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Abstract. In the present paper, the solvability of the stochastic Helmholtz problem is investigated in
the class of stochastic differential equations equivalent in distribution. Earlier, by additional variables
method the Helmholtz problem was investigated in the class of stochastic differential equations equivalent
almost surely (a.s.). The study of the stochastic Helmholtz problem in the class of equations equivalent
in distribution allows us to significantly expand the region of its solvability. This is due to the possibility
of using well-known methods of the theory of stochastic processes, such as the method of the phase
space transformation, the method of absolutely continuous change of measure, and the method of random
change of time. In that paper stochastic equations of the Lagrangian structure equivalent in distribution
are constructed by the given second order Ito stochastic equations using the methods of phase space
transformation, absolutely continuous measure transformation and random time substitution. The obtained
results are illustrated by specific examples.

1. Introduction

The theory of dynamics inverse problems has been quite fully developed for ordinary differential
equations (ODEs) [1-9]. This theory goes back to the work by Yerugin [10], in which a set of ODEs is
constructed given an integral curve. In [1,2], Galiullin proposed a classification of the main types of
dynamics inverse problems for ODEs and developed general methods for their solving. In recent decades,
growing interest in the Helmholtz problem [11] has led to a new phase in studying inverse problems for
differential systems. The dynamics inverse problems related to the Helmholtz problem are described in [12].
The classical Helmholtz problem consists in constructing equivalent differential equations in the Lagrange
form by the given second-order ODEs. Mayer [13] and Suslov [14] showed independently that the classical
Helmholtz conditions are not only necessary but also sufficient for the transition from the Newtonian
equations to equivalent Lagrangian ones. The solvability of dynamics inverse problems for Ito stochastic
differential equations is studied in [15-19]. Solving the Helmholtz problem in a wider class of differential
equations allows one to extend the well-developed mathematical methods of classical mechanics to this
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class. Moreover, since the Helmholtz problem is also an inverse problem of calculus of variations, it is often
useful to replace the problem of finding the solution of a differential equation with an equivalent problem
of finding the extremals of a functional constructed from this equation. Of special note in this regard is
Santilli’s two-volume monograph [20,21] that provides a variety of aspects in the study of the Helmholtz
problem. The monograph is devoted to the problem of representing a second-order ODE in the form of the
Lagrange, Hamilton and Birkhoff equations. In [22-24], methods for solving the Helmholtz problem are
developed for partial differential equations (PDEs). In [20,21,25], the authors present their studies on the
Helmholtz problem, mainly for ODEs and PDEs, as well as a historical overview of the development and
generalization of the problem. In contrast to this paper, the stochastic Helmholtz problem is solved in the
class of stochastic differential equations equivalent a.s. [26].

Let us consider the following equations:

dẏ = Y1(y, ẏ, t)dt + Y2(y, ẏ, t)dξ, (a)

dż = Z1(z, ż, t)dt + Z2(z, ż, t)dξ (b)

Definition 1.1. [27] We say that equations (a) and (b) are equivalent a.s. if , for all t ≥ t0, y(t0) = z(t0), ẏ(t0) = ż(t0)
a.s. implies y(t, t0, y0, ẏ0) = z(t, t0, z0, ż0), ẏ(t, t0, y0, ẏ0) = ż(t, t0, z0, ż0) a.s.

The equivalence of equations (a) and (b) in distribution is understood in the following sense.

Definition 1.2. [27] Equations (a) and (b) are d-equivalent (or equivalent in distribution) if for (y(t0)T, ẏ(t0)T)T and
(z(t0)T, ż(t0)T)T , with the same initial distributions in R2n, the distribution laws of the processes (y(t)T, ẏ(t)T)T and
(z(t)T, ż(t)T)T coincide in the space W2n = C([0,∞)→ R2n).

Following R.M. Santilli [20], we present some concepts, necessary in the sequel , that take into account
the action of random perturbing forces.

Definition 1.3. The equation

dẋν = Fν(x, ẋ, t)dt + σν j(x, ẋ, t)dξ j,
(
ν = 1,n, j = 1, r

)
(1)

is called the kinematic form of Newton’s equation in the presence of random perturbations.
The equation

Aν i(x, ẋ, t)dẋi + Bν(x, ẋ, t)dt = σν j(x, ẋ, t)dξ j,
(
ν = 1,n, j = 1, r

)
(2)

is called the basic form of Newton’s equation in the presence of random perturbations.
The equation

d
(
∂L
∂ẋk

)
−
∂L
∂xk

dt = σ
′

k j(x, ẋ, t)dξ
j,

(
k = 1,n, j = 1, r

)
(3)

is called the stochastic equation of the Lagrangian structure.

In what follows, we suppose that the functions included in the above equations are necessarily smooth
and satisfy the existence and uniqueness theorem for the Cauchy problem in the class of Ito stochastic
differential equations [27].

In particular, following [27], we assume that in (1) the vector function F(z, t) and the matrix σ(z, t):
(i) are continuous in t and satisfy the Lipschitz condition with respect to the variable z

∥σ(z
′

, t) − σ(z
′′

, t)∥2 + ∥F(z
′

, t) − F(z
′′

, t)∥2 ≤ L
(
1 + ∥z

′

− z
′′

∥
2
)

for all z
′

, z
′′

∈ R2n,
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(ii) the conditions for linear growth

∥σ(z, t)∥2 + ∥F(z, t)∥2 ≤ L
(
1 + ∥z∥2

)
are satisfied for all z ∈ R2n, where z =

(
xT, ẋT

)T
.

Let (Ω,U,P) be a probability space with a flow {Ut}. Here {ξ1(t, ω), . . . , ξr(t, ω)} is a system of random
processes with independent increments that can be represented as a sum of processes [28]: ξ = ξ0 +∫

c(y)P0(t, dy), where ξ = (ξ1(t, ω), . . . , ξr(t, ω))T, ξ0 is a vector Wiener process, P0 is a Poisson process,
P0(t, dy) is the number of jumps of the process P0 in the interval [0, t] that fall onto the set dy; c(y) is the
vector function that maps the space R2n to the value space Rk of the process ξ(t) for all t.

Equations (1), (2), (3) are the second-order Ito stochastic equations. By dξ j we mean a differential in the
Ito sense [29].

This problem was considered in [20] in the absence of random perturbations (σν j ≡ σ
′

ν j ≡ 0). Here and
below, we assume summation over repeated indices of the factors. The indices i, k and ν range from 1 to
n and the index j ranges from 1 to r. We exclude from consideration the case of degenerate equations and
assume that det(Aν i) , 0 in equation (2).

Equations (1) or (2) describe the models of mechanical systems that account for the effect of external
random forces and are of great practical importance. Here are some examples: the motion of an artificial
Earth satellite under the action of gravitational and aerodynamic forces [30], the fluctuation drift of a heavy
gyroscope in a gimbal [31], etc.

2. Problem statement

Given the second-order system of Ito stochastic equations of the form (1), reduce the system to equivalent
equations of the Lagrangian structure.

The study of the stochastic Helmholtz problem in the class of equations equivalent in distribution allows
us to significantly expand the region of its solvability. This is due to the possibility of using well-known
methods of the theory of stochastic processes, such as the method of the phase space transformation, the
method of absolutely continuous change of measure, and the method of random change of time.

The method of the phase space transformation. We consider the transformation of the phase space in
terms of velocities

˙̃xi = φi(x, ẋ, t) (4)

under the assumption that φi ∈ C1 2 1
x ẋ t and there is an inverse transformation ψν = ψν(x, ˙̃x, t) ∈ C1 2 1

x ẋ t such that

ẋν = ψν(x, ˙̃x, t). (5)

Using the Ito stochastic differentiation rule [28], we calculate the differential

d ˙̃xi =
∂φi

∂t
dt +

∂φi

∂xk
dxk +

∂φi

∂ẋk
dẋk +

1
2
σl jσkj

∂2φi

∂ẋl∂ẋk
dt +

∂φi

∂ẋk
σkjdξ.

Hence, we obtain the relation

d ˙̃xi = F̃i(x, ˙̃x, t)dt + σ̃i j(x, ˙̃x, t)dξ j, (6)

where F̃i =
[
∂φi

∂t +
∂φi

∂xk
ẋk +

∂φi

∂ẋk
Fk +

1
2σl jσkj

∂2φi

∂ẋl∂ẋk

]∣∣∣∣∣
ẋν=ψν(x, ˙̃x,t)

, σ̃i j =
∂φi

∂ẋν
σν j

∣∣∣∣
ẋν=ψν(x, ˙̃x,t)

.



M. Tleubergenov et al. / Filomat 36:7 (2022), 2451–2460 2454

Further, we assume that the functions φi for the given Fi and σi j are such that in the space (x, ˙̃x), the
following relations (Helmholtz conditions [20]) hold with respect to variables F̃i and σ̃i j:

∂F̃ν
∂ ˙̃xµ
+
∂F̃µ
∂ ˙̃xν
= 0, (7)

∂2F̃ν
∂ ˙̃xµ∂ ˙̃xk

−
∂2F̃µ
∂ ˙̃xν∂ ˙̃xk

= 0, (8)

∂F̃ν
∂ ˙̃xµ
−
∂F̃µ
∂ ˙̃xν
=

1
2

{
∂
∂t
+ ˙̃xk

∂
∂xk

} (
∂F̃ν
∂ ˙̃xµ
−
∂F̃µ
∂ ˙̃xν

)
, (9)

Conditions (7)-(9) ensure the existence of some L̃ = L̃(x, ˙̃x, t) and the transition from equations (6) to
equations of the Lagrangian structure

d
(
∂L̃
∂ ˙̃xi

)
−
∂L̃
∂xi

dt = σ̃i j(x, ˙̃x, t)dξ j. (10)

Theorem 2.1. Let there exist a transformation (4) φi = φi(x, ẋ, t) ∈ C1 2 1
x ẋ t that has the inverse (5) ψν = ψν(x, ẋ, t) ∈

C1 2 1
x ẋ t and satisfies conditions (7)-(9). Then equation (1) defined in the space (x, ẋ) is equivalent in distribution to the

equation of the Lagrangian structure (10) in the space (x, ˙̃x).

Remark 2.2. Theorem (2.1) is convenient to use when the functions Fi in the problem of direct representation do
not satisfy the Helmholtz conditions [20] in the space (x, ẋ). In the case when the classical Helmholtz conditions
are satisfied, it is sufficient to set φi ≡ ẋi so that conditions (7) - (9) coincide with the Helmholtz conditions in the
space(x, ẋ).

The method of absolutely continuous change of measure.
Following the Girsanov method [27], we consider the transformation of the drift coefficient.
Assume that (Ω,Ut,P) is an initial probability space, Ut is some flow of σ-algebras, and ξ j(s) is the

Wiener process with respect to Ut. If ϕt(ω) is some non-negative functional, measurable with respect to Ut,
such that Mϕt(ω) = 1, then we can consider a new probability measure P̂(A) =

∫
A ϕt(ω)P(dω) on (Ω,Ut).

Further, if ϕt(x, ẋ, t) = exp
{∫ t

0 b j(x, ẋ, t)dξ j(s) − 1
2

∫ t

0 |b j(x, ẋ, s)|2ds
}
, then, by the Girsanov theorem [27], the

process

ξ̂ j(t) = ξ j(t) −
∫ t

0
b j(x, ẋ, s)ds, (11)

is the Wiener process with respect to the flow of σ-algebras{Ut} on the probability space (Ω,Ut, P̂).
Let us apply the Girsanov transformation (11) to equation (1). Differentiating (11), we have dξ j(t) =

dξ̂ j(t) + b j(x, ẋ, t)dt. Then, upon transition from (Ω,Ut,P) to (Ω,Ut, P̂), equation (1) takes the form

dẋi = F̂i(x, ẋ, t)dt + σkj(x, ẋ, t)dξ̂ j, (12)

where F̂i = Fi + σi j(x, ẋ, t)b j(x, ẋ, t).
Let us now suppose that for given Fi and σi j the functions b j(x, ẋ, t) are such that the Helmholtz conditions
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∂F̂ν
∂ẋµ
+
∂F̂µ
∂ẋν
= 0, (13)

∂2F̂ν
∂ẋµ∂ẋk

−
∂2F̂µ
∂ẋν∂ẋk

= 0, (14)

∂F̂ν
∂ẋµ
−
∂F̂µ
∂ẋν
=

1
2

{
∂
∂t
+ ẋk

∂
∂xk

} ∂F̂ν
∂ẋµ
−
∂F̂µ
∂ẋν

 (15)

hold with respect to the variables F̂i. These conditions ensure the existence of a certain Lagrangian L̂ =
L̂(x, ẋ, t) and the transition from (12) to the equivalent equations of the Lagrangian structure

d
(
∂L̂
∂ẋi

)
−
∂L̂
∂xi

dt = σi j(x, ẋ, t)dξ̂ j. (16)

Theorem 2.3. Let there exist the Girsanov transformation (11) such that for given Fi and σi j conditions (13) - (15)
are satisfied. Then the given equation (1) is equivalent in distribution to the equation of the Lagrangian structure
(16).

Remark 2.4. In Theorem (2.3), conditions (13) - (15) are the Helmholtz conditions for the functions F̂i in equation
(12). Suppose that the Helmholtz conditions for these functions are not satisfied, i.e.the following relations hold:

∂F̂ν
∂ẋµ
+
∂F̂µ
∂ẋν
= ανµ , 0, (17)

∂2F̂ν
∂ẋµ∂ẋk

−
∂2F̂µ
∂ẋν∂ẋk

= βνµk , 0, (18)

∂F̂ν
∂ẋµ
−
∂F̂µ
∂ẋν
−

1
2

{
∂
∂t
+ ẋk

∂
∂xk

} ∂F̂ν
∂ẋµ
−
∂F̂µ
∂ẋν

 = γνµk , 0, (19)

Then, taking into account that F̂i = Fi + σi jb j, the conditions (17) - (19) take the form

ανµ +
∂σν jb j

∂ẋµ
+
∂σµ jb j

∂ẋν
= 0, (20)

βνµk +
∂2σν jb j

∂ẋµ∂ẋk
−
∂2σµ jb j

∂ẋν∂ẋk
= 0, (21)

γνµk +
∂σν jb j

∂ẋµ
−
∂σµ jb j

∂ẋν
−

1
2

{
∂
∂t
+ ẋk

∂
∂xk

} (
∂σν jb j

∂ẋµ
−
∂σµ jb j

∂ẋν

)
= 0. (22)
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Thus, Theorem (2.3) implies the following statement.

Corollary 2.5. Let the diffusion matrix (σν j) and the Girsanov transformation functions b j satisfy relations (20)
- (22), in which the functions ανµ, βνµk and γνµk are determined from (17) - (19). Then the given equation (1) is
equivalent in distribution to the equation of the Lagrangian structure (16).

Remark 2.6. It follows from Corollary (2.5) that the possibility of analytically constructing the Lagrangian and,
therefore, the equivalent equation of the Lagrangian structure in the class of stochastic equations, in addition to the
drift coefficient Fi, substantially depends on the diffusion matrix (σν j).

The method of random change of time. Let us consider the time conversion

t =
∫ τ

0
v(y, ẏ, s)ds (23)

or dτ
dt =

1
v(y,ẏ,τ) . Then, by [27], equation (1) is equivalent to the equation

dẋ = Fi(x, ẋ, τ)dτ + σi j(x, ẋ, τ)dξ j, (24)

here Fi =
Fi(x,ẋ,τ)
v(x,ẋ,τ) , σi j =

σi j(x,ẋ,τ)
√

v(x,ẋ,τ)
.

We assume that for given Fi and σi j the function v satisfies the Helmholtz conditions with respect to the
variables Fi:

∂Fν
∂ẋµ
+
∂Fµ
∂ẋν
= 0, (25)

∂2Fν
∂ẋµ∂ẋk

−
∂2Fµ
∂ẋν∂ẋk

= 0, (26)

∂Fν
∂ẋµ
−
∂Fµ
∂ẋν
=

1
2

{
∂
∂τ
+ ẋk

∂
∂xk

} ∂Fν
∂ẋµ
−
∂Fµ
∂ẋν

 . (27)

These conditions guarantee the existence of some L = L(x, ẋ, τ) and the transition from equations (24) to
the equations of the Lagrangian structure

d
(
∂L
∂ẋi

)
−
∂L
∂xi

dτ = σi j(x, ẋ, τ)dξ j. (28)

Theorem 2.7. Let the random time transformation (23) be such that conditions (25) - (27) are satisfied. Then the
given equation (1) is equivalent in distribution to the equation of the Lagrangian structure (28).

3. Examples

Let us solve the Helmholtz problem for specific equations using the proven statements.
Example 1. Let us consider the plane motion of a symmetric satellite in a circular orbit. We assume

that a change in pitch occurs under the action of gravitational and aerodynamic forces [30]
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θ̈ = f (θ, θ̇) + σ(θ, θ̇)ξ̇, (29)

where θ is a pitch angle, and the functions f and σ are of the form

f = Ql sin 2θ −Q[1(θ) + ηθ̇], σ = Qδ[1(θ) + ηθ̇]. (30)

1) Let the phase space transformation (4) have the form ˙̃θ = φ(θ, θ̇) = θ̇ − aθ, here a is an unknown
coefficient. Using the Ito’s rule of stochastic differentiation and expressions (30), we find the coefficients
f̃ and σ̃ of the transformed equation ¨̃θ = f̃ (θ, θ̇) + σ̃(θ, θ̇)ξ̇. Then, from the requirement ∂ f̃/∂ ˙̃θ = 0 (the
Helmholtz condition in the one-dimensional case [20]), we determine a = −Qη. As a result, equation (29) is
transformed to the form

¨̃θ = Q l sin2θ −Q1(θ) +Qδ[1(θ) + η( ˙̃θ −Qηθ)]ξ̇. (31)

We will seek the Lagrange function in the form L = 1
2

˙̃θ2 +W(θ) = 1
2 (θ̇ + Qηθ)2 +W(θ) and determine

W(θ) so that (31) is equivalent in distribution to the equation of Lagrangian structure.
A simple computation shows that the stochastic equation of the Lagrangian structure with given L is

equivalent to the equation ¨̃θ = Q2η2θ +Wθ + σ
′

ξ̇. Hence, comparing the obtained equation and equation
(31), we determine W(θ) as W = − 1

2 Q l cos2θ − QG(θ) − Qηθ , where G =
∫
1(θ)dθ. Under the assumption

σ
′

= σ = Qδ[1(θ) + ηθ̇], it follows from Theorem (2.1) that the transformation φ with a = −Qη ensures the
existence of the Lagrangian L = 1

2
˙̃θ2
−Q( 1

2 l cos2θ+G(θ)+ηθ+ 1
2 Qη2θ2) and the construction of the equation

of Lagrangian structure d
dt
∂L
∂ ˙̃θ
−

∂L
∂θ = σ̃(θ, ˙̃θ)ξ̇, which is equivalent in distribution to equation (29).

2) In the one-dimensional case, the Girsanov transformation (11) takes the form ξ̂ = ξ −
∫ t

0 b(θ, θ̇)ds. By
this transformation, equation (29) is converted into the equation

θ̈ = f̂ (θ, θ̇) + σ̂(θ, θ̇) ˙̂ξ, (32)

where f̂ = f + σb and σ̂ = σ.
The Helmholtz condition ∂ f̂/∂θ̇ = 0 takes the following form:

∂ f

∂θ̇
+
∂σ

∂θ̇
b +

∂b
∂θ̇
σ = 0. (33)

Denoting b(θ, θ̇) = l0(θ) + µ0θ̇ and substituting (30) into (32), we obtain

−Qη +Qδηl0(θ) + 2Qδηθ̇µ0 +Qδ1(θ)µ0 = 0.

We set µ0 = 0, then l0(θ) = 1/δ = const and, therefore, b = 1/δ = const. Hence, equation (32) can be
written in the form

θ̈ = Q l sin2θ + [Qδ1(θ) +Qδηθ̇] ˙̂ξ. (34)

We suppose that the Lagrange function has the form of L = 1
2 θ̇

2 + β(θ) and determine β(θ) so that
the stochastic equation of Lagrangian structure is equivalent to the transformed equation (34). Since
the given Lagrange function L leads to the equation θ̈ = βθ + σ

′

ξ̇, we determine, taking into account
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(30), βθ = Q l sin2θ and then β(θ) = − 1
2 Q l cos2θ. Under the assumption that σ

′

= σ we conclude that the
Lagrangian, enabling the representation of equation (34) in the form of the stochastic equation of Lagrangian
structure d

dt
∂L
∂θ̇
−

∂L
∂θ = σ(θ, θ̇) ˙̂ξ, is of the form L = 1

2 θ̇
2
−

1
2 Q l cos2θ.

3) Applying the transformation of random change of time (23) for equation (29), we get the equation

θ̈ = f (θ, θ̇) + σ(θ, θ̇)ξ̇, (35)

where f = f/v(θ, θ̇), σ = σ(θ, θ̇)/
√

v(θ, θ̇).
Further, the Helmholtz condition ∂ f/∂θ̇ = 0 implies

v fθ̇ − f vθ̇
v2 , v2 , 0, v fθ̇ − f vθ̇ = 0. (36)

We set v(θ, θ̇) = l1(θ)+µ1(θ) and substitute (30) into (36), so we obtain the relation−l1(θ)Qη−Q l sin2θµ1+
Q1(θ)µ1 = 0.

Taking µ1 = 1 we get l1(θ) = −l sin2θ+1(θ)
η . Hence, the function v(θ, θ̇) that ensures the fulfillment of the

Helmholtz conditions takes the form v(θ, θ̇) = −l sin2θ+1(θ)
η , and equation (35) is transformed to the form

θ̈ = −Qη +
Qδ[1(θ) + ηθ̇]√

−l sin2θ+1(θ)
η

ξ̇. (37)

Suppose that the Lagrange function is of the form L = 1
2 θ̇

2+β(θ), where the function β(θ) is yet unknown.
The Lagrange function L leads to the stochastic equation θ̈ = βθ + σ

′

ξ̇ . Taking into account (30), we have

βθ = −Qη. This implies β(θ) = −Qηθ. Further, under the assumption that σ
′

= σ =
Qδ[1(θ)+ηθ̇]√
−l sin2θ+1(θ)

η

, we conclude

that the Lagrangian L = 1
2 θ̇

2
−Qηθ provides the representation of equation (36) in the form of the stochastic

equation of Lagrangian structure d
dτ
∂L
∂θ̇
−

∂L
∂θ = σ(θ, θ̇)ξ̇.

Example 2. Consider the second-order nonlinear differential equation describing the motion of the
inner ring of a gyroscope in a gimbal [31]

β̈ + 2νβ̇ + f (β) = ξ̇, (38)

where β is the rotation angle of the inner ring . Here the coefficient of white noise is σ = 1.
1) As in Example 1, we define the phase space transformation as ˙̃β = ϕi(β, β̇) = β̇ − aβ. The Helmholtz

conditions are fulfilled for a = −2ν and equation (38) takes the form

˙̃β = −1(β) + ξ̇. (39)

We take the Lagrange function to be equal to L = 1
2 β̇

2 + γ(β) and, similarly to the item 1) of Example 1,
we determine γ and σ

′

as γ(β) = −2ν − G(β) − 4ν2β2/2, σ
′

= σ = 1, where d
dβG(β) = 1(β).

We conclude that the Lagrangian L = 1
2

˙̃β2
− (2ν+G(β)+ 4ν2β2/2) provides the representation of equation

(38), defined in the space (β, β̇), in the form of the stochastic equation of Lagrangian structure d
dt (

∂L
∂ ˙̃β

)− ∂L
∂β = ξ̇.

2) Let us define the function b(β, β̇) of the Girsanov transformation (11) for equation (38) in the form

b = l1(β) + µ1β̇. (40)
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It follows from the Helmholtz condition for the one-dimensional case [20] that l1(β) = 0 and b = 2νβ̇.
Thus, equation (38) is transformed to the form β̈ =− 1(β) + ξ̇.

Let L = 1
2 β̇

2 + γ(β). Then the equation of Lagrangian structure is equivalent to the equation β̈ = γβ + σ
′

ξ̇.
We thus determine γ(β) = −G(β), where d

dβG(β) = 1(β), σ
′

= σ = 1.
Hence, the Girsanov transformation with the function b of the form (40) ensures the existence of the

Lagrange function L = 1
2 β̇

2
− G(β) and the representation of equation (38) in the form of the stochastic

equation of the Lagrangian structure d
dt (

∂L
∂β̇

) − ∂L
∂β =

˙̂ξ.

3) We define the random change of time (23) by v = l0(β) + β̇. From the Helmholtz condition we have
l0(β) = 1(β)/2ν. Consequently, equation (38) is transformed to the form

β̈ = −2ν +

√
2ν

1(β) + 2νβ̇
ξ̇. (41)

We take the Lagrange function L = 1
2 β̇

2 + γ(β) and, comparing equation (41) with E(L) = σ
′

ξ̇, we

determine γ(β) = −2νβ and σ
′

= σ
√

v
=

√
2ν

1(β)+2νβ̇ .

Consequently, the Lagrangian, enabling the representation of equation (38) in the form of the stochastic

equation of Lagrangian structure d
dτ ( ∂L

∂β̇
) − ∂L

∂β =
√

2ν
1(β)+2νβ̇ ξ̇ is of the form L = 1

2 β̇
2
− 2νβ.

In [26], the method of additional variables was applied to the problems in Examples 1 and 2 to construct
Lagrangians in the class of stochastic differential equations equivalent a.s. by the given equations (29) and
(38).
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