Filomat 36:7 (2022), 2439–2450 https://doi.org/10.2298/FIL2207439B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Z° -Ideals in *MV*-Algebras of Continuous Functions

Mahta Bedrood^a, Farhad Sajadian^b, Arsham Borumand Saeid^a

^a Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran ^b Department of Pure Mathematics and Calculations, Faculty of Mathematics, Higher Education Complex of Bam, Kerman, Iran

Abstract. In this paper, we study MV-algebra of continuous functions C(X) and maximal ideals of C(X). Furthermore, Z-ideal and Z° -ideal of C(X) are introduced and proved that every Z° -ideal in C(X) is a Z-ideal but the converse is not true and every finitely generated Z-ideal is a basic Z° -ideal. Also, we investigate meet and join of two Z-ideals (Z° -ideal) of C(X). Complemented elements of C(X) are examined and their properties have been studied. In particular, the relationship between generated ideal by them and Z-ideals (Z° -ideals) is proved. Finally, we investigate some property of Z° -ideals in basically disconnected space and extremally disconnected space.

1. Introduction

C.C. Chang introduced *MV*-algebras as algebraic models for Łukasiewicz logic to give its algebraic analysis and proved completeness of Łukasiewicz logic with respect to the variety of all *MV*-algebras. ([7]). Chang's completeness theorem states that any *MV*-algebra equation holding in the standard *MV*-algebra over the interval [0,1] will hold in every *MV*-algebra. These algebras relate to the above mentioned system of logic in the same manner as Boolean algebras relate to two classical valued logic.

The first studies of *MV*-algebras ([3, 5, 7]) were strictly confined to applications to the Łukasiewicz propositional and predicate logics. From this period to the second half of the eighties there were a few scattered results dealing with *MV*-algebras presented. Since the second half of the eighties there has been a renewal of interest in *MV*-algebras and their influence has now been extended to other areas of mathematics. In particular, *MV*-algebras apply to fuzzy set theory ([4, 6]), and most notably, by the work of D. Mundici ([12]), to AF C*-algebras and lattice ordered abelian groups ([13]). By the work of Mundici ([12]) we know that whenever there is a lattice ordered abelian group with a strong order unit, there is a corresponding *MV*-algebra.

Considering any topological space (shortly in the sequel, space) and [0, 1] endowed with the natural topology, the family C(X) of all [0, 1]-valued continuous functions defined on X has a structure of MV-algebra, induced pointwise by the MV-operations on [0, 1]. The same operations induce on $[0, 1]^X$, if X is a nonempty set, the MV-algebra of all the fuzzy sets of X, called usually Bold algebra of fuzzy sets of X ([2]).

However in this work we study *MV*-algebra of continuous functions and ideals. We establish a relation between *MV*-algebras and topological space *X*. We do not claim profundity but it is always a matter of

Keywords. *MV*-algebra, (Z°, Z) ideal, zero divisor, complemented element

²⁰²⁰ Mathematics Subject Classification. Primary 06D35; Secondary 06B10, 54C05

Received: 02 July 2021; Revised: 10 October 2021; Accepted: 18 November 2021 Communicated by Ljubiša D.R. Kočinac

Email addresses: Bedrood.m@gmail.com (Mahta Bedrood), fsajadian@bam.ac.ir (Farhad Sajadian), arsham@uk.ac.ir (Arsham Borumand Saeid)

interest when two seemingly disparate parts of mathematics touch hands. One would like to know just how accidental such a link may be. In the work at hand the link is probably not a fluke. The types of regular rings herein are studied widely. One suspects there is also a direct link between these structures and the Łukasiewicz infinite valued logic.

In this paper, C(X) is the *MV*-algebra of all continuous function on completely regular space X to standard *MV*-algebra ([0, 1], \oplus , *, 0). For each $f \in C(X)$, the set $Z(f) = \{x \in X : f(x) = 0\}$, is the zero set of f. For $M \subseteq X$, by *int* M and \overline{M} we mean the interior and the closure of M, respectively. We study maximal ideals of C(X) and show that if X is a compact space, then subset of C(X) such that every element of that equal to zero for a unique $x \in X$ is a maximal ideal. Subsequent, according to the definition Z-ideal and Z° -ideal in MV-algebra A and they are connection with maximal ideals and minimal prime ideals of MV-algebra A search for equivalent definitions of them in MV-algebra C(X). By establishing between intersection of the minimal prime ideals containing a and annihilator of a for all a in MV-algebra A it has been proved that every Z° -ideal in C(X) is a Z-ideal. By providing an example, it turned out that the converse is not necessary true but it has been shown that every finitely generated Z-ideal is a basic Z° -ideal and equivalent by generated ideal with a complemented elements of C(X). It is clear that meet of two Z-ideal $(Z^{\circ}-ideal)$ of C(X) is a Z-ideal $(Z^{\circ}-ideal)$. Also, join of two Z-ideal is proved that is a Z-ideal but showed not necessarily join of two Z° -ideal is not a Z° -ideal unless X is a basically disconnected. We prove that an element $f \in C(X)$ is not a zero divisor if and only if interior zero set of f is non empty and if Z(f) is a clopen subset of X, then generated ideal by f is equivalent by generated ideal with a complemented element of C(X). It is proved that if every ideal in C(X) consisting of zero divisors is a Z° -ideal, then every $f \in C(X)$ where $\emptyset \neq Z(f) \subsetneq X$ is a zero divisor. Finally, we made a connection between basically disconnected space and extremally disconnected space by basic Z° -ideals of C(X).

2. Preliminaries

We recollect some definitions and results which will be used in the sequel:

Definition 2.1. ([7]) An *MV*-algebra is a structure $(A, \oplus, *, 0)$ where \oplus is a binary operation, *, is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $x, y \in A$: (MV1) $(A, \oplus, 0)$ is an abelian monoid, $(MV2) (x^*)^* = x,$

 $(MV3) 0^* \oplus x = 0^*,$ $(MV4) (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.$

Note that we have $1 = 0^*$ and the auxiliary operation \odot which are as follows:

$$x \odot y = (x^* \oplus y^*)^*$$

We recall that the natural order determines a bounded distributive lattice structure such that

 $x \lor y = x \oplus (x^* \odot y) = y \oplus (x \odot y^*)$ and $x \land y = x \odot (x^* \oplus y) = y \odot (y^* \oplus x)$.

Also for any two elements $x, y \in A, x \le y$ if and only if $x^* \oplus y = 1$ if and only if $x \odot y^* = 0$

Lemma 2.2. ([8]) In each MV-algebra A, the following relations hold for all $x, y, z \in A$: (1) If $x \le y$, then $x \oplus z \le y \oplus z$ and $x \odot z \le y \odot z$, $x \land z \le y \land z$, (2) $x, y \le x \oplus y$ and $x \odot y \le x, y, x \le nx = x \oplus x \oplus \dots \oplus x$ and $x^n = x \odot x \odot \dots \odot x \le x$, (3) If $x \le y$ and $z \le t$, then $x \oplus z \le y \oplus t$, (4) $x \land (y \oplus z) \leq (x \land y) \oplus (x \land z), x \land (x_1 \oplus ... \oplus x_n) \leq (x \land x_1) \oplus ... \oplus (x \land x_n)$, for all $x_1, ..., x_n \in A$; in particular $(mx) \land (ny) \le mn(x \land y)$, for every $m, n \ge 0$.

For any MV-algebra A we shall denote by B(A) the set of all complemented elements of L(A) such that L(A) is distributive lattice with 0 and 1.

In the paper *A* is an *MV*–algebra.

Theorem 2.3. ([15]) For every element e in A, the following conditions are equivalent: (1) $e \in B(A)$, (2) $e \lor e^* = 1$, (3) $e \land e^* = 0$, (4) $e \oplus e = e$, (5) $e \odot e = e$.

Definition 2.4. ([8]) An ideal of *A* is a nonempty subset *I* of *A* satisfying the following conditions: (*I*1) If $x \in I$, $y \in A$ and $y \leq x$, then $y \in I$, (*I*2) If $x, y \in I$, then $x \oplus y \in I$. We denote by Id(A) the set of all ideals of *A*.

Definition 2.5. ([8]) Let *I* be an ideal of *A*. If $I \neq A$, then *I* is a proper ideal of *A*. •([8]) A proper ideal *I* of *A* is called prime ideal if for all $x, y \in A, x \land y \in I$, then $x \in I$ or $y \in I$. We denote by *Spec*(*A*) the set of all prime ideals of an *MV*–algebra *A*. •([8]) An ideal *I* of *A* is called a minimal prime ideal of *A*: 1)*I* \in *Spec*(*A*); 2) *If there exists* $Q \in$ *Spec*(*A*) *such that* $Q \subseteq I$, *then* I = Q. We denote by *Min*(*A*) the set of all minimal prime ideals of *A*. •([15]) An ideal *I* of *A* is called maximal if and only if for each ideal $J \neq I$, if $I \subseteq J$, then J = A. We denote by *Max*(*A*) the set of all maximal ideals of *A*.

Definition 2.6. ([15]) Let *X* be a nonempty subset of *A*. Then *Ann*(*X*) is the annihilator of *X* defined by:

$$Ann(X) = \{a \in A : a \land x = 0, \forall x \in X\}.$$

Remark 2.7. ([15]) Let $X \subseteq A$. The ideal of A generated by X will be denoted by (X]. We have $(1)(X] = \{a \in A \mid a \leq x_1 \oplus x_2 \oplus ... \oplus x_n, \text{ for some } n \in \mathbb{N} \text{ and } x_1, ..., x_n \in X\}$. In particular, $(a] = \{x \in A \mid x \leq na, \text{ for some } n \in \mathbb{N}\}$.

We denote by $(a_1, a_2, ..., a_n]$, the ideal of *A* generated by $X = \{a_1, a_2, ..., a_n\}$. (2) For $I_1, I_2 \in Id(A)$,

$$I_1 \wedge I_2 = I_1 \cap I_2$$
, $I_1 \vee I_2 = (I_1 \cup I_2] = \{a \in A : a \le x \oplus y ; x \in I_1, y \in I_2\}.$

Definition 2.8. ([10]) Let *X* be a nonempty subset of *A*. The set of all zero-divisors of *X* is denoted by $Z_X(A)$ and is defined as follows:

 $Z_X(A) = \{a \in A : \exists 0 \neq x \in X \text{ such that } x \land a = 0\}.$

Zero element of an MV-algebra is a zero divisor, which is called trivial zero divisor. We denote by Z_A the set of all zero divisors of A.

One can easily show that $Ann(X) \subseteq Z_X(A)$.

Notation: let $a \in A$. Define

$$M(a) = \{M \in Max(A) : a \in M\} \qquad P(a) = \{P \in Min(A) : a \in P\}.$$
$$M_a = \bigcap\{M : M \in Max(A), a \in M\} \qquad P_a = \bigcap\{P : P \in Min(A), a \in P\}.$$

If *I* is an ideal of *A*, define

$$M_I = \bigcap \{M : M \in Max(A), I \subseteq M\} \quad P_I = \bigcap \{P : P \in Min(A), I \subseteq P\}.$$

Theorem 2.9. ([9]) Let $P \in Min(A)$ and I be finitely generated ideal. Then $I \subseteq P$ if and only if $Ann(I) \notin P$.

Lemma 2.10. ([9]) If $0 \neq x \in A$, then there exists $P \in Min(A)$ such that $x \notin P$.

Definition 2.11. ([1]) (1) A proper ideal *I* of *A* is called a Z° -ideal if $P_a \subseteq I$, for each $a \in I$. (2) A proper ideal *I* of *A* is called a *Z*-ideal if $M_a \subseteq I$, for each $a \in I$.

Remark 2.12. ([1]) If *a* is a zero divisor of *MV*-algebra of *A*, then P_a is a Z° -ideal which is called a basic Z° -ideal. Also, every intersection of Z° -ideals (*Z*-ideals) is a Z° -ideal (*Z*-ideal).

Proposition 2.13. ([1]) If $a \in A$ and X is a subset of A, then (1) $P_a = \{b \in A | Ann(a) \subseteq Ann(b)\},$ (2) $P_a = Ann(Ann(a))$ (3) Ann(Ann(Ann(X)) = Ann(X).

Theorem 2.14. ([1]) Every Z-ideal of A is the intersection of the minimal prime ideals containing it.

We have [0,1] and $[-\infty, +\infty]$ are homeomorphic, so we can replace the definitions that depend on $[-\infty, +\infty]$ with [0,1]. Such as the following definition:

Definition 2.15. ([11]) A space *X* is said to be completely regular provided that it is a Husdorff space such that, whenever *F* is a closed set and *x* is a point in its complement, there exists a function $f \in C(X)$ such that f(x) = 1 and $f(F) = \{0\}$.

Remark 2.16. ([11]) Let $f \in C(X)$. The set $Z(f) = \{x \in X : f(x) = 0\}$ is called zero set and $X \setminus Z(f)$ is called cozero-set.

Definition 2.17. ([11]) A space *X* is said to be extremally disconnected if every open set has an open closure; *X* is basically disconnected if every cozero-set has an open closure.

Lemma 2.18. ([14]) Let $X = A \cup B$ such that A and B be closed subsets of X. Also, let $f : A \to Y$ and $g : B \to Y$ be continuous functions. If f(x) = g(x) for all $x \in A \cap B$, then there exists continuous function $h : X \to Y$ such that h(x) = f(x) for all $x \in A$, and h(x) = g(x) for all $x \in B$.

Theorem 2.19. ([14]) Let X be a topological space. If ζ is a collection of compact subsets of X such that every finite intersection of elements ζ be nonempty, then intersection of all the elements of ζ is nonempty.

Theorem 2.20. ([14]) Let X be a compact space and $f \in C(X)$. Then there exist $c, d \in X$ such that $f(c) \le f(x) \le f(d)$, for all $x \in X$.

3. Ideal theory of *C*(*X*)

Let *X* be a completely regular space. In this paper, we denote by *C*(*X*) the *MV*–algebra of all continuous functions on topological space *X* to standard *MV*–algebra ([0, 1], \oplus , *, 0). For every *f*, *g* \in *C*(*X*) we define $(f \oplus g)(x) = f(x) \oplus g(x), f^*(x) = (f(x))^*$ and 0(x) = 0, for all $x \in X$. Obviously, (*C*(*X*), \oplus , *, 0) is an *MV*–algebra. Let $f \in C(X)$ and *I* be an ideal of *C*(*X*). Define

$$\begin{split} Z(f) &= \{x \in X : f(x) = 0\} \\ Z(I) &= \{Z(f) : \forall f \in I\} \\ Z^{-1}(Z(I)) &= \{f \in C(X) : Z(f) \in Z(I)\}. \end{split}$$

Lemma 3.1. Let $f_1, f_2 \in C(X)$. Then (1) $Z(f_1 \oplus f_2) = Z(f_1) \cap Z(f_2)$, (2) $intZ(f_1 \oplus f_2) = intZ(f_1) \cap intZ(f_2)$. *Proof.* (1) It is clear.

(2) If $x \in intZ(f_1) \cap intZ(f_2)$, then there exist open subsets U_1 and U_2 of X such that $x \in U_1 \subseteq intZ(f_1)$ and $x \in U_2 \subseteq intZ(f_2)$. Put $U = U_1 \cap U_2$. Obviously, $U \subseteq intZ(f_1) \cap intZ(f_2)$. Hence $U \subseteq int(Z(f_1) \cap Z(f_2))$, so $U \subseteq Z(f_1) \cap Z(f_2)$. Thus $x \in Z(f_1) \cap Z(f_2)$ then $f_1(x) = f_2(x) = 0$, hence $(f_1 \oplus f_2)(x) = 0$ so $x \in Z(f_1 \oplus f_2)$. On the other hand U is an open subset of X such that $x \in U$ so $x \in U \subseteq Z(f_1 \oplus f_2)$. Then $x \in intZ(f_1 \oplus f_2)$, implies that $intZ(f_1) \cap intZ(f_2) \subseteq intZ(f_1 \oplus f_2)$. Now, if $y \in intZ(f_1 \oplus f_2)$, then $y \in Z(f_1 \oplus f_2)$. So $(f_1 \oplus f_2)(y) = 0$, thus $f_1(y) = f_2(y) = 0$ which implies that $Z(f_1 \oplus f_2) \subseteq Z(f_1)$ and $Z(f_1 \oplus f_2) \subseteq Z(f_2)$. Hence $intZ(f_1 \oplus f_2) \subseteq intZ(f_1)$ and $intZ(f_1 \oplus f_2) \subseteq intZ(f_2)$. So $intZ(f_1 \oplus f_2) \subseteq intZ(f_1) \cap intZ(f_2)$. Therefore $intZ(f_1 \oplus f_2) = intZ(f_1) \cap intZ(f_2)$. \Box

Theorem 3.2. Let $\tau = \{intZ(f) : f \in C(X)\}$. Then τ is a topological basis for X.

Proof. By Lemma 3.1(2), it is sufficient to show that for an open set U and $x \in U$, there exists $f \in C(X)$ such that $x \in intZ(f) \subseteq U$. If U is an open subset of X and $x \in U$, then there exists $g \in C(X)$ such that $g(X \setminus U) = \{0\}$ and g(x) = 1. Put $f = |(g - (1/4)) \land 0|$. Obviously,

$$x \in intZ(f) \subseteq Z(f) = \{x \in X : g(x) \ge 1/4\} = g^{-1}([1/4, 1]) \subseteq U.$$

Therefore τ is a basis for *X*. \Box

Example 3.3. Let $X = \mathbb{R}$ and (a, b) be an open interval in \mathbb{R} . Put

$$f(x) = \begin{cases} 1 & x \in (-\infty, a - 1] \\ -x + a & x \in (a - 1, a) \\ 0 & x \in [a, b] \\ x - b & x \in (b, b + 1) \\ 1 & x \in [b, \infty) \end{cases}$$

Obviously, (a, b) = intZ(f). Then $\tau = \{intZ(f) : f \in C(\mathbb{R})\}$ is a basis for standard topology on \mathbb{R} .

Lemma 3.4. Let *I* be an ideal of C(X). Then Z(I) is closed under finite intersections and supersets.

Proof. Let $Z_1, Z_2 \in Z(I)$. Then there exist $f_1, f_2 \in I$ such that $Z_1 = Z(f_1), Z_2 = Z(f_2)$. Hence $f_1 \oplus f_2 \in I$, so $Z(f_1 \oplus f_2) \in Z(I)$. By Lemma 3.1(1), $Z(f_1) \cap Z(f_2) \in Z(I)$. Let $Z_1 \in Z(I), Z' \in Z(X)$ and $Z_1 \subseteq Z'$. Then there exist $f_1 \in I$ and $f \in C(X)$ such that $Z_1 = Z(f_1)$ and Z' = Z(f). Hence $f_1 \wedge f \in I$, so $Z(f_1 \wedge f) \in Z(I)$. Obviously, $Z(f) = Z(f_1 \wedge f)$ thus $Z' \in Z(I)$. \Box

Proposition 3.5. If I is an ideal of C(X), then $Z^{-1}(Z(I))$ is an ideal of C(X). Also $I \subseteq Z^{-1}(Z(I))$.

Proof. Obviously, $Z^{-1}(Z(I))$ is a nonempty subset of C(X). Let $f, g \in Z^{-1}(Z(I))$. Then $Z(f), Z(g) \in Z(I)$. By Lemma 3.4, we get that $Z(f) \cap Z(g) \in Z(I)$ thus $Z(f \oplus g) \in Z(I)$, then $f \oplus g \in Z^{-1}(Z(I))$. Let $f \in Z^{-1}(Z(I)), g \in C(X)$ and $g \leq f$. Then $Z(f) \in Z(I)$ and $Z(f) \subseteq Z(g)$. It follows from Lemma 3.4, that $Z(g) \in Z(I)$ thus $g \in Z^{-1}(Z(I))$. Obviously, $I \subseteq Z^{-1}(Z(I))$.

Lemma 3.6. Let $f, g \in C(X)$. Then the following statements are equivalent: (1) $P_g \subseteq P_f$, (2) $P(f) \subseteq P(g)$, (3) $intZ(f) \subseteq intZ(g)$, (4) $Ann(f) \subseteq Ann(g)$.

Proof. $(1 \Rightarrow 2)$ Let $P \in P(f)$. Then $P_f \subseteq P$, hence $P_g \subseteq P$. So $g \in P$, thus $P \in P(g)$. Then $P(f) \subseteq P(g)$. $(2 \Rightarrow 1)$ It is clear.

 $(3 \Rightarrow 4)$ Let $intZ(f) \subseteq intZ(g)$ and $h \in Ann(f)$. Then $(h \land f)(x) = 0$, for all $x \in X$ which implies that h(x) = 0 or f(x) = 0, so $X \setminus Z(h) \subseteq Z(f)$. Since Z(h) is closed subset of X we get $int(X \setminus Z(h)) = Z(h)$. Hence

 $X \setminus Z(h) \subseteq intZ(f) \subseteq intZ(g) \subseteq Z(g).$

Then $(g \land h)(x) = 0$, for all $x \in X$. Therefore $h \in Ann(g)$.

 $(4 \Rightarrow 3)$ Let $Ann(f) \subseteq Ann(g)$. To prove that $intZ(f) \subseteq intZ(g)$, it suffices to show that $intZ(f) \subseteq Z(g)$. Suppose $x \in intZ(f)$ and $x \notin Z(g)$. Since $x \notin X \setminus intZ(f)$, then there exists $0 \neq h \in C(X)$ such that $h(X \setminus intZ(f)) = \{0\}$ and h(x) = 1. Clearly, $(h \land f)(x) = 0$ and $(h \land g)(x) \neq 0$, which is impossible.

 $(4 \Leftrightarrow 1)$ By Proposition 2.13 (2,3), we get that $P_g \subseteq P_f$ if and only if $Ann(Ann(g)) \subseteq Ann(Ann(f))$ if and only if $Ann(Ann(Ann(f))) \subseteq Ann(Ann(Ann(g)))$ if and only if $Ann(f) \subseteq Ann(g)$. \Box

Corollary 3.7. (1) Let $f, g \in C(X)$. Then intZ(f) = intZ(g) if and only if Ann(f) = Ann(g). (2) Let $f \in C(X)$. Then $P_f = \{g \in C(X) | intZ(f) \subseteq intZ(g)\}$.

Proposition 3.8. Let I be an ideal of C(X). Then the following statements are equivalent: (1) I is a Z° -ideal, (2) $intZ(f) \subseteq intZ(g)$ and $f \in I$ imply that $g \in I$.

Proof. $(1 \Rightarrow 2)$ Let $intZ(f) \subseteq intZ(g)$ and $f \in I$. Since *I* is a Z° -ideal, hence $P_f \subseteq I$. It follows from Lemma 3.6, that $P_g \subseteq P_f$, so $g \in I$.

 $(2 \Rightarrow 1)$ For every $f \in I$, We must show that $P_f \subseteq I$. Let $g \in P_f$. Obviously, $P_g \subseteq P_f$ by Lemma 3.6, we get that $intZ(f) \subseteq intZ(g)$, then $g \in I$. \Box

Corollary 3.9. Let *J* be a Z° -ideal of C(X) and $f \in J$. Then $intZ(f) \neq \emptyset$.

Proof. Let $intZ(f) = \emptyset$. Then intZ(f) = intZ(i) such that i(x) = 1, for all $x \in X$. Hence $i \in J$, so J = C(X) that is impossible. \Box

The following is an example that the join of two Z° -ideal in C(X) is a proper ideal that is not a Z° -ideal. In addition, It has been shown that every ideal contains a Z° -ideal in C(X) is not necessary a Z° -ideal.

Example 3.10. (1) Let $X = \mathbb{R}$, $I = \{f \in C(X) : [0, \infty) \subseteq Z(f)\}$ and $J = \{f \in C(X) : (-\infty, 0] \subseteq Z(f)\}$. Obviously, I and J are Z° -ideals of C(X). Define $k_1(x) = 1 \land |x|$, for all $x \in (-\infty, 0)$ and $k_1(x) = 0$, for all $x \in [0, \infty)$, $k_2(x) = 1 \land x$, for all $x \in (0, \infty)$ and $k_2(x) = 0$, for all $x \in (-\infty, 0]$, k(x) = |x|, for all $x \in [-1, 1]$ and k(x) = 1, for all $x \in \mathbb{R} \setminus [-1, 1]$. Obviously, $k_1 \in I$, $k_2 \in J$ and $k = k_1 \oplus k_2$. Since $k \in I \lor J$ and $intZ(k) = \emptyset$, then $I \lor J$ is not a Z° -ideal.

(2) Let $I = \{f \in C(X) : (-\infty, 1] \subseteq Z(f)\}$ and $J = \{f \in C(X) : (-\infty, 0] \cup \{\frac{1}{2}\} \subseteq Z(f)\}.$

It is claimed that *I* is a Z° -ideal. Let $f, g \in C(X)$ such that $(-\infty, 1] \subseteq \overline{Z}(f)$ and $(-\infty, 1) = intZ(f) = intZ(g)$. On the other hand $\overline{(-\infty, 1)} = (-\infty, 1] \subseteq Z(g)$, hence $g \in I$. We deduce that *I* is a Z° -ideal. Now, *J* is not a Z° -ideal, since for each $f, g \in C(X)$ such that $Z(f) = (-\infty, 0] \cup \{\frac{1}{2}\}$ and $Z(g) = (-\infty, 0] \cup \{\frac{1}{3}\}$, we have $intZ(f) = intZ(g), f \in I$ and $g \notin I$. Obviously, *I* is a subset of *J*. Hence every ideal contains a Z° -ideal in C(X) is not necessary a Z° -ideal.

Now, we are going to investigate topological spaces *X*, such that the join of two Z° -ideals in *C*(*X*) is either a Z° -ideal or *C*(*X*).

Theorem 3.11. *If I and J are* Z° *-ideals of* C(X) *and X is a basically disconnected space, then I* \lor *J is either a* Z° *-ideal or C*(*X*).

Proof. Let *I* and *J* be two Z° -ideal in *C*(*X*) and suppose that $I \lor J \neq C(X)$. Let $f \in I \lor J$, and $intZ(f) \subseteq intZ(g)$, for some $g \in C(X)$. It is claimed that $g \in I \lor J$. Since $f \in I \lor J$, then $f \leq h \oplus k$ where $h \in I$ and $k \in J$. We consider two cases:

Case 1. if h(x) = k(x) = 0, for all $x \in X$, then f = 0. So Z(f) = X hence intZ(f) = X, thus intZ(g) = X, then Z(g) = X. So g(x) = 0, for all $x \in X$. We obtain $g \in I \lor J$.

Case 2. if $h \neq 0$ and $k \neq 0$, we show that $g \in I \lor J$. Now, since *X* is a basically disconnected space, intZ(k) and intZ(h) are closed subsets of *X*. By Corollary 3.9, we have $intZ(h) \neq \emptyset$ and $intZ(k) \neq \emptyset$. Put $A = X \setminus intZ(k)$, then *A* and intZ(k) are disjoint clopen subsets of *X*. Thus there exists $k' \in C(X)$ such that

 $k'(A) = \{1\}$ and $k'(intZ(k)) = \{0\}$. So Z(k') = intZ(k). Then intZ(k') = intZ(k) thus $k' \in J$. Similarly, there exists $h' \in C(X)$ such that Z(h') = intZ(h) and $h' \in I$. Obviously, $Z(h) \cap Z(k) \subseteq Z(f)$ then $intZ(h) \cap intZ(k) \subseteq intZ(f)$, so $Z(h') \cap Z(k') \subseteq intZ(f)$. Thus $Z(h' \oplus k') \subseteq intZ(f)$, hence $Z(h' \oplus k') \subseteq intZ(g)$, then $Z(h' \oplus k') \subseteq Z(g)$. We consider two cases:

Case 1. if $x \in Z(q)$, then g(x) = 0 So $g(x) \le h'(x) \oplus k'(x)$.

Case 2. if $x \notin Z(g)$, then $x \notin Z(h' \oplus k')$. So $x \notin Z(h')$ or $x \notin Z(k')$, hence h'(x) = 1 or k'(x) = 1, thus $(h' \oplus k')(x) = 1$. So $g(x) \le (h' \oplus k')(x)$.

Therefore $g(x) \le (h' \oplus k')(x)$, for all $x \in X$. Hence $g \in I \lor J$. \Box

Theorem 3.12. Let $x_0 \in X$. Then $I = \{f \in C(X) : f(x_0) = 0\}$ is a maximal ideal of C(X).

Proof. Obviously, $I \in Id(C(X))$. Let $Q \in Id(C(X))$ be such that $I \subseteq Q \subseteq C(X)$. Then there exists $g_1 \in Q$ such that $g_1 \notin I$. So $g_1(x_0) \neq 0$. Put $U = \{x \in X : (1/2)g_1(x_0) < g_1(x)\} = \{x \in X : x \in g_1^{-1}((1/2)g_1(x_0), 1]\}$, hence U is an open subset of X and $C = X \setminus U$ is a closed subset of X. Thus there exists $f \in C(X)$ such that f(C) = 1 and $f(x_0) = 0$, imply that $f \in I$. Put $g = f \oplus g_1$. Obviously, $g \in Q$. Now, we consider two cases:

Case 1: if $x \in C$, then f(x) = 1 hence g(x) = 1.

Case 2: if $x \in U$, then $(1/2)g_1(x_0) < g_1(x)$.

Therefore $0 < (1/2)g_1(x_0) \le g(x)$, for all $x \in X$. So, by Archimedean property there exists $m \in \mathbb{N}$ such that mg(x) = 1, for all $x \in X$. Hence Q = C(X). Therefore $I \in Max(C(X))$. \Box

Now, converse of Theorem 3.12, is proved with an extra condition.

Theorem 3.13. If X is a compact space, then every maximal ideal M of C(X) has the form M^x for a unique $x \in X$ where

$$M^{x} = \{ f \in C(X) : f(x) = 0 \}.$$

Proof. First we show that $\bigcap_{f \in M} Z(f) \neq \emptyset$. By Theorem 2.19, it suffices to show that $Z(f_1) \cap Z(f_2) \cap ... \cap Z(f_n) \neq \emptyset$,

where $f_i \in M$, for all $1 \le i \le n$. Let $Z(f_1) \cap Z(f_2) \cap ... \cap Z(f_n) = \emptyset$. Hence $(\bigoplus_{i=1}^n f_i)(x) \ne 0$, for all $x \in X$. So by Theorem 2.20, there exist $x' \in X$ and $p \in (0,1]$ such that $min(\bigoplus_{i=1}^n f_i)(x') = p$. Then there exists $t \in \mathbb{N}$ such that $t(\bigoplus_{i=1}^n f_i)(x) = 1$, for all $x \in X$ this implies that M = C(X), which is a contradiction. Hence there exists $x \in \bigcap_{f \in M} Z(f)$ such that $M = \{f \in C(X) : f(x) = 0\}$. If there exists $y \in \bigcap_{f \in M} Z(f)$ such that $x \ne y$, then $M \subsetneq \{f \in C(X) : f(x) = 0\}$, which is a contradiction. \Box

Example 3.14. If X = [0, 1], then $I = \{f \in C(X) : f(1/2) = 0\}$ and $J = \{f \in C(X) : f(1/3) = 0\}$ are maximal ideals of C(X). Hence C(X) is not a local *MV*-algebra.

Lemma 3.15. Let $f, g \in C(X)$. Then the following statements are equivalent: (1) $M_g \subseteq M_f$, (2) $M(f) \subseteq M(g)$.

Proof. $(1 \Rightarrow 2)$ Let $M \in M(f)$. Then $M \in Max(C(X))$ and $f \in M$. So $M_f \subseteq M$ thus $M_g \subseteq M$. We obtain $g \in M$, hence $M \in M(g)$.

 $(2 \Rightarrow 1)$ Let $t \in M_g$ but $t \notin M_f$. Then there exists $M \in Max(C(X))$ such that $f \in M$ and $t \notin M$. Since $M(f) \subseteq M(g)$, thus $g \in M$. Hence $t \notin M_g$, which is impossible. \Box

Lemma 3.16. If $f, g \in C(X)$ and $M(f) \subseteq M(g)$, then $Z(f) \subseteq Z(g)$.

Proof. Let $x \in Z(f)$. Then $f \in M$ such that $M \in Max(C(X))$. Hence $M \in M(f)$, so $M \in M(g)$. Thus $g \in M$ implies that $x \in Z(g)$. We deduce that $Z(f) \subseteq Z(g)$. \Box

The following example shows that the converse Lemma 3.16, is not necessary correct.

Example 3.17. Let $f, g \in C((0, 1))$, such that $f(x) = sin(\frac{\pi x}{2})$ and $g(x) = |\frac{1}{2} - sin(\frac{\pi x}{2})|$, for all $x \in (0, 1)$. Then $Z(f) = \emptyset$ and $Z(g) = \{\frac{1}{2}\}$, we deduce that $Z(f) \subseteq Z(g)$. It is claimed that $M(f) \nsubseteq M(g)$. If $M(f) \subseteq M(g)$, then there exists $M \in M(g)$ such that $f \in M$. On the other hand,

$$\frac{1}{2} = |\sin(\frac{\pi x}{2}) + \frac{1}{2} - \sin(\frac{\pi x}{2})| \le |\sin(\frac{\pi x}{2})| + |\frac{1}{2} - \sin(\frac{\pi x}{2})| = \sin(\frac{\pi x}{2}) + |\frac{1}{2} - \sin(\frac{\pi x}{2})|, \forall x \in (0, 1)$$

Put $K := f \oplus g$. Hence $k \in M$, such that $k(x) \ge \frac{1}{2}$, for all $x \in (0, 1)$. We obtain $i \in M$, such that i(x) = 1, for all $x \in (0, 1)$ that is impossible. Therefore $M(f) \notin M(g)$.

Proposition 3.18. Let I be an ideal of C(X). Then the following statements are equivalent: (1) I is a Z-ideal, (2) $Z(f) \subseteq Z(g)$ and $f \in I$ imply that $g \in I$.

Proof. $(1 \Rightarrow 2)$ Let $Z(f) \subseteq Z(g)$ and $f \in I$. Then $intZ(f) \subseteq intZ(g)$. It follows from Lemma 3.6, that $Ann(f) \subseteq Ann(g)$. Since $f \in I$ by Theorem 2.14, we have $f \in P_I$, i.e., $f \in P$, for each $P \in Min(C(X))$ such that $I \subseteq P$. It follows from Theorem 2.9, that $Ann(f) \notin P$, thus $Ann(g) \notin P$. By Theorem 2.9, so $g \in P$. Hence $g \in P_I$. So $g \in I$.

 $(2 \Rightarrow 1)$ Let $f \in I$. We must show that $M_f \subseteq I$. Let $g \in M_f$, obviously $M_g \subseteq M_f$. By Lemma 3.15 and Lemma 3.16, we get that $Z(f) \subseteq Z(g)$, then $g \in I$. \Box

Corollary 3.19. (1) If I is a Z° -ideal of C(X), then I is a Z-ideal. (2) Let J be a Z-ideal of C(X) and $f \in J$. Then $Z(f) \neq \emptyset$.

Now, we give examples that are shown every *Z*-ideal is not necessary a Z° -ideal and there exists an ideal of *C*(*X*) such that is not a *Z*-ideal nor Z° -ideal.

Example 3.20. (1) Let $X = \mathbb{R}$. Then $I = \{f \in C(X) : [0, 1] \cup \{2\} \subseteq Z(f)\}$ is a *Z*-ideal, but *I* is not a *Z*°-ideal, since for each *f*, *g* \in *C*(*X*) such that *Z*(*f*) = [0, 1] $\cup \{2\}$ and *Z*(*g*) = [0, 1] $\cup \{3\}$, we have *intZ*(*f*) = *intZ*(*g*), *f* $\in I$ and *g* $\notin I$.

(2) Let X = [0,1], I = (f] such that f(x) = x, for all $x \in X$ and suppose that $g(x) = \sqrt{x}$, for all $x \in X$. Obviously, Z(f) = Z(g) = 0, $intZ(f) = intZ(g) = \emptyset$. It is claimed that $g \notin I$. If $g \in I$, then there exists $n \in \mathbb{N}$ such that $\sqrt{x} \le nx$, for each $x \in [0,1]$. Hence $1 \le n\sqrt{x}$, for each $x \in [0,1]$ which is impossible. Therefore *I* is not a *Z*-ideal nor Z° -ideal.

Theorem 3.21. If *I* and *J* are *Z*-ideals of C(X), then $I \vee J$ is a *Z*-ideal of C(X).

Proof. Let $Z(g) \subseteq Z(f)$ and $g \in I \lor J$. Then $g \leq g_1 \oplus g_2$ such that $g_1 \in I$ and $g_2 \in J$. Obviously, $Z(g_1) \cap Z(g_2) \subseteq Z(g)$, so $Z(g_1) \cap Z(g_2) \subseteq Z(f)$. Define

$$h(x) = \begin{cases} 0 & x \in Z(g_1) \cap Z(g_2) \\ f(x)(\frac{g_1(x)}{g_1(x) + g_2(x)}) & x \notin Z(g_1) \cap Z(g_2) \end{cases}$$

and

$$k(x) = \begin{cases} 0 & x \in Z(g_1) \cap Z(g_2) \\ f(x)(\frac{g_2(x)}{g_1(x) + g_2(x)}) & x \notin Z(g_1) \cap Z(g_2) \end{cases}$$

Now, we show that *h* and *k* are continuous functions. Let $\varepsilon > 0$ and $x_0 \in Z(g_1) \cap Z(g_2)$. Since $f \in C(X)$ then there exists open subset *V* of *X* such that $f(V) \subseteq (-\varepsilon, \varepsilon)$. On the other hand $h(x) \leq f(x) < \varepsilon$, for all $x \in V$. So $h(V) \subseteq (-\varepsilon, \varepsilon)$, thus *h* is continuous at x_0 . Therefore $h \in C(X)$. Similarly, it is proved that $k \in C(X)$. Obviously, $f = h \oplus k$, $Z(g_1) \subseteq Z(h)$ and $Z(g_2) \subseteq Z(k)$. So $h \in I$ and $k \in J$, we deduce that $f \in I \lor J$. \Box

It was shown in Example 3.20(1), that every Z-ideal is not a Z° -ideal. Now, conditions are provided that Z-ideals connection by Z° -ideals.

Lemma 3.22. Let $e \in A$. Then $e \in B(A)$ if and only if $Ann(e) = (e^*]$.

Proof. If $e \in B(A)$, then $e \wedge e^* = 0$. We obtain $e^* \in Ann(e)$, hence $(e^*] \subseteq Ann(e)$. Let $x \in Ann(e)$. Then $x \wedge e = 0$, thus $x \odot a = 0$. So $x \le e^*$, then $x \in (e^*]$. Hence $Ann(e) \subseteq (e^*]$. Therefore $Ann(e) = (e^*]$. Converse is clear. \Box

Corollary 3.23. Let $e \in B(A)$. Then $P_e = (e]$.

Proof. Let $e \in B(A)$. Then $Ann(e) = (e^*]$, so $Ann(Ann(e)) = Ann((e^*])$. By Lemma 3.22 and Proposition 2.13 (2), we get that $P_e = (e]$. \Box

Lemma 3.24. (1) If $f \in C(X)$, then $Ann(f) = \{0\}$ if and only if $intZ(f) = \emptyset$. (2) If $e \in B(C(X))$, then Z(e) is an open subset of X. (3) Let $f \in C(X)$ be such that $inf(f(X \setminus Z(f)) \neq 0$ and Z(f) be an open subset of X. Then there exists $e \in B(C(X))$ such that (e] = (f].

Proof. (1) Let $i \in C(X)$ be such that i(x) = 1, for all $x \in X$. Obviously, $Ann(i) = \{0\}, Z(i) = \emptyset$ and $intZ(i) = \emptyset$. Now, if $Ann(f) = \{0\}$, then Ann(f) = Ann(i). It follows from Corollary 3.7(1), that intZ(f) = intZ(i). Hence $intZ(f) = \emptyset$.

Conversely, if $intZ(f) = \emptyset$, then intZ(f) = intZ(i). It follows from Corollary 3.7(1), that Ann(f) = Ann(i) implies that $Ann(f) = \{0\}$.

(2) By hypothesis $e \in B(C(X))$, so $(e \oplus e)(x) = e(x)$, for all $x \in X$. We deduce that $e(x) \oplus e(x) = min\{2e(x), 1\} = e(x)$, for all $x \in X$. Hence e(x) = 0 or e(x) = 1, for all $x \in X$. Put $K = \{x : e(x) = 1\}$. Obviously, $Z(e) \cap K = \emptyset$ and $Z(e) \cup K = X$, then K and Z(e) are clopen subsets of X. Therefore intZ(e) = Z(e).

(3) Define $e : X \to [0, 1]$ by e(x) = 0, for all $x \in Z(f)$ and e(x) = 1, for all $x \notin Z(f)$. By Lemma 2.18, we get that $e \in C(X)$. Obviously, $e \in B(C(X))$ and Z(f) = intZ(f) = Z(e). It is claimed that (f] = (e]. we consider two cases:

Case 1. if $x \in Z(f)$, then e(x) = f(x) = 0. So $e(x) \le f(x)$.

Case 2. if $x \notin Z(f)$, then $f(x) \neq 0$. By hypothesis $inff(x) \neq 0$, we imply that there exists $n \in \mathbb{N}$ such that nf(x) = 1. So $e(x) \leq nf(x)$.

Hence $e \in (f]$, thus $(e] \subseteq (f]$. Now, it is clear that $(f] \subseteq (e]$. Then (e] = (f]. \Box

Proposition 3.25. Let *K* be finitely generated *Z*-ideal in C(X). Then *K* is a basic Z° -ideal and there exists $e \in B(C(X))$ such that K = (e].

Proof. Let $K = (f_1, f_2, ..., f_n]$ and $f := f_1 \oplus f_2 \oplus ... \oplus f_n$. Obviously, $f \in K$ hence $(f] \subseteq K$. On the other hand, $f_i \leq f$, for all $1 \leq i \leq n$, hence $f_i \in (f]$, for all $1 \leq i \leq n$. Thus $\{f_1, f_2, ..., f_n\} \subseteq (f]$, so $(f_1, f_2, ..., f_n] \subseteq (f]$, implies that $K \subseteq (f]$. Hence K = (f]. Obviously, $Z(f) = Z(\sqrt{f})$ and $f \in K$, by hypothesis and Proposition 3.18, hence $\sqrt{f} \in K$. So there exists $n \in \mathbb{N}$ such that $\sqrt{f(x)} \leq nf(x)$, for all $x \in X$. Now, $f(x) \neq 0$, for all $x \notin Z(f)$, hence $\sqrt{f(x)} \leq nf(x)$. So $1 \leq n\sqrt{f(x)}$, thus $(1/n) \leq \sqrt{f(x)}$ implies that $(1/n^2) \leq f(x)$. So $\beta = \{x \in X : (1/n^2) \leq f(x)\} = \{x \in X : f(x) \in [1/n^2, 1]\}$ is a closed subset of X and $X = Z(f) \cup \beta$, imply that Z(f) is a clopen subset of X. It follows from Lemma 3.24 (3), that there exists $e \in B(C(X)$ such that (e] = (f]. By Corollary 3.23, we get that $K = (e] = P_e$. \Box

Now, we give an example for previous proposition.

Example 3.26. Let $X = (0, 1) \cup (1, 2)$ and $I = (f_1, f_2]$ such that

$$f_1(x) = \begin{cases} 0 & x \in (0,1) \\ 1/2x & x \in (1,2) \end{cases}$$

$$f_2(x) = \begin{cases} 0 & x \in (0,1) \\ x/4 & x \in (1,2) \end{cases}$$

We define $f = f_1 \oplus f_2$ and $e \in C(X)$ such that e(x) = 0, for all $x \in (0, 1)$ and e(x) = 1, for all $x \in (1, 2)$. Obviously, I = (f] is a Z-ideal and $I = (e] = P_e$.

Theorem 3.27. (1) Every basic Z° -ideal in C(X) is principal if and only if X is basically disconnected. (2) Any arbitrary intersections of basic Z° -ideals in C(X) is principal if and only if X is extremally disconnected.

Proof. (1) Suppose that every basic Z° -ideal in C(X) is principal. To prove that X - Z(f) is open subset of X, it suffices to show that intZ(f) is closed, for all $f \in C(X)$. We consider two cases:

Case 1. if *f* is not a zero divisor, then $Ann(f) = \{0\}$. It follows from Lemma 3.24(1), that $intZ(f) = \emptyset$.

Case 2. if *f* is a zero divisor, then $Ann(f) \neq \{0\}$. By hypothesis, there exists $g \in C(X)$ such that $P_f = (g]$. By Corollary 3.19(1) and Proposition 3.25, there exists $e \in B(C(X))$ such that $P_f = (e]$. Now, it is claimed that intZ(f) = intZ(e). Obviously, $f \in P_f = (e]$, so $f \in (e]$. Hence there exists $n \in \mathbb{N}$ such that $f(x) \leq ne(x)$, for all $x \in X$. Thus $Z(e) \subseteq Z(f)$ implies that $intZ(e) \subseteq intZ(f)$. Let $e \in P_f$. Obviously, by Corollary 3.7(2), we have $intZ(f) \subseteq intZ(e)$. Now, by Lemma 3.24(2), we get that intZ(f) = Z(e).

Conversely, let *X* be a basically disconnected space and $f \in C(X)$ with $Ann(f) \neq \{0\}$. By Lemma 3.24 (1), we have $F = intZ(f) \neq \emptyset$ is a closed subset of *X*. Define $e_1 : F \rightarrow [0, 1]$ where $e_1(F) = 0$ and $e_2 : X \setminus F \rightarrow [0, 1]$ where $e_2(X \setminus F) = 1$. It follows from Lemma 2.18, that there exists $e \in C(X)$ such that

$$e(x) = \begin{cases} e_1(x) & x \in F \\ e_2(x) & x \in X \setminus F \end{cases}$$

Obviously, $e \in B(C(X))$ and it is claimed that $P_f = (e]$. Let $g \in P_f$. We consider two cases:

Case 1. if $x \in X \setminus F$, then e(x) = 1. Hence $g(x) \le e(x)$, for all $x \in X \setminus F$.

Case 2. if $x \in F = intZ(f)$, hence by hypothesis $g \in P_f$ and Lemma 3.24 (2), we get that $intZ(f) \subseteq intZ(g)$. Then $x \in intZ(g)$ so $x \in Z(g)$, hence g(x) = 0. We obtain $g(x) \le e(x)$, for all $x \in F$.

Then $g \in (e]$ hence $P_f \subseteq (e]$. Let $k \in (e]$. Then there exists $n \in \mathbb{N}$ such that $k(x) \leq (ne)(x)$, for all $x \in X$. So $Z(e) \subseteq Z(k)$, hence $intZ(f) \subseteq Z(k)$ then $intZ(f) \subseteq intZ(k)$. It follows from Corollary 3.7(2), that $k \in P_f$ thus $(e] \subseteq P_f$. Therefore $(e] = P_f$.

(2) Suppose that every intersection of basic Z° -ideals is principal and G is an open subset of X. By Theorem 3.2, there exists $S \subseteq C(X)$ such that $G = \bigcup_{f \in S} intZ(f)$ and $intZ(f) \neq \emptyset$. By Lemma 3.24, we have $Ann(f) \neq \{0\}$ so f is a zero divisor of C(X). By hypothesis, there exists $g \in C(X)$ such that $\bigcap_{f \in S} P_f = (g]$. Then (g] is a Z° -ideal so by Corollary 3.19, (g] is a Z-ideal. It follows from Proposition 3.25, that there exists $e \in B(C(X))$ such that (g] = (e]. Now, by Lemma 3.24(2), this shows that Z(g) = Z(e) is an open subset of X. It is claimed that $\overline{G} = Z(g)$. Let $x \in G = \bigcup_{f \in S} intZ(f)$. Then there exists $f \in S$ such that $x \in intZ(f)$. Because $(g] = \bigcap_{f \in S} P_f$, for every $f \in S$ thus $g \in P_f$ by Corollary 3.7(2), we get that $intZ(f) \subseteq intZ(g)$. Hence $intZ(f) \subseteq Z(g)$, so $G \subseteq Z(g)$ implies that $\overline{G} \subseteq Z(g)$. Let $x \in Z(g)$ and $x \notin \overline{G}$. Then there exists $h \in C(X)$ such that h(x) = 1 and $h(\overline{G}) = \{0\}$. Let $\beta \in intZ(f)$, for every $f \in S$. Then $\beta \in G$, hence $\beta \in \overline{G}$ so $h(\beta) = 0$. We deduce that $\beta \in Z(h)$, so $intZ(f) \subseteq Z(h)$. Hence $intZ(f) \subseteq intZ(h)$ thus $h \in P_f$ implies that $h \in \bigcap_{f \in S} P_f = (g]$. Therefore there exists $n \in \mathbb{N}$ such that $h(\alpha) \leq (ng)(\alpha)$, for all $\alpha \in X$. On the other hand, h(x) = 1 and g(x) = 0, which is a contradiction. Hence $Z(g) \subseteq \overline{G}$, therefore $Z(g) = \overline{G}$.

Conversely, let *X* be an extremally disconnected space and $I = \bigcap_{f \in S} P_f$ be such that $S \subseteq C(X)$. Obviously, $G = \bigcup_{f \in S} intZ(f)$ is an open and closed subset of *X*. Define $e_1 : G \to [0, 1]$ where $e_1(G) = 0$ and $e_2 : X \setminus G \to [0, 1]$ where $e_2(X \setminus G) = 1$. It follows from Lemma 2.18, that there exists $e \in C(X)$ such that

$$e(x) = \begin{cases} e_1(x) & x \in G \\ e_2(x) & x \in X \setminus G \end{cases}$$

Obviously, $e \in B(C(X))$ and by Lemma 3.24(2), we get that Z(e) is an open subset of X hence $intZ(f) \subseteq intZ(e)$, for all $f \in S$. It follows from Corollary 3.7(2), that $e \in P_f$, for all $f \in S$. So $e \in \bigcap_{f \in S} P_f = I$, then $(e] \subseteq I$. Let $g \in I = \bigcap_{f \in S} P_f$. Then $g \in P_f$, for all $f \in S$. It follows from Corollary 3.7(2), that $intZ(f) \subseteq intZ(g)$, for all $f \in S$ thus $intZ(f) \subseteq Z(g)$, for all $f \in S$ therefore $G = \bigcup_{f \in S} intZ(f) \subseteq Z(g)$. Since $X = G \cup (X \setminus G)$ we consider two cases:

Case 1. if $x \in G$, then $x \in Z(q)$. So $q(x) \le e(x)$, for all $x \in G$.

Case 2. if $x \in X \setminus G$, then e(x) = 1. Hence $g(x) \le e(x)$, for all $x \in X \setminus G$.

Thus $g \in (e]$, we obtain $I \subseteq (e]$. Therefore I = (e]. \Box

Theorem 3.28. Let every ideal of C(X) containing zero divisors be a Z° -ideal. Then every $f \in C(X)$ with $\emptyset \neq Z(f) \subsetneq X$ is a zero divisor and P_f is a principal ideal of C(X).

Proof. We consider two cases:

Case 1. if f(X) is a finite subset of [0,1] and $\{a_0 = 0, a_1, ..., a_n\} \subseteq [0,1]$ be such that $f^{-1}(0) = A_0 = Z(f), f^{-1}(a_1) = A_1, ..., f^{-1}(a_n) = A_n$ and $X = A_0 \cup A_1 \cup ... \cup A_n$. We define $g : X \to [0,1]$ such that g(x) = 1, for all $x \in Z(f)$ and g(x) = 0, for all $x \notin Z(f)$. Obviously, by Lemma 2.18, we have $g \in C(X)$. Hence $(f \land g)(x) = min\{f(x), g(x)\} = 0$, for all $x \notin X$, then f is a zero divisor.

Case 2. if f(X) is an infinite subset of [0, 1] and $a, b \in f(X)$ such that 0 < a < b < 1. Define

$$C = \{y \in X : a \ge f(y)\} = \{y \in X : f(y) \in [0, a]\} = f^{-1}([0, a])$$
$$B = \{y \in X : a \le f(y)\} = \{y \in X : f(y) \in [a, 1]\} = f^{-1}([a, 1]).$$

Obviously, since 0 < a < b < 1, neither *B* contains *C* nor *C* contains *B*. It is clear that *B* and *C* are closed subset of *X* such that $X = B \cup C$ and $B \cap C = \{x \in X : f(x) = a\}$. Define $\phi_1 : C \to [0, 1]$ where $\phi_1(x) = f(x)$, for all $x \in C$ and $\phi_2 : B \to [0, 1]$ where $\phi_2(B) = a$. Obviously $\phi_1(B \cap C) = \phi_2(B \cap C)$. It follows from Lemma 2.18, that

$$\phi(x) = \begin{cases} \phi_1(x) & x \in C \\ \phi_2(x) & x \in B \end{cases}$$

is a continuous function. Put $h(x) = |\phi(x) - f(x)|$, for all $x \in X$. It is clear that $h \neq 0$ and Z(h) = C. Similarly, there exists $g \in C(X)$ such that Z(g) = B and $g \neq 0$. Then $(f \land g \land h)(x) = 0$, for all $x \in X$ so $h \in Ann(f \land g)$ hence $Ann(f \land g) \neq \{0\}$ thus $f \land g$ is a zero divisor of C(X). Since $f \land g \in (f \land g]$, so by hypothesis, $(f \land g]$ is a Z° -ideal and by Corollary 3.19, we get that $(f \land g]$ is a Z-ideal. Now, by Proposition 3.25, there exists $e \in B(C(X))$ such that $(f \land g] = (e]$. It follows from Lemma 3.24(2), that $Z((f \land g]) = Z(e) = intZ(e)$. Obviously, $Z(f \land g) = Z(f) \cup Z(g) = Z(e)$ and $Z(f) \cap Z(g) = \emptyset$, then $Z(f) = Z(f \land g) \setminus Z(g) = Z(f \land g) \cap (Z(g))^c$. Hence Z(f) is an open subset of X and Z(f) = intZ(f). By hypothesis $intZ(f) \neq \emptyset$ and by Lemma 3.24 (2), we have $Ann(f) \neq \{0\}$. Hence f is a zero divisor of C(X).

On the other hand, *f* is a zero divisor, then (f] is a Z° -ideal so $P_f \subseteq (f]$. Obviously, $(f] \subseteq P_f$, hence $(f] = P_f$. \Box

4. Conclusion

We investigated ideals of continuous of functions C(X) and concluded that if X is compact space, then every maximal ideal M of C(X) has the form M^x for a unique $x \in X$ where $M^x = \{f \in C(X) : f(x) = 0\}$. For every element f of Z-ideal (Z° -ideal) has $Z(f) \neq \emptyset$ ($intZ(f) \neq \emptyset$) and every Z° -ideal is a Z-ideal but converse is not true. Also join of two Z-ideals is a Z-ideal but if X is a basically disconnected, then join of two Z° -ideals is a Z° -ideal. If g is a complemented element of C(X), then Z(g) is an open subset of Xand if g is an element of C(X) such that $inf(g(X)) \neq 0$ then Z(g) is an open subset of X. Furthermore, every $f \in C(X)$ is not a zero divisor if and only if $intZ(f) \neq \emptyset$. It is proved that for each complemented element e of C(X), $Ann(e) = (e^*]$ and Z(e) is an open subset of X. Also, we conclude that there exist connections between elements X and C(X), for example for every $f, g \in C(X)$, if $M(f) \subseteq M(g)$, then $Z(f) \subseteq Z(g)$ and $intZ(f) \subseteq intZ(g)$ if and only if $Ann(f) \subseteq Ann(g)$.

Acknowledgements

We wish to thank the reviewers for excellent suggestions that have been incorporated into the paper.

References

- [1] M. Bedrood, F. Sajadian, G. Lenzi, A. Borumand Saeid, Z° -ideals in MV-algebras, submitted.
- [2] L. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986) 1356–1379.
- [3] L.P. Belluce, Further results on infinite valued predicate logic, J. Symb. Logic 29 (1964) 69–78.
- [4] L.P. Belluce, Generalized fuzzy connectives on MV-algebras, J. Math. Anal. Appl. 205 (1997) 485-499.
- [5] L.P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued first order logic, J. Symb. Logic 28 (1963) 43–50.
- [6] L.P. Belluce, A. Di Nola, S. Sessa, Triangular norms, MV-algebras and bold fuzzy set theory, Math. Japon. 36 (1991) 481-487.
- [7] C.C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958) 467-490.
- [8] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, (2000).
- [9] F. Forouzesh, F. Sajadian, M. Bedrood, Inverse topology in MV-algebras, Math. Bohemica 144 (2019) 273–285.
- [10] F. Forouzesh, F. Sajadian, M. Bedrood, Some results in types of extensions of MV-algebras, Publ.Inst Math. 105(119) (2019) 161–177.
- [11] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer, 1976.
- [12] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential logic, J. Funct. Anal. 65 (1986) 15-63.
- [13] D. Mundici, Mapping abelian l-groups with strong unit One-One into MV-algebras, J. Algebra 98 (1986) 76–81.
- [14] J.R. Munkres, Topology, Dorling Kindersely, India (2000).
- [15] D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova (2007).