Z°-Ideals in $M V$-Algebras of Continuous Functions

Mahta Bedrood ${ }^{\text {a }}$, Farhad Sajadian ${ }^{\text {b }}$, Arsham Borumand Saeid ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
${ }^{b}$ Department of Pure Mathematics and Calculations, Faculty of Mathematics, Higher Education Complex of Bam, Kerman, Iran

Abstract

In this paper, we study $M V$-algebra of continuous functions $C(X)$ and maximal ideals of $C(X)$. Furthermore, Z-ideal and Z°-ideal of $C(X)$ are introduced and proved that every Z°-ideal in $C(X)$ is a Z-ideal but the converse is not true and every finitely generated Z-ideal is a basic Z°-ideal. Also, we investigate meet and join of two Z-ideals (Z°-ideal) of $C(X)$. Complemented elements of $C(X)$ are examined and their properties have been studied. In particular, the relationship between generated ideal by them and Z-ideals (Z°-ideals) is proved. Finally, we investigate some property of Z°-ideals in basically disconnected space and extremally disconnected space.

1. Introduction

C.C. Chang introduced $M V$-algebras as algebraic models for Łukasiewicz logic to give its algebraic analysis and proved completeness of Łukasiewicz logic with respect to the variety of all $M V$-algebras. ([7]). Chang's completeness theorem states that any $M V$-algebra equation holding in the standard $M V$-algebra over the interval $[0,1]$ will hold in every $M V$-algebra. These algebras relate to the above mentioned system of logic in the same manner as Boolean algebras relate to two classical valued logic.

The first studies of $M V$-algebras ($[3,5,7]$) were strictly confined to applications to the Łukasiewicz propositional and predicate logics. From this period to the second half of the eighties there were a few scattered results dealing with $M V$-algebras presented. Since the second half of the eighties there has been a renewal of interest in $M V$-algebras and their influence has now been extended to other areas of mathematics. In particular, $M V$-algebras apply to fuzzy set theory $([4,6])$, and most notably, by the work of D. Mundici ([12]), to AF C*-algebras and lattice ordered abelian groups ([13]). By the work of Mundici ([12]) we know that whenever there is a lattice ordered abelian group with a strong order unit, there is a corresponding $M V$-algebra.

Considering any topological space (shortly in the sequel, space) and [0, 1] endowed with the natural topology, the family $\mathrm{C}(\mathrm{X})$ of all $[0,1]$-valued continuous functions defined on X has a structure of $M V$ algebra, induced pointwise by the $M V$-operations on $[0,1]$. The same operations induce on $[0,1]^{X}$, if X is a nonempty set, the $M V$-algebra of all the fuzzy sets of X, called usually Bold algebra of fuzzy sets of X ([2]).

However in this work we study $M V$-algebra of continuous functions and ideals. We establish a relation between $M V$-algebras and topological space X. We do not claim profundity but it is always a matter of

[^0]interest when two seemingly disparate parts of mathematics touch hands. One would like to know just how accidental such a link may be. In the work at hand the link is probably not a fluke. The types of regular rings herein are studied widely. One suspects there is also a direct link between these structures and the Łukasiewicz infinite valued logic.

In this paper, $C(X)$ is the $M V$-algebra of all continuous function on completely regular space X to standard $M V$-algebra $([0,1], \oplus, *, 0)$. For each $f \in C(X)$, the set $Z(f)=\{x \in X: f(x)=0\}$, is the zero set of f. For $M \subseteq X$, by int M and \bar{M} we mean the interior and the closure of M, respectively. We study maximal ideals of $C(X)$ and show that if X is a compact space, then subset of $C(X)$ such that every element of that equal to zero for a unique $x \in X$ is a maximal ideal. Subsequent, according to the definition Z-ideal and Z°-ideal in $M V$-algebra A and they are connection with maximal ideals and minimal prime ideals of $M V$-algebra A search for equivalent definitions of them in $M V$-algebra $C(X)$. By establishing between intersection of the minimal prime ideals containing a and annihilator of a for all a in $M V$-algebra A it has been proved that every Z°-ideal in $C(X)$ is a Z-ideal. By providing an example, it turned out that the converse is not necessary true but it has been shown that every finitely generated Z-ideal is a basic Z°-ideal and equivalent by generated ideal with a complemented elements of $C(X)$. It is clear that meet of two Z-ideal (Z°-ideal) of $C(X)$ is a Z-ideal (Z°-ideal). Also, join of two Z-ideal is proved that is a Z-ideal but showed not necessarily join of two Z°-ideal is not a Z°-ideal unless X is a basically disconnected. We prove that an element $f \in C(X)$ is not a zero divisor if and only if interior zero set of f is non empty and if $Z(f)$ is a clopen subset of X, then generated ideal by f is equivalent by generated ideal with a complemented element of $C(X)$. It is proved that if every ideal in $C(X)$ consisting of zero divisors is a Z°-ideal, then every $f \in C(X)$ where $\emptyset \neq Z(f) \subsetneq X$ is a zero divisor. Finally, we made a connection between basically disconnected space and extremally disconnected space by basic $Z^{\circ}-$ ideals of $C(X)$.

2. Preliminaries

We recollect some definitions and results which will be used in the sequel:
Definition 2.1. ([7]) An $M V$-algebra is a structure $(A, \oplus, *, 0)$ where \oplus is a binary operation, ${ }^{*}$, is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $x, y \in A$:
(MV1) $(A, \oplus, 0)$ is an abelian monoid,
(MV2) $\left(x^{*}\right)^{*}=x$,
(MV3) $0^{*} \oplus x=0^{*}$,
$(M V 4)\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$.
Note that we have $1=0^{*}$ and the auxiliary operation \odot which are as follows:

$$
x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}
$$

We recall that the natural order determines a bounded distributive lattice structure such that

$$
x \vee y=x \oplus\left(x^{*} \odot y\right)=y \oplus\left(x \odot y^{*}\right) \quad \text { and } \quad x \wedge y=x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right)
$$

Also for any two elements $x, y \in A, x \leq y$ if and only if $x^{*} \oplus y=1$ if and only if $x \odot y^{*}=0$
Lemma 2.2. ([8]) In each $M V$-algebra A, the following relations hold for all $x, y, z \in A$:
(1) If $x \leq y$, then $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z, x \wedge z \leqslant y \wedge z$,
(2) $x, y \leq x \oplus y$ and $x \odot y \leq x, y, x \leq n x=x \oplus x \oplus \cdots \oplus x$ and $x^{n}=x \odot x \odot \cdots \odot x \leq x$,
(3) If $x \leq y$ and $z \leq t$, then $x \oplus z \leq y \oplus t$,
(4) $x \wedge(y \oplus z) \leqslant(x \wedge y) \oplus(x \wedge z), x \wedge\left(x_{1} \oplus \ldots \oplus x_{n}\right) \leqslant\left(x \wedge x_{1}\right) \oplus \ldots \oplus\left(x \wedge x_{n}\right)$, for all $x_{1}, \ldots, x_{n} \in A$; in particular $(m x) \wedge(n y) \leqslant m n(x \wedge y)$, for every $m, n \geq 0$.

For any $M V$-algebra A we shall denote by $B(A)$ the set of all complemented elements of $L(A)$ such that $L(A)$ is distributive lattice with 0 and 1.
In the paper A is an $M V$-algebra.

Theorem 2.3. ([15]) For every element e in A, the following conditions are equivalent:
(1) $e \in B(A)$,
(2) $e \vee e^{*}=1$,
(3) $e \wedge e^{*}=0$,
(4) $e \oplus e=e$,
(5) $e \odot e=e$.

Definition 2.4. ([8]) An ideal of A is a nonempty subset I of A satisfying the following conditions:
(I1) If $x \in I, y \in A$ and $y \leq x$, then $y \in I$,
(I2) If $x, y \in I$, then $x \oplus y \in I$.
We denote by $\operatorname{Id}(A)$ the set of all ideals of A.
Definition 2.5. ([8]) Let I be an ideal of A. If $I \neq A$, then I is a proper ideal of A.
\bullet ([8]) A proper ideal I of A is called prime ideal if for all $x, y \in A, x \wedge y \in I$, then $x \in I$ or $y \in I$.
We denote by $\operatorname{Spec}(A)$ the set of all prime ideals of an $M V$-algebra A.
$\bullet([8])$ An ideal I of A is called a minimal prime ideal of A :

1) $I \in \operatorname{Spec}(A)$;
2) If there exists $Q \in \operatorname{Spec}(A)$ such that $Q \subseteq I$, then $I=Q$.

We denote by $\operatorname{Min}(A)$ the set of all minimal prime ideals of A.
$\bullet([15])$ An ideal I of A is called maximal if and only if for each ideal $J \neq I$, if $I \subseteq J$, then $J=A$.
We denote by $\operatorname{Max}(A)$ the set of all maximal ideals of A.
Definition 2.6. ([15]) Let X be a nonempty subset of A. Then $\operatorname{Ann}(X)$ is the annihilator of X defined by:

$$
\operatorname{Ann}(X)=\{a \in A: a \wedge x=0, \forall x \in X\} .
$$

Remark 2.7. ([15]) Let $X \subseteq A$. The ideal of A generated by X will be denoted by (X]. We have
$(1)(X]=\left\{a \in A \mid a \leqslant x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}\right.$, for some $n \in \mathbb{N}$ and $\left.x_{1}, \ldots, x_{n} \in X\right\}$. In particular, $(a]=\{x \in A \mid x \leqslant$ na, for some $n \in \mathbb{N}\}$.
We denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right]$, the ideal of A generated by $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
(2) For $I_{1}, I_{2} \in \operatorname{Id}(A)$,

$$
I_{1} \wedge I_{2}=I_{1} \cap I_{2}, I_{1} \vee I_{2}=\left(I_{1} \cup I_{2}\right]=\left\{a \in A: a \leq x \oplus y ; x \in I_{1}, y \in I_{2}\right\}
$$

Definition 2.8. ([10]) Let X be a nonempty subset of A. The set of all zero-divisors of X is denoted by $Z_{X}(A)$ and is defined as follows:

$$
Z_{X}(A)=\{a \in A: \exists 0 \neq x \in X \text { such that } x \wedge a=0\} .
$$

Zero element of an $M V$-algebra is a zero divisor, which is called trivial zero divisor. We denote by Z_{A} the set of all zero divisors of A.

One can easily show that $\operatorname{Ann}(X) \subseteq Z_{X}(A)$.
Notation: let $a \in A$. Define

$$
\begin{array}{ccc}
M(a)=\{M \in \operatorname{Max}(A): a \in M\} & P(a)=\{P \in \operatorname{Min}(A): a \in P\} . \\
M_{a}=\cap\{M: M \in \operatorname{Max}(A), a \in M\} & P_{a}=\cap\{P: P \in \operatorname{Min}(A), a \in P\} .
\end{array}
$$

If I is an ideal of A, define

$$
M_{I}=\bigcap\{M: M \in \operatorname{Max}(A), I \subseteq M\} \quad P_{I}=\bigcap\{P: P \in \operatorname{Min}(A), I \subseteq P\}
$$

Theorem 2.9. ([9]) Let $P \in \operatorname{Min}(A)$ and I be finitely generated ideal. Then $I \subseteq P$ if and only if $\operatorname{Ann}(I) \nsubseteq P$.

Lemma 2.10. ([9]) If $0 \neq x \in A$, then there exists $P \in \operatorname{Min}(A)$ such that $x \notin P$.
Definition 2.11. ([1]) (1) A proper ideal I of A is called a Z°-ideal if $P_{a} \subseteq I$, for each $a \in I$.
(2) A proper ideal I of A is called a Z-ideal if $M_{a} \subseteq I$, for each $a \in I$.

Remark 2.12. ([1]) If a is a zero divisor of $M V$-algebra of A, then P_{a} is a Z°-ideal which is called a basic Z°-ideal. Also, every intersection of Z°-ideals (Z-ideals) is a Z°-ideal (Z-ideal).

Proposition 2.13. ([1]) If $a \in A$ and X is a subset of A, then
(1) $P_{a}=\{b \in A \mid A n n(a) \subseteq A n n(b)\}$,
(2) $P_{a}=A n n(A n n(a))$
(3) $\operatorname{Ann}(\operatorname{Ann}(\operatorname{Ann}(X))=\operatorname{Ann}(X)$.

Theorem 2.14. ([1]) Every Z-ideal of A is the intersection of the minimal prime ideals containing it.
We have $[0,1]$ and $[-\infty,+\infty]$ are homeomorphic, so we can replace the definitions that depend on $[-\infty,+\infty]$ with $[0,1]$. Such as the following definition:

Definition 2.15. ([11]) A space X is said to be completely regular provided that it is a Husdorff space such that, whenever F is a closed set and x is a point in its complement, there exists a function $f \in C(X)$ such that $f(x)=1$ and $f(F)=\{0\}$.

Remark 2.16. ([11]) Let $f \in C(X)$. The set $Z(f)=\{x \in X: f(x)=0\}$ is called zero set and $X \backslash Z(f)$ is called cozero-set.

Definition 2.17. ([11]) A space X is said to be extremally disconnected if every open set has an open closure; X is basically disconnected if every cozero-set has an open closure.

Lemma 2.18. ([14]) Let $X=A \cup B$ such that A and B be closed subsets of X. Also, let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continuous functions. If $f(x)=g(x)$ for all $x \in A \cap B$, then there exists continuous function $h: X \rightarrow Y$ such that $h(x)=f(x)$ for all $x \in A$, and $h(x)=g(x)$ for all $x \in B$.

Theorem 2.19. ([14]) Let X be a topological space. If ζ is a collection of compact subsets of X such that every finite intersection of elements ζ be nonempty, then intersection of all the elements of ζ is nonempty.

Theorem 2.20. ([14]) Let X be a compact space and $f \in C(X)$. Then there exist $c, d \in X$ such that $f(c) \leq f(x) \leq f(d)$, for all $x \in X$.

3. Ideal theory of $C(X)$

Let X be a completely regular space. In this paper, we denote by $C(X)$ the $M V$-algebra of all continuous functions on topological space X to standard $M V$-algebra ($[0,1], \oplus, *, 0$). For every $f, g \in C(X)$ we define $(f \oplus g)(x)=f(x) \oplus g(x), f^{*}(x)=(f(x))^{*}$ and $0(x)=0$, for all $x \in X$. Obviously, $(C(X), \oplus, *, 0)$ is an $M V$-algebra. Let $f \in C(X)$ and I be an ideal of $C(X)$. Define

$$
\begin{array}{lr}
Z(f)=\{x \in X: f(x)=0\} & Z(X)=\{Z(f): f \in C(X)\} \\
Z(I)=\{Z(f): \forall f \in I\} & Z^{-1}(Z(I))=\{f \in C(X): Z(f) \in Z(I)\}
\end{array}
$$

Lemma 3.1. Let $f_{1}, f_{2} \in C(X)$. Then
(1) $Z\left(f_{1} \oplus f_{2}\right)=Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$,
(2) $\operatorname{int} Z\left(f_{1} \oplus f_{2}\right)=\operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right)$.

Proof. (1) It is clear.
(2) If $x \in \operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right)$, then there exist open subsets U_{1} and U_{2} of X such that $x \in U_{1} \subseteq \operatorname{intZ}\left(f_{1}\right)$ and $x \in U_{2} \subseteq \operatorname{int} Z\left(f_{2}\right)$. Put $U=U_{1} \cap U_{2}$. Obviously, $U \subseteq \operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right)$. Hence $U \subseteq \operatorname{int}\left(Z\left(f_{1}\right) \cap Z\left(f_{2}\right)\right)$, so $U \subseteq Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$. Thus $x \in Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$ then $f_{1}(x)=f_{2}(x)=0$, hence $\left(f_{1} \oplus f_{2}\right)(x)=0$ so $x \in Z\left(f_{1} \oplus f_{2}\right)$. On the other hand U is an open subset of X such that $x \in U$ so $x \in U \subseteq Z\left(f_{1} \oplus f_{2}\right)$. Then $x \in \operatorname{int} Z\left(f_{1} \oplus f_{2}\right)$, implies that $\operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right) \subseteq \operatorname{int} Z\left(f_{1} \oplus f_{2}\right)$. Now, if $y \in \operatorname{int} Z\left(f_{1} \oplus f_{2}\right)$, then $y \in Z\left(f_{1} \oplus f_{2}\right)$. So $\left(f_{1} \oplus f_{2}\right)(y)=0$, thus $f_{1}(y)=f_{2}(y)=0$ which implies that $Z\left(f_{1} \oplus f_{2}\right) \subseteq Z\left(f_{1}\right)$ and $Z\left(f_{1} \oplus f_{2}\right) \subseteq Z\left(f_{2}\right)$. Hence $\operatorname{int} Z\left(f_{1} \oplus f_{2}\right) \subseteq \operatorname{int} Z\left(f_{1}\right)$ and $\operatorname{int} Z\left(f_{1} \oplus f_{2}\right) \subseteq \operatorname{int} Z\left(f_{2}\right)$. So $\operatorname{int} Z\left(f_{1} \oplus f_{2}\right) \subseteq \operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right)$. Therefore $\operatorname{int} Z\left(f_{1} \oplus f_{2}\right)=\operatorname{int} Z\left(f_{1}\right) \cap \operatorname{int} Z\left(f_{2}\right)$.

Theorem 3.2. Let $\tau=\{\operatorname{int} Z(f): f \in C(X)\}$. Then τ is a topological basis for X.
Proof. By Lemma 3.1(2), it is sufficient to show that for an open set U and $x \in U$, there exists $f \in C(X)$ such that $x \in \operatorname{int} Z(f) \subseteq U$. If U is an open subset of X and $x \in U$, then there exists $g \in C(X)$ such that $g(X \backslash U)=\{0\}$ and $g(x)=1$. Put $f=|(g-(1 / 4)) \wedge 0|$. Obviously,

$$
x \in \operatorname{int} Z(f) \subseteq Z(f)=\{x \in X: g(x) \geq 1 / 4\}=g^{-1}([1 / 4,1]) \subseteq U .
$$

Therefore τ is a basis for X.
Example 3.3. Let $X=\mathbb{R}$ and (a, b) be an open interval in \mathbb{R}. Put

$$
f(x)=\left\{\begin{array}{cr}
1 & x \in(-\infty, a-1] \\
-x+a & x \in(a-1, a) \\
0 & x \in[a, b] \\
x-b & x \in(b, b+1) \\
1 & x \in[b, \infty)
\end{array}\right.
$$

Obviously, $(a, b)=\operatorname{int} Z(f)$. Then $\tau=\{\operatorname{int} Z(f): f \in C(\mathbb{R})\}$ is a basis for standard topology on \mathbb{R}.
Lemma 3.4. Let I be an ideal of $C(X)$. Then $Z(I)$ is closed under finite intersections and supersets.
Proof. Let $Z_{1}, Z_{2} \in Z(I)$. Then there exist $f_{1}, f_{2} \in I$ such that $Z_{1}=Z\left(f_{1}\right), Z_{2}=Z\left(f_{2}\right)$. Hence $f_{1} \oplus f_{2} \in I$, so $Z\left(f_{1} \oplus f_{2}\right) \in Z(I)$. By Lemma 3.1(1), $Z\left(f_{1}\right) \cap Z\left(f_{2}\right) \in Z(I)$. Let $Z_{1} \in Z(I), Z^{\prime} \in Z(X)$ and $Z_{1} \subseteq Z^{\prime}$. Then there exist $f_{1} \in I$ and $f \in C(X)$ such that $Z_{1}=Z\left(f_{1}\right)$ and $Z^{\prime}=Z(f)$. Hence $f_{1} \wedge f \in I$, so $Z\left(f_{1} \wedge f\right) \in Z(I)$. Obviously, $Z(f)=Z\left(f_{1} \wedge f\right)$ thus $Z^{\prime} \in Z(I)$.

Proposition 3.5. If I is an ideal of $C(X)$, then $Z^{-1}(Z(I))$ is an ideal of $C(X)$. Also $I \subseteq Z^{-1}(Z(I))$.
Proof. Obviously, $Z^{-1}(Z(I))$ is a nonempty subset of $C(X)$. Let $f, g \in Z^{-1}(Z(I))$. Then $Z(f), Z(g) \in Z(I)$. By Lemma 3.4, we get that $Z(f) \cap Z(g) \in Z(I)$ thus $Z(f \oplus g) \in Z(I)$, then $f \oplus g \in Z^{-1}(Z(I))$. Let $f \in Z^{-1}(Z(I)), g \in C(X)$ and $g \leq f$. Then $Z(f) \in Z(I)$ and $Z(f) \subseteq Z(g)$. It follows from Lemma 3.4, that $Z(g) \in Z(I)$ thus $g \in Z^{-1}(Z(I))$. Obviously, $I \subseteq Z^{-1}(Z(I))$.

Lemma 3.6. Let $f, g \in C(X)$. Then the following statements are equivalent:
(1) $P_{g} \subseteq P_{f}$,
(2) $P(f) \subseteq P(g)$,
(3) $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$,
(4) $A n n(f) \subseteq A n n(g)$.

Proof. $(1 \Rightarrow 2)$ Let $P \in P(f)$. Then $P_{f} \subseteq P$, hence $P_{g} \subseteq P$. So $g \in P$, thus $P \in P(g)$. Then $P(f) \subseteq P(g)$.
$(2 \Rightarrow 1)$ It is clear.
$(3 \Rightarrow 4)$ Let $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$ and $h \in \operatorname{Ann}(f)$. Then $(h \wedge f)(x)=0$, for all $x \in X$ which implies that $h(x)=0$ or $f(x)=0$, so $X \backslash Z(h) \subseteq Z(f)$. Since $Z(h)$ is closed subset of X we get $\operatorname{int}(X \backslash Z(h))=Z(h)$. Hence

$$
X \backslash Z(h) \subseteq \operatorname{int} Z(f) \subseteq \operatorname{int} Z(g) \subseteq Z(g)
$$

Then $(g \wedge h)(x)=0$, for all $x \in X$. Therefore $h \in \operatorname{Ann}(g)$.
$(4 \Rightarrow 3)$ Let $A n n(f) \subseteq \operatorname{Ann}(g)$. To prove that $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$, it suffices to show that $\operatorname{int} Z(f) \subseteq Z(g)$. Suppose $x \in \operatorname{int} Z(f)$ and $x \notin Z(g)$. Since $x \notin X \backslash \operatorname{int} Z(f)$, then there exists $0 \neq h \in C(X)$ such that $h(X \backslash \operatorname{int} Z(f))=$ $\{0\}$ and $h(x)=1$. Clearly, $(h \wedge f)(x)=0$ and $(h \wedge g)(x) \neq 0$, which is impossible.
$(4 \Leftrightarrow 1)$ By Proposition $2.13(2,3)$, we get that $P_{g} \subseteq P_{f}$ if and only if $\operatorname{Ann}(\operatorname{Ann}(g)) \subseteq \operatorname{Ann}(\operatorname{Ann}(f))$ if and only if $\operatorname{Ann}(A n n(A n n(f))) \subseteq A n n(A n n(A n n(g)))$ if and only if $A n n(f) \subseteq A n n(g)$.

Corollary 3.7. (1) Let $f, g \in C(X)$. Then int $Z(f)=\operatorname{int} Z(g)$ if and only if Ann $(f)=\operatorname{Ann}(g)$.
(2) Let $f \in C(X)$. Then $P_{f}=\{g \in C(X) \mid \operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)\}$.

Proposition 3.8. Let I be an ideal of $C(X)$. Then the following statements are equivalent:
(1) I is a Z°-ideal,
(2) int $Z(f) \subseteq \operatorname{int} Z(g)$ and $f \in I$ imply that $g \in I$.

Proof. $(1 \Rightarrow 2)$ Let $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$ and $f \in I$. Since I is a $Z^{\circ}-$ ideal, hence $P_{f} \subseteq I$. It follows from Lemma 3.6, that $P_{g} \subseteq P_{f}$, so $g \in I$.
$(2 \Rightarrow 1)$ For every $f \in I$, We must show that $P_{f} \subseteq I$. Let $g \in P_{f}$. Obviously, $P_{g} \subseteq P_{f}$ by Lemma 3.6, we get that $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$, then $g \in I$.

Corollary 3.9. Let J be a Z°-ideal of $C(X)$ and $f \in J$. Then $\operatorname{int} Z(f) \neq \emptyset$.
Proof. Let $\operatorname{int} Z(f)=\emptyset$. Then $\operatorname{int} Z(f)=\operatorname{int} Z(i)$ such that $i(x)=1$, for all $x \in X$. Hence $i \in J$, so $J=C(X)$ that is impossible.

The following is an example that the join of two Z°-ideal in $C(X)$ is a proper ideal that is not a Z°-ideal. In addition, It has been shown that every ideal contains a Z°-ideal in $C(X)$ is not necessary a Z°-ideal.

Example 3.10. (1) Let $X=\mathbb{R}, I=\{f \in C(X):[0, \infty) \subseteq Z(f)\}$ and $J=\{f \in C(X):(-\infty, 0] \subseteq Z(f)\}$. Obviously, I and J are Z°-ideals of $C(X)$. Define $k_{1}(x)=1 \wedge|x|$, for all $x \in(-\infty, 0)$ and $k_{1}(x)=0$, for all $x \in[0, \infty), k_{2}(x)=1 \wedge x$, for all $x \in(0, \infty)$ and $k_{2}(x)=0$, for all $x \in(-\infty, 0], k(x)=|x|$, for all $x \in[-1,1]$ and $k(x)=1$, for all $x \in \mathbb{R} \backslash[-1,1]$. Obviously, $k_{1} \in I, k_{2} \in J$ and $k=k_{1} \oplus k_{2}$. Since $k \in I \vee J$ and $\operatorname{int} Z(k)=\emptyset$, then $I \vee J$ is not a $Z^{\circ}-$ ideal.
(2) Let $I=\{f \in C(X):(-\infty, 1] \subseteq Z(f)\}$ and $J=\left\{f \in C(X):(-\infty, 0] \cup\left\{\frac{1}{2}\right\} \subseteq Z(f)\right\}$.

It is claimed that I is a Z°-ideal. Let $f, g \in C(X)$ such that $(-\infty, 1] \subseteq Z(f)$ and $(-\infty, 1)=\operatorname{int} Z(f)=\operatorname{int} Z(g)$. On the other hand $\overline{(-\infty, 1)}=(-\infty, 1] \subseteq Z(g)$, hence $g \in I$. We deduce that I is a $Z^{\circ}-$ ideal. Now, J is not a Z°-ideal, since for each $f, g \in C(X)$ such that $Z(f)=(-\infty, 0] \cup\left\{\frac{1}{2}\right\}$ and $Z(g)=(-\infty, 0] \cup\left\{\frac{1}{3}\right\}$, we have $\operatorname{int} Z(f)=\operatorname{int} Z(g), f \in I$ and $g \notin I$. Obviously, I is a subset of J. Hence every ideal contains a $Z^{\circ}-$ ideal in $C(X)$ is not necessary a Z°-ideal.

Now, we are going to investigate topological spaces X, such that the join of two Z°-ideals in $C(X)$ is either a Z°-ideal or $C(X)$.

Theorem 3.11. If I and J are Z°-ideals of $C(X)$ and X is a basically disconnected space, then $I \vee J$ is either a Z°-ideal or $C(X)$.

Proof. Let I and J be two Z°-ideal in $C(X)$ and suppose that $I \vee J \neq C(X)$. Let $f \in I \vee J$, and int $Z(f) \subseteq \operatorname{int} Z(g)$, for some $g \in C(X)$. It is claimed that $g \in I \vee J$. Since $f \in I \vee J$, then $f \leq h \oplus k$ where $h \in I$ and $k \in J$. We consider two cases:

Case 1. if $h(x)=k(x)=0$, for all $x \in X$, then $f=0$. So $Z(f)=X$ hence $\operatorname{int} Z(f)=X$, thus $\operatorname{int} Z(g)=X$, then $Z(g)=X$. So $g(x)=0$, for all $x \in X$. We obtain $g \in I \vee J$.

Case 2. if $h \neq 0$ and $k \neq 0$, we show that $g \in I \vee J$. Now, since X is a basically disconnected space, $\operatorname{int} Z(k)$ and $\operatorname{int} Z(h)$ are closed subsets of X. By Corollary 3.9, we have $\operatorname{int} Z(h) \neq \emptyset$ and $\operatorname{int} Z(k) \neq \emptyset$. Put $A=X \backslash \operatorname{int} Z(k)$, then A and $\operatorname{intZ}(k)$ are disjoint clopen subsets of X. Thus there exists $k^{\prime} \in C(X)$ such that
$k^{\prime}(A)=\{1\}$ and $k^{\prime}(\operatorname{int} Z(k))=\{0\}$. So $Z\left(k^{\prime}\right)=\operatorname{int} Z(k)$. Then $\operatorname{int} Z\left(k^{\prime}\right)=\operatorname{int} Z(k)$ thus $k^{\prime} \in J$. Similarly, there exists $h^{\prime} \in C(X)$ such that $Z\left(h^{\prime}\right)=\operatorname{int} Z(h)$ and $h^{\prime} \in I$. Obviously, $Z(h) \cap Z(k) \subseteq Z(f)$ then int $Z(h) \cap \operatorname{int} Z(k) \subseteq \operatorname{int} Z(f)$, so $Z\left(h^{\prime}\right) \cap Z\left(k^{\prime}\right) \subseteq \operatorname{int} Z(f)$. Thus $Z\left(h^{\prime} \oplus k^{\prime}\right) \subseteq \operatorname{int} Z(f)$, hence $Z\left(h^{\prime} \oplus k^{\prime}\right) \subseteq \operatorname{int} Z(g)$, then $Z\left(h^{\prime} \oplus k^{\prime}\right) \subseteq Z(g)$. We consider two cases:

Case 1. if $x \in Z(g)$, then $g(x)=0$ So $g(x) \leq h^{\prime}(x) \oplus k^{\prime}(x)$.
Case 2. if $x \notin Z(g)$, then $x \notin Z\left(h^{\prime} \oplus k^{\prime}\right)$. So $x \notin Z\left(h^{\prime}\right)$ or $x \notin Z\left(k^{\prime}\right)$, hence $h^{\prime}(x)=1$ or $k^{\prime}(x)=1$, thus $\left(h^{\prime} \oplus k^{\prime}\right)(x)=1$. So $g(x) \leq\left(h^{\prime} \oplus k^{\prime}\right)(x)$.

Therefore $g(x) \leq\left(h^{\prime} \oplus k^{\prime}\right)(x)$, for all $x \in X$. Hence $g \in I \vee J$.
Theorem 3.12. Let $x_{0} \in X$. Then $I=\left\{f \in C(X): f\left(x_{0}\right)=0\right\}$ is a maximal ideal of $C(X)$.
Proof. Obviously, $I \in \operatorname{Id}(C(X))$. Let $Q \in \operatorname{Id}(C(X))$ be such that $I \subsetneq Q \subseteq C(X)$. Then there exists $g_{1} \in Q$ such that $g_{1} \notin I$. So $g_{1}\left(x_{0}\right) \neq 0$. Put $U=\left\{x \in X:(1 / 2) g_{1}\left(x_{0}\right)<g_{1}(x)\right\}=\left\{x \in X: x \in g_{1}^{-1}\left((1 / 2) g_{1}\left(x_{0}\right), 1\right]\right\}$, hence U is an open subset of X and $C=X \backslash U$ is a closed subset of X. Thus there exists $f \in C(X)$ such that $f(C)=1$ and $f\left(x_{0}\right)=0$, imply that $f \in I$. Put $g=f \oplus g_{1}$. Obviously, $g \in Q$. Now, we consider two cases:

Case 1: if $x \in C$, then $f(x)=1$ hence $g(x)=1$.
Case 2: if $x \in U$, then $(1 / 2) g_{1}\left(x_{0}\right)<g_{1}(x)$.
Therefore $0<(1 / 2) g_{1}\left(x_{0}\right) \leq g(x)$, for all $x \in X$. So, by Archimedean property there exists $m \in \mathbb{N}$ such that $m g(x)=1$, for all $x \in X$. Hence $Q=C(X)$. Therefore $I \in \operatorname{Max}(C(X))$.

Now, converse of Theorem 3.12, is proved with an extra condition.
Theorem 3.13. If X is a compact space, then every maximal ideal M of $C(X)$ has the form M^{x} for a unique $x \in X$ where

$$
M^{x}=\{f \in C(X): f(x)=0\}
$$

Proof. First we show that $\bigcap_{f \in M} Z(f) \neq \emptyset$. By Theorem 2.19, it suffices to show that $Z\left(f_{1}\right) \cap Z\left(f_{2}\right) \cap \ldots \cap Z\left(f_{n}\right) \neq \emptyset$, where $f_{i} \in M$, for all $1 \leq i \leq n$. Let $Z\left(f_{1}\right) \cap Z\left(f_{2}\right) \cap \ldots \cap Z\left(f_{n}\right)=\emptyset$. Hence $\left(\oplus_{i=1}^{n} f_{i}\right)(x) \neq 0$, for all $x \in X$. So by Theorem 2.20 , there exist $x^{\prime} \in X$ and $p \in(0,1]$ such that $\min \left(\oplus_{i=1}^{n} f_{i}\right)\left(x^{\prime}\right)=p$. Then there exists $t \in \mathbb{N}$ such that $t\left(\oplus_{i=1}^{n} f_{i}\right)(x)=1$, for all $x \in X$ this implies that $M=C(X)$, which is a contradiction. Hence there exists $x \in \bigcap_{f \in M} Z(f)$ such that $M=\{f \in C(X): f(x)=0\}$. If there exists $y \in \bigcap_{f \in M} Z(f)$ such that $x \neq y$, then $M \subsetneq\{f \in C(X): f(x)=f(y)=0\}$, which is a contradiction.

Example 3.14. If $X=[0,1]$, then $I=\{f \in C(X): f(1 / 2)=0\}$ and $J=\{f \in C(X): f(1 / 3)=0\}$ are maximal ideals of $C(X)$. Hence $C(X)$ is not a local $M V$-algebra.

Lemma 3.15. Let $f, g \in C(X)$. Then the following statements are equivalent:
(1) $M_{g} \subseteq M_{f}$,
(2) $M(f) \subseteq M(g)$.

Proof. $(1 \Rightarrow 2)$ Let $M \in M(f)$. Then $M \in \operatorname{Max}(C(X))$ and $f \in M$. So $M_{f} \subseteq M$ thus $M_{g} \subseteq M$. We obtain $g \in M$, hence $M \in M(g)$.
$(2 \Rightarrow 1)$ Let $t \in M_{g}$ but $t \notin M_{f}$. Then there exists $M \in \operatorname{Max}(C(X))$ such that $f \in M$ and $t \notin M$. Since $M(f) \subseteq M(g)$, thus $g \in M$. Hence $t \notin M_{g}$, which is impossible.

Lemma 3.16. If $f, g \in C(X)$ and $M(f) \subseteq M(g)$, then $Z(f) \subseteq Z(g)$.
Proof. Let $x \in Z(f)$. Then $f \in M$ such that $M \in \operatorname{Max}(C(X))$. Hence $M \in M(f)$, so $M \in M(g)$. Thus $g \in M$ implies that $x \in Z(g)$. We deduce that $Z(f) \subseteq Z(g)$.

The following example shows that the converse Lemma 3.16, is not necessary correct.
Example 3.17. Let $f, g \in C((0,1))$, such that $f(x)=\sin \left(\frac{\pi x}{2}\right)$ and $g(x)=\left|\frac{1}{2}-\sin \left(\frac{\pi x}{2}\right)\right|$, for all $x \in(0,1)$. Then $Z(f)=\emptyset$ and $Z(g)=\left\{\frac{1}{2}\right\}$, we deduce that $Z(f) \subseteq Z(g)$. It is claimed that $M(f) \nsubseteq M(g)$. If $M(f) \subseteq M(g)$, then there exists $M \in M(g)$ such that $f \in M$. On the other hand,

$$
\frac{1}{2}=\left|\sin \left(\frac{\pi x}{2}\right)+\frac{1}{2}-\sin \left(\frac{\pi x}{2}\right)\right| \leqslant\left|\sin \left(\frac{\pi x}{2}\right)\right|+\left|\frac{1}{2}-\sin \left(\frac{\pi x}{2}\right)\right|=\sin \left(\frac{\pi x}{2}\right)+\left|\frac{1}{2}-\sin \left(\frac{\pi x}{2}\right)\right|, \forall x \in(0,1)
$$

Put $K:=f \oplus g$. Hence $k \in M$, such that $k(x) \geq \frac{1}{2}$, for all $x \in(0,1)$. We obtain $i \in M$, such that $i(x)=1$, for all $x \in(0,1)$ that is impossible. Therefore $M(f) \nsubseteq M(g)$.

Proposition 3.18. Let I be an ideal of $C(X)$. Then the following statements are equivalent:
(1) I is a Z-ideal,
(2) $Z(f) \subseteq Z(g)$ and $f \in I$ imply that $g \in I$.

Proof. $(1 \Rightarrow 2)$ Let $Z(f) \subseteq Z(g)$ and $f \in I$. Then $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$. It follows from Lemma 3.6, that $A n n(f) \subseteq$ $\operatorname{Ann}(g)$. Since $f \in I$ by Theorem 2.14, we have $f \in P_{I}$, i.e, $f \in P$, for each $P \in \operatorname{Min}(C(X))$ such that $I \subseteq P$. It follows from Theorem 2.9 , that $\operatorname{Ann}(f) \nsubseteq P$, thus $\operatorname{Ann}(g) \nsubseteq P$. By Theorem 2.9, so $g \in P$. Hence $g \in P_{I}$. So $g \in I$.
$(2 \Rightarrow 1)$ Let $f \in I$. We must show that $M_{f} \subseteq I$. Let $g \in M_{f}$, obviously $M_{g} \subseteq M_{f}$. By Lemma 3.15 and Lemma 3.16, we get that $Z(f) \subseteq Z(g)$, then $g \in I$.

Corollary 3.19. (1) If I is a Z°-ideal of $C(X)$, then I is a Z-ideal.
(2) Let J be a Z-ideal of $C(X)$ and $f \in J$. Then $Z(f) \neq \emptyset$.

Now, we give examples that are shown every Z-ideal is not necessary a Z°-ideal and there exists an ideal of $C(X)$ such that is not a Z-ideal nor Z°-ideal.

Example 3.20. (1) Let $X=\mathbb{R}$. Then $I=\{f \in C(X):[0,1] \cup\{2\} \subseteq Z(f)\}$ is a Z-ideal, but I is not a Z°-ideal, since for each $f, g \in C(X)$ such that $Z(f)=[0,1] \cup\{2\}$ and $Z(g)=[0,1] \cup\{3\}$, we have int $Z(f)=\operatorname{int} Z(g), f \in I$ and $g \notin I$.
(2) Let $X=[0,1], I=(f]$ such that $f(x)=x$, for all $x \in X$ and suppose that $g(x)=\sqrt{x}$, for all $x \in X$. Obviously, $Z(f)=Z(g)=0, \operatorname{int} Z(f)=\operatorname{int} Z(g)=\emptyset$. It is claimed that $g \notin I$. If $g \in I$, then there exists $n \in \mathbb{N}$ such that $\sqrt{x} \leq n x$, for each $x \in[0,1]$. Hence $1 \leq n \sqrt{x}$, for each $x \in[0,1]$ which is impossible. Therefore I is not a Z-ideal nor Z°-ideal.

Theorem 3.21. If I and J are Z-ideals of $C(X)$, then $I \vee J$ is a Z-ideal of $C(X)$.
Proof. Let $Z(g) \subseteq Z(f)$ and $g \in I \vee J$. Then $g \leq g_{1} \oplus g_{2}$ such that $g_{1} \in I$ and $g_{2} \in J$. Obviously, $Z\left(g_{1}\right) \cap Z\left(g_{2}\right) \subseteq Z(g)$, so $Z\left(g_{1}\right) \cap Z\left(g_{2}\right) \subseteq Z(f)$. Define

$$
\begin{aligned}
& h(x)=\left\{\begin{array}{cl}
0 & x \in Z\left(g_{1}\right) \cap Z\left(g_{2}\right) \\
f(x)\left(\frac{g_{1}(x)}{g_{1}(x)+g_{2}(x)}\right) & x \notin Z\left(g_{1}\right) \cap Z\left(g_{2}\right)
\end{array}\right. \\
& \text { and } \\
& k(x)=\left\{\begin{array}{cl}
0 & x \in Z\left(g_{1}\right) \cap Z\left(g_{2}\right) \\
f(x)\left(\frac{g_{2}(x)}{g_{1}(x)+g_{2}(x)}\right) & x \notin Z\left(g_{1}\right) \cap Z\left(g_{2}\right)
\end{array}\right.
\end{aligned}
$$

Now, we show that h and k are continuous functions. Let $\varepsilon>0$ and $x_{0} \in Z\left(g_{1}\right) \cap Z\left(g_{2}\right)$. Since $f \in C(X)$ then there exists open subset V of X such that $f(V) \subseteq(-\varepsilon, \varepsilon)$. On the other hand $h(x) \leq f(x)<\varepsilon$, for all $x \in V$. So $h(V) \subseteq(-\varepsilon, \varepsilon)$, thus h is continuous at x_{0}. Therefore $h \in C(X)$. Similarly, it is proved that $k \in C(X)$. Obviously, $f=h \oplus k, Z\left(g_{1}\right) \subseteq Z(h)$ and $Z\left(g_{2}\right) \subseteq Z(k)$. So $h \in I$ and $k \in J$, we deduce that $f \in I \vee J$.

It was shown in Example 3.20(1), that every Z-ideal is not a Z°-ideal. Now, conditions are provided that Z-ideals connection by Z°-ideals.

Lemma 3.22. Let $e \in A$. Then $e \in B(A)$ if and only if $\operatorname{Ann}(e)=\left(e^{*}\right]$.
Proof. If $e \in B(A)$, then $e \wedge e^{*}=0$. We obtain $e^{*} \in \operatorname{Ann}(e)$, hence ($\left.e^{*}\right] \subseteq \operatorname{Ann}(e)$. Let $x \in \operatorname{Ann}(e)$. Then $x \wedge e=0$, thus $x \odot a=0$. So $x \leq e^{*}$, then $x \in\left(e^{*}\right]$. Hence $\operatorname{Ann}(e) \subseteq\left(e^{*}\right]$. Therefore $\operatorname{Ann}(e)=\left(e^{*}\right]$. Converse is clear.

Corollary 3.23. Let $e \in B(A)$. Then $P_{e}=(e]$.
Proof. Let $e \in B(A)$. Then $\operatorname{Ann}(e)=\left(e^{*}\right]$, so $\operatorname{Ann}(\operatorname{Ann}(e))=\operatorname{Ann}\left(\left(e^{*}\right]\right)$. By Lemma 3.22 and Proposition 2.13 (2), we get that $P_{e}=(e]$.

Lemma 3.24. (1) If $f \in C(X)$, then $\operatorname{Ann}(f)=\{0\}$ if and only if int $Z(f)=\emptyset$.
(2) If $e \in B(C(X))$, then $Z(e)$ is an open subset of X.
(3) Let $f \in C(X)$ be such that $\operatorname{in} f(f(X \backslash Z(f)) \neq 0$ and $Z(f)$ be an open subset of X. Then there exists $e \in B(C(X))$ such that $(e]=(f]$.

Proof. (1) Let $i \in C(X)$ be such that $i(x)=1$, for all $x \in X$. Obviously, $\operatorname{Ann}(i)=\{0\}, Z(i)=\emptyset$ and int $Z(i)=\emptyset$. Now, if $\operatorname{Ann}(f)=\{0\}$, then $\operatorname{Ann}(f)=\operatorname{Ann}(i)$. It follows from Corollary 3.7(1), that intZ $(f)=\operatorname{intZ}(i)$. Hence $\operatorname{int} Z(f)=\emptyset$.

Conversely, if $\operatorname{intZ}(f)=\emptyset$, then $\operatorname{int} Z(f)=\operatorname{int} Z(i)$. It follows from Corollary 3.7(1), that $\operatorname{Ann}(f)=\operatorname{Ann}(i)$ implies that $\operatorname{Ann}(f)=\{0\}$.
(2) By hypothesis $e \in B(C(X))$, so $(e \oplus e)(x)=e(x)$, for all $x \in X$. We deduce that $e(x) \oplus e(x)=\min \{2 e(x), 1\}=$ $e(x)$, for all $x \in X$. Hence $e(x)=0$ or $e(x)=1$, for all $x \in X$. Put $K=\{x: e(x)=1\}$. Obviously, $Z(e) \cap K=\emptyset$ and $Z(e) \cup K=X$, then K and $Z(e)$ are clopen subsets of X. Therefore int $Z(e)=Z(e)$.
(3) Define $e: X \rightarrow[0,1]$ by $e(x)=0$, for all $x \in Z(f)$ and $e(x)=1$, for all $x \notin Z(f)$. By Lemma 2.18, we get that $e \in C(X)$. Obviously, $e \in B(C(X))$ and $Z(f)=\operatorname{int} Z(f)=Z(e)$. It is claimed that $(f]=(e]$. we consider two cases:

Case 1. if $x \in Z(f)$, then $e(x)=f(x)=0$. So $e(x) \leq f(x)$.
Case 2. if $x \notin Z(f)$, then $f(x) \neq 0$. By hypothesis $\inf f(x) \neq 0$, we imply that there exists $n \in \mathbb{N}$ such that $n f(x)=1$. So $e(x) \leq n f(x)$.

Hence $e \in(f]$, thus $(e] \subseteq(f]$. Now, it is clear that $(f] \subseteq(e]$. Then $(e]=(f]$.
Proposition 3.25. Let K be finitely generated Z-ideal in $C(X)$. Then K is a basic Z°-ideal and there exists e $\in B(C(X))$ such that $K=(e]$.

Proof. Let $K=\left(f_{1}, f_{2}, \ldots, f_{n}\right]$ and $f:=f_{1} \oplus f_{2} \oplus \ldots \oplus f_{n}$. Obviously, $f \in K$ hence $(f] \subseteq K$. On the other hand, $f_{i} \leq f$, for all $1 \leq i \leq n$, hence $f_{i} \in(f]$, for all $1 \leq i \leq n$. Thus $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subseteq(f]$, so $\left(f_{1}, f_{2}, \ldots, f_{n}\right] \subseteq(f]$, implies that $K \subseteq(f]$. Hence $K=(f]$. Obviously, $Z(f)=Z(\sqrt{f})$ and $f \in K$, by hypothesis and Proposition 3.18, hence $\sqrt{f} \in K$. So there exists $n \in \mathbb{N}$ such that $\sqrt{f(x)} \leq n f(x)$, for all $x \in X$. Now, $f(x) \neq 0$, for all $x \notin Z(f)$, hence $\sqrt{f(x)} \leq n f(x)$. So $1 \leq n \sqrt{f(x)}$, thus $(1 / n) \leq \sqrt{f(x)}$ implies that $\left(1 / n^{2}\right) \leq f(x)$. So $\beta=\left\{x \in X:\left(1 / n^{2}\right) \leq f(x)\right\}=\left\{x \in X: f(x) \in\left[1 / n^{2}, 1\right]\right\}$ is a closed subset of X and $X=Z(f) \cup \beta$, imply that $Z(f)$ is a clopen subset of X. It follows from Lemma 3.24 (3), that there exists $e \in B(C(X)$ such that $(e]=(f]$. By Corollary 3.23, we get that $K=(e]=P_{e}$.

Now, we give an example for previous proposition.
Example 3.26. Let $X=(0,1) \cup(1,2)$ and $I=\left(f_{1}, f_{2}\right]$ such that

$$
f_{1}(x)=\left\{\begin{array}{cl}
0 & x \in(0,1) \\
1 / 2 x & x \in(1,2)
\end{array}\right.
$$

$$
f_{2}(x)=\left\{\begin{array}{cc}
0 & x \in(0,1) \\
x / 4 & x \in(1,2)
\end{array}\right.
$$

We define $f=f_{1} \oplus f_{2}$ and $e \in C(X)$ such that $e(x)=0$, for all $x \in(0,1)$ and $e(x)=1$, for all $x \in(1,2)$. Obviously, $I=(f]$ is a Z-ideal and $I=(e]=P_{e}$.

Theorem 3.27. (1) Every basic Z°-ideal in $C(X)$ is principal if and only if X is basically disconnected.
(2) Any arbitrary intersections of basic Z°-ideals in $C(X)$ is principal if and only if X is extremally disconnected.

Proof. (1) Suppose that every basic Z°-ideal in $C(X)$ is principal. To prove that $\overline{X-Z(f)}$ is open subset of X, it suffices to show that $\operatorname{int} Z(f)$ is closed, for all $f \in C(X)$. We consider two cases:

Case 1. if f is not a zero divisor, then $\operatorname{Ann}(f)=\{0\}$. It follows from Lemma 3.24(1), that $\operatorname{int} Z(f)=\emptyset$.
Case 2. if f is a zero divisor, then $\operatorname{Ann}(f) \neq\{0\}$. By hypothesis, there exists $g \in C(X)$ such that $P_{f}=(g]$. By Corollary 3.19(1) and Proposition 3.25, there exists $e \in B(C(X))$ such that $P_{f}=(e]$. Now, it is claimed that $\operatorname{int} Z(f)=\operatorname{int} Z(e)$. Obviously, $f \in P_{f}=(e]$, so $f \in(e]$. Hence there exists $n \in \mathbb{N}$ such that $f(x) \leq n e(x)$, for all $x \in X$. Thus $Z(e) \subseteq Z(f)$ implies that int $Z(e) \subseteq \operatorname{int} Z(f)$. Let $e \in P_{f}$. Obviously, by Corollary 3.7(2), we have $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(e)$. Now, by Lemma 3.24(2), we get that int $Z(f)=Z(e)$.

Conversely, let X be a basically disconnected space and $f \in C(X)$ with $\operatorname{Ann}(f) \neq\{0\}$. By Lemma 3.24 (1), we have $F=\operatorname{int} Z(f) \neq \emptyset$ is a closed subset of X. Define $e_{1}: F \rightarrow[0,1]$ where $e_{1}(F)=0$ and $e_{2}: X \backslash F \rightarrow[0,1]$ where $e_{2}(X \backslash F)=1$. It follows from Lemma 2.18, that there exists $e \in C(X)$ such that

$$
e(x)=\left\{\begin{array}{lr}
e_{1}(x) & x \in F \\
e_{2}(x) & x \in X \backslash F
\end{array}\right.
$$

Obviously, $e \in B(C(X))$ and it is claimed that $P_{f}=(e]$. Let $g \in P_{f}$. We consider two cases:
Case 1. if $x \in X \backslash F$, then $e(x)=1$. Hence $g(x) \leq e(x)$, for all $x \in X \backslash F$.
Case 2. if $x \in F=\operatorname{int} Z(f)$, hence by hypothesis $g \in P_{f}$ and Lemma 3.24 (2), we get that $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$. Then $x \in \operatorname{int} Z(g)$ so $x \in Z(g)$, hence $g(x)=0$. We obtain $g(x) \leq e(x)$, for all $x \in F$.

Then $g \in(e]$ hence $P_{f} \subseteq(e]$. Let $k \in(e]$. Then there exists $n \in \mathbb{N}$ such that $k(x) \leq(n e)(x)$, for all $x \in X$. So $Z(e) \subseteq Z(k)$, hence $\operatorname{int} Z(f) \subseteq Z(k)$ then $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(k)$. It follows from Corollary 3.7(2), that $k \in P_{f}$ thus $(e] \subseteq P_{f}$. Therefore $(e]=P_{f}$.
(2) Suppose that every intersection of basic Z°-ideals is principal and G is an open subset of X. By Theorem 3.2, there exists $S \subseteq C(X)$ such that $G=\bigcup_{f \in S} \operatorname{int} Z(f)$ and int $Z(f) \neq \emptyset$. By Lemma 3.24, we have $\operatorname{Ann}(f) \neq\{0\}$ so f is a zero divisor of $C(X)$. By hypothesis, there exists $g \in C(X)$ such that $\bigcap_{f \in S} P_{f}=(g]$. Then $(g]$ is a Z°-ideal so by Corollary $3.19,(g]$ is a Z-ideal. It follows from Proposition 3.25 , that there exists $e \in B(C(X))$ such that $(g]=(e]$. Now, by Lemma $3.24(2)$, this shows that $Z(g)=Z(e)$ is an open subset of X. It is claimed that $\bar{G}=Z(g)$. Let $x \in G=\bigcup_{f \in S} \operatorname{int} Z(f)$. Then there exists $f \in S$ such that $x \in \operatorname{int} Z(f)$. Because $(g]=\bigcap_{f \in S} P_{f}$, for every $f \in S$ thus $g \in P_{f}$ by Corollary 3.7(2), we get that int $Z(f) \subseteq \operatorname{int} Z(g)$. Hence int $Z(f) \subseteq Z(g)$, so $G \subseteq Z(g)$ implies that $\bar{G} \subseteq Z(g)$. Let $x \in Z(g)$ and $x \notin \bar{G}$. Then there exists $h \in C(X)$ such that $h(x)=1$ and $h(\bar{G})=\{0\}$. Let $\beta \in \operatorname{int} Z(f)$, for every $f \in S$. Then $\beta \in G$, hence $\beta \in \bar{G}$ so $h(\beta)=0$. We deduce that $\beta \in Z(h)$, so $\operatorname{int} Z(f) \subseteq Z(h)$. Hence int $Z(f) \subseteq \operatorname{int} Z(h)$ thus $h \in P_{f}$ implies that $h \in \bigcap_{f \in S} P_{f}=(g]$.Therefore there exists $n \in \mathbb{N}$ such that $h(\alpha) \leq(n g)(\alpha)$, for all $\alpha \in X$. On the other hand, $h(x)=1$ and $g(x)=0$, which is a contradiction. Hence $Z(g) \subseteq \bar{G}$, therefore $Z(g)=\bar{G}$.

Conversely, let X be an extremally disconnected space and $I=\bigcap_{f \in S} P_{f}$ be such that $S \subseteq C(X)$. Obviously, $G=\overline{\bigcup_{f \in S} \operatorname{int} Z(f)}$ is an open and closed subset of X. Define $e_{1}: G \rightarrow[0,1]$ where $e_{1}(G)=0$ and $e_{2}: X \backslash G \rightarrow$ $[0,1]$ where $e_{2}(X \backslash G)=1$. It follows from Lemma 2.18, that there exists $e \in C(X)$ such that

$$
e(x)=\left\{\begin{array}{lr}
e_{1}(x) & x \in G \\
e_{2}(x) & x \in X \backslash G
\end{array}\right.
$$

Obviously, $e \in B(C(X)$) and by Lemma 3.24(2), we get that $Z(e)$ is an open subset of X hence $\operatorname{int} Z(f) \subseteq$ $\operatorname{int} Z(e)$, for all $f \in S$. It follows from Corollary 3.7(2), that $e \in P_{f}$, for all $f \in S$. So $e \in \bigcap_{f \in S} P_{f}=I$, then (e] $\subseteq I$. Let $g \in I=\bigcap_{f \in S} P_{f}$. Then $g \in P_{f}$, for all $f \in S$. It follows from Corollary 3.7(2), that $\operatorname{intZ}(f) \subseteq \operatorname{int} Z(g)$, for all $f \in S$ thus $\operatorname{int} Z(f) \subseteq Z(g)$, for all $f \in S$ therefore $G=\overline{\bigcup_{f \in S} \operatorname{int} Z(f)} \subseteq Z(g)$. Since $X=G \cup(X \backslash G)$ we consider two cases:

Case 1. if $x \in G$, then $x \in Z(g)$. So $g(x) \leq e(x)$, for all $x \in G$.
Case 2. if $x \in X \backslash G$, then $e(x)=1$. Hence $g(x) \leq e(x)$, for all $x \in X \backslash G$.
Thus $g \in(e]$, we obtain $I \subseteq(e]$. Therefore $I=(e]$.
Theorem 3.28. Let every ideal of $C(X)$ containing zero divisors be a Z°-ideal. Then every $f \in C(X)$ with $\emptyset \neq Z(f) \subsetneq$ X is a zero divisor and P_{f} is a principal ideal of $C(X)$.

Proof. We consider two cases:
Case 1. if $f(X)$ is a finite subset of $[0,1]$ and $\left\{a_{0}=0, a_{1}, \ldots, a_{n}\right\} \subseteq[0,1]$ be such that $f^{-1}(0)=A_{0}=$ $Z(f), f^{-1}\left(a_{1}\right)=A_{1}, \ldots, f^{-1}\left(a_{n}\right)=A_{n}$ and $X=A_{0} \cup A_{1} \cup \ldots \cup A_{n}$. We define $g: X \rightarrow[0,1]$ such that $g(x)=1$, for all $x \in Z(f)$ and $g(x)=0$, for all $x \notin Z(f)$. Obviously, by Lemma 2.18, we have $g \in C(X)$. Hence $(f \wedge g)(x)=\min \{f(x), g(x)\}=0$, for all $x \in X$, then f is a zero divisor.

Case 2. if $f(X)$ is an infinite subset of $[0,1]$ and $a, b \in f(X)$ such that $0<a<b<1$. Define

$$
\begin{aligned}
& C=\{y \in X: a \geq f(y)\}=\{y \in X: f(y) \in[0, a]\}=f^{-1}([0, a]) \\
& B=\{y \in X: a \leq f(y)\}=\{y \in X: f(y) \in[a, 1]\}=f^{-1}([a, 1]) .
\end{aligned}
$$

Obviously, since $0<a<b<1$, neither B contains C nor C contains B. It is clear that B and C are closed subset of X such that $X=B \cup C$ and $B \cap C=\{x \in X: f(x)=a\}$. Define $\phi_{1}: C \rightarrow[0,1]$ where $\phi_{1}(x)=f(x)$, for all $x \in C$ and $\phi_{2}: B \rightarrow[0,1]$ where $\phi_{2}(B)=a$. Obviously $\phi_{1}(B \cap C)=\phi_{2}(B \cap C)$. It follows from Lemma 2.18, that

$$
\phi(x)= \begin{cases}\phi_{1}(x) & x \in C \\ \phi_{2}(x) & x \in B\end{cases}
$$

is a continuous function. Put $h(x)=|\phi(x)-f(x)|$, for all $x \in X$. It is clear that $h \neq 0$ and $Z(h)=C$. Similarly, there exists $g \in C(X)$ such that $Z(g)=B$ and $g \neq 0$. Then $(f \wedge g \wedge h)(x)=0$, for all $x \in X$ so $h \in A n n(f \wedge g)$ hence $\operatorname{Ann}(f \wedge g) \neq\{0\}$ thus $f \wedge g$ is a zero divisor of $C(X)$. Since $f \wedge g \in(f \wedge g]$, so by hypothesis, $(f \wedge g$] is a $Z^{\circ}-$ ideal and by Corollary 3.19, we get that $(f \wedge g]$ is a Z-ideal. Now, by Proposition 3.25 , there exists $e \in B(C(X))$ such that $(f \wedge g]=(e]$. It follows from Lemma 3.24(2), that $Z((f \wedge g])=Z(e)=$ int $Z(e)$. Obviously, $Z(f \wedge g)=Z(f) \cup Z(g)=Z(e)$ and $Z(f) \cap Z(g)=\emptyset$, then $Z(f)=Z(f \wedge g) \backslash Z(g)=Z(f \wedge g) \cap(Z(g))^{c}$. Hence $Z(f)$ is an open subset of X and $Z(f)=\operatorname{int} Z(f)$. By hypothesis $\operatorname{int} Z(f) \neq \emptyset$ and by Lemma 3.24 (2), we have $\operatorname{Ann}(f) \neq\{0\}$. Hence f is a zero divisor of $C(X)$.

On the other hand, f is a zero divisor, then $(f]$ is a Z°-ideal so $P_{f} \subseteq(f]$. Obviously, $(f] \subseteq P_{f}$, hence $(f]=P_{f}$.

4. Conclusion

We investigated ideals of continuous of functions $C(X)$ and concluded that if X is compact space, then every maximal ideal M of $C(X)$ has the form M^{x} for a unique $x \in X$ where $M^{x}=\{f \in C(X): f(x)=0\}$. For every element f of Z-ideal (Z°-ideal) has $Z(f) \neq \emptyset(\operatorname{int} Z(f) \neq \emptyset)$ and every Z°-ideal is a Z-ideal but converse is not true. Also join of two Z-ideals is a Z-ideal but if X is a basically disconnected, then join of two Z°-ideals is a Z°-ideal. If g is a complemented element of $C(X)$, then $Z(g)$ is an open subset of X and if g is an element of $C(X)$ such that $\inf (g(X)) \neq 0$ then $Z(g)$ is an open subset of X. Furthermore, every $f \in C(X)$ is not a zero divisor if and only if $\operatorname{int} Z(f) \neq \emptyset$. It is proved that for each complemented element e of $C(X), \operatorname{Ann}(e)=\left(e^{*}\right]$ and $Z(e)$ is an open subset of X. Also, we conclude that there exist connections between elements X and $C(X)$, for example for every $f, g \in C(X)$, if $M(f) \subseteq M(g)$, then $Z(f) \subseteq Z(g)$ and $\operatorname{int} Z(f) \subseteq \operatorname{int} Z(g)$ if and only if $\operatorname{Ann}(f) \subseteq \operatorname{Ann}(g)$.

Acknowledgements

We wish to thank the reviewers for excellent suggestions that have been incorporated into the paper.

References

[1] M. Bedrood, F. Sajadian, G. Lenzi, A. Borumand Saeid, Z°-ideals in $M V$-algebras, submitted.
[2] L. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986) 1356-1379.
[3] L.P. Belluce, Further results on infinite valued predicate logic, J. Symb. Logic 29 (1964) 69-78.
[4] L.P. Belluce, Generalized fuzzy connectives on MV-algebras, J. Math. Anal. Appl. 205 (1997) 485-499.
[5] L.P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued first order logic, J. Symb. Logic 28 (1963) 43-50.
[6] L.P. Belluce, A. Di Nola, S. Sessa, Triangular norms, MV-algebras and bold fuzzy set theory, Math. Japon. 36 (1991) 481-487.
[7] C.C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958) 467-490.
[8] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, (2000).
[9] F. Forouzesh, F. Sajadian, M. Bedrood, Inverse topology in MV-algebras, Math. Bohemica 144 (2019) 273-285.
[10] F. Forouzesh, F. Sajadian, M. Bedrood, Some results in types of extensions of MV-algebras, Publ.lnst Math. 105(119) (2019) 161-177.
[11] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer, 1976.
[12] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential logic, J. Funct. Anal. 65 (1986) 15-63.
[13] D. Mundici, Mapping abelian l-groups with strong unit One-One into MV-algebras, J. Algebra 98 (1986) 76-81.
[14] J.R. Munkres, Topology, Dorling Kindersely, India (2000).
[15] D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova (2007).

[^0]: 2020 Mathematics Subject Classification. Primary 06D35; Secondary 06B10, 54C05
 Keywords. MV-algebra, (Z°, Z)ideal, zero divisor, complemented element
 Received: 02 July 2021; Revised: 10 October 2021; Accepted: 18 November 2021
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: Bedrood.m@gmail.com (Mahta Bedrood), fsajadian@bam.ac.ir (Farhad Sajadian), arsham@uk.ac.ir (Arsham Borumand Saeid)

