ∥x∥2 +

4
ρ2

(
∥∥∥T2x
∥∥∥2 + ∥Sx∥2)

≤ 2(ρ1 + ρ2 +
2 ∥S∥2

ρ2
) ∥x∥2 + 2(

1
ρ1
+

2
ρ2

)
∥∥∥T2x
∥∥∥2

≤ ν1 ∥x∥2 + ν2

∥∥∥T2x
∥∥∥2 ,

for some ν1, ν2 > 0, i = 1, 2 and all x ∈ D(A2). Since ρ1 and ρ2 are arbitrary, we can choose ν2 < 1.
(4) Now assume thatD(∆

1
2 ) ⊂ D(T). It follows that

∥Tx∥ ≤ a ∥x∥ + b
∥∥∥∥∆ 1

2 x
∥∥∥∥ (14)

for all x ∈ D(∆
1
2 ) and for some nonnegative constants a and b. By (13), we obtain

∥Tx∥2 ≤ 2a(1 + ρ2) ∥x∥2 +
2b
ρ2
∥∆x∥2 ,

for all x ∈ D(∆) and an arbitrary ρ2 > 0. Thus∥∥∥∥T(t + ∆
1
2 )−1x

∥∥∥∥2 ≤ 2a(1 + ρ2)
∥∥∥∥(t + ∆ 1

2 )−1x
∥∥∥∥2 + 2b

ρ2

∥∥∥∥∆(t + ∆
1
2 )−1x

∥∥∥∥2 ,
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for all x ∈ H .
Hence∥∥∥∥T(t + ∆

1
2 )−1
∥∥∥∥2 ≤ 2a

t2 (1 + ρ2) +
2b
ρ2

∥∥∥∥∆(t + ∆
1
2 )−1
∥∥∥∥2 .

Letting t to +∞, we assert that

M = sup
t>0

∥∥∥∥T(t + ∆
1
2 )−1
∥∥∥∥ < 2b

ρ2
2

.

(cf. [36, Proposition 2.12]). Since ρ2 is arbitrary, we can choose it such that
2b
ρ2

2

< 1. Since T is m-accretive

and ∆
1
2 is m-(π/4)-accretive, then Z1 is m-accretive. By [16, Theorem IX-1.24], the factor −Z1 generates

holomorphic C0-semigroup T1(z) of angle
π
4

.

On the other hand, since ∆
1
2 is m-(π/4)-accretive and −T satisfy (14), by [16, Theorem IX-2.4], for any

ε > 0, there exist nonnegative constants r and s such that a, b < s and (Z2− r) is the generator of holomorphic
C0-semigroup T2(z) of angle

π
2
−
π
4
− ε. This implies that −Z2 + r is m-ψ-accretive with ψ =

π
4
+ ε.

(5) It follows from the item (4), W(Z1) is contained in the right half complex plan and W(Z2) in the let
side with a non zero distance between their closure.

(6) We haveD(T2) ⊂ D(Z1) = D(Z2) = D(∆
1
2 ) ⊂ D(T).

The fact that T(D(T2)) ⊂ D(T2) and ∆
1
2 (D(T2)) ⊂ D(T2), we haveD(T2) ⊂ D(T∆

1
2 ),D(T2) ⊂ D(∆

1
2 T) and

D(T2) ⊂ D(Z2
1). Now, by items (1), (2) and (3), we can easily verify that

Z2
1x − TZ1x − Z1Tx − Sx = 0,

for all x ∈ D(T2), hence onD(T2), we have

Q(λ) = Q(λ) − (Z2
1 − TZ1 − Z1T − S)

= λ2I − 2λT − S − Z2
1 + TZ1 + Z1T + S

= λ2I − Z2
1 − T(λ − Z1) − (λ − Z1)T

=
1
2

(λ − Z1)(λI + Z1 − 2T) +
1
2

(λI + Z1 − 2T)(λ − Z1)

=
1
2

(λI − Z1)(λI − Z2) +
1
2

(λI − Z2)(λI − Z1).

This gives the form (10). Now, if TS = ST on D(T2), then ∆T = T∆. Thus ∆
1
2 commutes with T on D(T2),

wich implies that (11).

Now the fact thatN(∆
1
2 ) = N(∆) and R(∆

1
2 ) = R(∆), by Corollary 3.5 and Theorem 3.2, we have

Corollary 4.2. Let T2 be m-accretive, T accretive with closed range and S is bounded and accretive. If R(S) ⊆ R(T)
and
∥∥∥(T†)2S

∥∥∥ < 1 (orN(T) ⊆ N(S) and
∥∥∥S(T2)†

∥∥∥ < 1 ). Then

• R(Z1) = R(Z2) = R(∆
1
2 ) = R(T) is closed andN(Z1) = N(Z2) = N(∆

1
2 ) = N(T).

• H = R(∆
1
2 ) ⊕N(∆

1
2 ).

• Z1, Z2 and ∆
1
2 are EP operators.

• If further, T is injective, then Z1, Z2 and ∆
1
2 are invertible.
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An immediate consequence of this corollary, the operator Z1 and Z1 are written in a matrices form with
respect to mutually orthogonal subspaces decomposition as follows

Z1 =

[
A 0
0 0

]
:
[
R(T)
N(T)

]
−→

[
R(T)
N(T)

]
;

and

Z2 =

[
B 0
0 0

]
:
[
R(T)
N(T)

]
−→

[
R(T)
N(T)

]
;

with A and B on R(T) ∩D(T) are injective operators with closed range. In this case, if AB = BA , we have

Q(λ) =
[
(λ − A)(λ − B) 0

0 λ2

]
:
[
R(T)
N(T)

]
−→

[
R(T)
N(T)

]
.

Also, Q(0) is Moore-penrose invertible and Q†(0) = Z†1Z†2 = A−1B−1. If T is injective, then Q(0) is invertible
and Q−1(0) = Z−1

1 Z−1
2 . Consequently, S is also invertible. The block Vandermonde operator corresponding

to Z1,Z2 is given by

V(Z1,Z2) =
[

I I
Z1 Z2

]
.

We have,

V(Z1,Z2) =
[

I 0
Z2 I

] [
I 0
0 Z1 − Z2

] [
I I
0 I

]
,

where the left and right factors on the right-hand side are invertible. SoV(Z1,Z2) is invertible if and only if
2∆

1
2 = (Z1 −Z2) is invertible. Now, we apply [22, Corollary 29.12, Corollary 29.13 and Remark 29.14] taking

in account thatN(Λ
1
2 ) = N((Λ

1
2 )∗), we obtain,

σ(Z1) ∩ σ(Z2) = ∅ and σ(Z1) ∪ σ(Z2) = σ(Q(.)).

5. An application to a second order linear boundary value problem

Denote [0,+∞) by R+, and let Ck(R+,D) be the set of all k-times (strongly) continuously differentiable
functions mapping R+, intoD ⊆ H . In this section we consider the following abstract second order linear
boundary value problem,

u′′(t) − 2Tu′(t) − Su(t) = 0, t ∈ (0, 1), (15)
u(0) =u0, u(1) = u1 (16)

where u′ =
d
dt

.

Theorem 5.1. Let T2 be m-accretive, T is accretive and S is bounded and accretive. Assume that

1. D(∆
1
2 ) ⊂ D(T).

2. T(D(T2)) ⊂ D(T2) and ∆
1
2 (D(T2)) ⊂ D(T2).

3. ∆ is invertible.
4. T commutes with ∆1/2 onD(T2).

Then of any constant vectors u0 ,u1 ∈ D(T) the vector valued function,

u(t) = e−(1−t)Z1 x0 + etZ2 x1, t ∈ (0, 1),
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with
x0 = (I − e−2∆

1
2 )−1
[
−eZ2 u0 + u1

]
and

x1 = (I − e−2∆
1
2 )−1
[
u0 − e−Z1 u1

]
is uniquely determined solution of (15)-(16), with u(.) ∈ C∞((0, 1),H) ∩ C1((0, 1),D(T)).

Proof. Under the assumptions, by Theorem 4.1, the factors −Z1 and Z2 generates bounded holomorphic
C0-semigroups. By [5, Lemma 2.38],

x(t) = e−(1−t)Z1 x0 ∈ D(Z1)k)

and
y(t) = etZ2 x1 ∈ D(Z2)k),

for all k ∈N, x0, x1 ∈ H and t ∈ (0, 1). This implies that

u(t) = x(t) + y(t) ∈ H ,

u′(t) = Z1x(t) + Z2y(t) ∈ D(T)

and
u(2)(t) = Z2

1x(t) + Z2
2y(t)

for all t ∈ (0, 1). We can easily see that u verifies (15). Since (I − e−2∆
1
2 )−1 and (I − e−2∆

1
2 )−1 exist and bounded

onH . Thus, we have
u(0) = e−Z1 x0 + x1 = u0,

and
u(1) = x0 + e−Z2 x1 = u1,

This completes the proof.

Example 5.2. LetΩ is a smooth bounded domain of Rn, Γ be the boundary ofΩ, and ξ ∈ C with Re(ξ) ≥ 0, η1 ≥ 0,
η ∈ R. We consider the following initial-boundary value problem in L2(Ω),

u′′(t, x) − 2i(η∆ − iη1∆
2)u′(t, x) − ξu(t, x) = 0, (t, x) ∈ (0, 1) ×Ω, (17)

u(0, x) =u0, u(1, x) = u1, x ∈ Ω, (18)
u|Γ =∆u|Γ = 0, (19)

where∆ denotes the Laplacian. It is known that −∆with domain H1
0(Ω)∩H2(Ω) = {u ∈ H2(Ω); u|Γ = 0} is a positive,

self-adjoint operator on L2(Ω). Its L2(Ω) - normalized eigenfunctions are denoted w j, and its eigenvalues counted
with their multiplicities are denoted λ j:

−∆w j = λ jw j. (20)

It is well known that 0 < λ1 ≤ ...,≤ λ j −→ ∞. Functional calculus can be defined using the eigenfunction expansion.
In particular; if we denote by (−∆)α the fractional powers of the Dirichlet Laplacian, with 0 ≤ α ≤ 1, then

(−∆)α u =
∞∑
j=1

λαj u jw j

with

u j =

∫
Ω

u(x)w j(y)dx
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for u ∈ D ((−∆)α) = {u : (λαj u j) ∈ ℓ2(N)}. Also, if mα is an integer, then

D ((−∆)mα) = Hmα
0 (Ω) ∩H2mα(Ω), m ≥ 1. (21)

See [21], for more details.
Set

T = iη∆ + η1∆
2, D(T) = D(∆2) = {u ∈ H4(Ω); u|Γ = ∆u|Γ = 0}.

and
Su = ξu, D(S) = L2(Ω)

Then the abstract version of problem (17)-(18) takes the form (15)-(16). We have,

• S is bounded and accretive.

• T is m-accretive.

• We have
T2 = −η2∆2 + η2

1∆
4
− 2iηη1∆

3

with
D(T2) = D(∆4) = {u ∈ H8(Ω); u|Γ = ∆u|Γ = ∆2u|Γ = ∆3u|Γ = 0}.

If we assume that λ1 ≥
η2

η2
1

, then T is m-accretive.

• The operator
∆ = T2 + S = −η2∆2 + η2

1∆
4
− 2iηη1∆

3 + ξ,

with domainD(∆4), is m-accretive.

• ∆ admits a square root ∆1/2 m-(π/4)-accretive withD(∆4) is a core of ∆1/2.

• The operators factors

Z1 = T + ∆
1
2 = −η∆ + η1∆

2 + (−η2∆2 + η2
1∆

4
− 2iηη1∆

3 + ξ)
1
2

and
Z2 = T − ∆

1
2 = −iη∆ + η1∆

2
− (−η2∆2 + η2

1∆
4
− 2iηη1∆

3 + ξ)
1
2

with domainD(∆2) are closed operators.

• By an argument of functional calculus, we obtain

Tu = −
∞∑
j=1

(iη − η1λ j)λ ju jw j

for u ∈ D(∆2). If (η, η1) , (0, 0) then T is injective. Thus, is invertible with

T−1u = −
∞∑
j=1

1
(η − iη1λ j)λ j

u jw j

for u ∈ D(∆2).
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• Assume that (η, η1) , (0, 0) and ξ , 0. If
∑
∞

j=1
1

(η − iη1λ j)2λ2
j

<
1
|ξ|

then
∥∥∥ST−2

∥∥∥ < 1. In fact,

∥∥∥T−1u
∥∥∥2 = 〈T−2u,u

〉
=

∞∑
j=1

1
(η − iη1λ j)2λ2

j

∣∣∣∣〈u,w j

〉∣∣∣∣2
≤

∞∑
j=1

1
(η − iη1λ j)2λ2

j

∥u∥2

<
1
|ξ|
∥u∥2 .

This implies that ∥∥∥ST−2
∥∥∥ ≤ ∥S∥ ∥∥∥T−1

∥∥∥2 = |ξ| ∥∥∥T−1
∥∥∥2 < 1.

• If we assume that (η, η1) , (0, 0), ξ , 0, λ1 ≥
η2

η2
1

and
∑
∞

j=1
1

(η − iη1λ j)2λ2
j

<
1
|ξ|

; then by Theorem 3.2 and

Corollary 4.2, we conclude that ∆
1
2 , Z1 and −Z2 are m-(π/4)-accretive invertible operators. In particular,

Z1 and −Z2 generates holomorphic C0-semigroup of contraction operators T1(z) and T2(z) of angle
π
4

. If we

assume further T commutes with ∆
1
2 on D(T2). Then all the statements of Theorem 5.1 hold. Consequently,

for any pair of vectors u0,u1 ∈ D(T) the vector valued function,

u(t, x) = e−(1−t)Z1 v0(x) + etZ2 v1(x), t ∈ (0, 1), x ∈ Ω

with
v0(x) = (I − e−2∆

1
2 )−1
[
−eZ2 u0(x) + u1(x)

]
x ∈ Ω

and
v1(x) = (I − e−2∆

1
2 )−1
[
u0(x) − e−Z1 u1(x)

]
x ∈ Ω

is the unique solution of (17)-(19).
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