
Filomat 36:7 (2022), 2439–2450
https://doi.org/10.2298/FIL2207439B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we study MV−algebra of continuous functions C(X) and maximal ideals of C(X).
Furthermore, Z−ideal and Z◦−ideal of C(X) are introduced and proved that every Z◦−ideal in C(X) is a
Z−ideal but the converse is not true and every finitely generated Z−ideal is a basic Z◦−ideal. Also, we
investigate meet and join of two Z−ideals (Z◦−ideal) of C(X).Complemented elements of C(X) are examined
and their properties have been studied. In particular, the relationship between generated ideal by them and
Z−ideals (Z◦−ideals) is proved. Finally, we investigate some property of Z◦−ideals in basically disconnected
space and extremally disconnected space.

1. Introduction

C.C. Chang introduced MV-algebras as algebraic models for Łukasiewicz logic to give its algebraic
analysis and proved completeness of Łukasiewicz logic with respect to the variety of all MV-algebras. ([7]).
Chang’s completeness theorem states that any MV-algebra equation holding in the standard MV-algebra
over the interval [0,1] will hold in every MV-algebra. These algebras relate to the above mentioned system
of logic in the same manner as Boolean algebras relate to two classical valued logic.

The first studies of MV-algebras ([3, 5, 7]) were strictly confined to applications to the Łukasiewicz
propositional and predicate logics. From this period to the second half of the eighties there were a few
scattered results dealing with MV-algebras presented. Since the second half of the eighties there has been a
renewal of interest in MV-algebras and their influence has now been extended to other areas of mathematics.
In particular, MV-algebras apply to fuzzy set theory ([4, 6]), and most notably, by the work of D. Mundici
([12]), to AF C*-algebras and lattice ordered abelian groups ([13]). By the work of Mundici ([12]) we know
that whenever there is a lattice ordered abelian group with a strong order unit, there is a corresponding
MV-algebra.

Considering any topological space (shortly in the sequel, space) and [0, 1] endowed with the natural
topology, the family C(X) of all [0, 1]-valued continuous functions defined on X has a structure of MV-
algebra, induced pointwise by the MV -operations on [0, 1]. The same operations induce on [0, 1]X, if X is a
nonempty set, the MV-algebra of all the fuzzy sets of X, called usually Bold algebra of fuzzy sets of X ([2]).

However in this work we study MV-algebra of continuous functions and ideals. We establish a relation
between MV-algebras and topological space X. We do not claim profundity but it is always a matter of
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interest when two seemingly disparate parts of mathematics touch hands. One would like to know just
how accidental such a link may be. In the work at hand the link is probably not a fluke. The types of regular
rings herein are studied widely. One suspects there is also a direct link between these structures and the
Łukasiewicz infinite valued logic.

In this paper, C(X) is the MV−algebra of all continuous function on completely regular space X to
standard MV−algebra ([0, 1],⊕, ∗, 0). For each f ∈ C(X), the set Z( f ) = {x ∈ X : f (x) = 0}, is the zero set of f .
For M ⊆ X, by intM and M we mean the interior and the closure of M, respectively. We study maximal ideals
of C(X) and show that if X is a compact space, then subset of C(X) such that every element of that equal to
zero for a unique x ∈ X is a maximal ideal. Subsequent, according to the definition Z−ideal and Z◦−ideal
in MV−algebra A and they are connection with maximal ideals and minimal prime ideals of MV−algebra
A search for equivalent definitions of them in MV−algebra C(X). By establishing between intersection of
the minimal prime ideals containing a and annihilator of a for all a in MV−algebra A it has been proved
that every Z◦−ideal in C(X) is a Z−ideal. By providing an example, it turned out that the converse is
not necessary true but it has been shown that every finitely generated Z−ideal is a basic Z◦−ideal and
equivalent by generated ideal with a complemented elements of C(X). It is clear that meet of two Z−ideal
(Z◦−ideal) of C(X) is a Z−ideal (Z◦−ideal). Also, join of two Z−ideal is proved that is a Z−ideal but showed
not necessarily join of two Z◦−ideal is not a Z◦−ideal unless X is a basically disconnected. We prove that an
element f ∈ C(X) is not a zero divisor if and only if interior zero set of f is non empty and if Z( f ) is a clopen
subset of X, then generated ideal by f is equivalent by generated ideal with a complemented element of
C(X). It is proved that if every ideal in C(X) consisting of zero divisors is a Z◦−ideal, then every f ∈ C(X)
where ∅ , Z( f ) ⊊ X is a zero divisor. Finally, we made a connection between basically disconnected space
and extremally disconnected space by basic Z◦−ideals of C(X).

2. Preliminaries

We recollect some definitions and results which will be used in the sequel:

Definition 2.1. ([7]) An MV−algebra is a structure (A, ⊕, *, 0) where ⊕ is a binary operation, *, is a unary
operation, and 0 is a constant such that the following axioms are satisfied for any x, y ∈ A :
(MV1) (A, ⊕, 0) is an abelian monoid,
(MV2) (x∗)∗ = x,
(MV3) 0∗ ⊕ x = 0∗,
(MV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Note that we have 1 = 0∗ and the auxiliary operation ⊙which are as follows:

x ⊙ y = (x∗ ⊕ y∗)∗.

We recall that the natural order determines a bounded distributive lattice structure such that

x ∨ y = x ⊕ (x∗ ⊙ y) = y ⊕ (x ⊙ y∗) and x ∧ y = x ⊙ (x∗ ⊕ y) = y ⊙ (y∗ ⊕ x).

Also for any two elements x, y ∈ A, x ≤ y if and only if x∗ ⊕ y = 1 if and only if x ⊙ y∗ = 0

Lemma 2.2. ([8]) In each MV−algebra A, the following relations hold for all x, y, z ∈ A:
(1) If x ≤ y, then x ⊕ z ≤ y ⊕ z and x ⊙ z ≤ y ⊙ z, x ∧ z ⩽ y ∧ z,
(2) x, y ≤ x ⊕ y and x ⊙ y ≤ x, y, x ≤ nx = x ⊕ x ⊕ · · · ⊕ x and xn = x ⊙ x ⊙ · · · ⊙ x ≤ x,
(3) If x ≤ y and z ≤ t, then x ⊕ z ≤ y ⊕ t,
(4) x ∧ (y ⊕ z) ⩽ (x ∧ y) ⊕ (x ∧ z), x ∧ (x1 ⊕ ... ⊕ xn) ⩽ (x ∧ x1) ⊕ ... ⊕ (x ∧ xn), for all x1, ..., xn ∈ A; in particular
(mx) ∧ (ny) ⩽ mn(x ∧ y), for every m,n ≥ 0.

For any MV−algebra A we shall denote by B(A) the set of all complemented elements of L(A) such that
L(A) is distributive lattice with 0 and 1.
In the paper A is an MV−algebra.
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Theorem 2.3. ([15]) For every element e in A, the following conditions are equivalent:
(1) e ∈ B(A),
(2) e ∨ e∗ = 1,
(3) e ∧ e∗ = 0,
(4) e ⊕ e = e,
(5) e ⊙ e = e.

Definition 2.4. ([8]) An ideal of A is a nonempty subset I of A satisfying the following conditions:
(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,
(I2) If x, y ∈ I, then x ⊕ y ∈ I.
We denote by Id(A) the set of all ideals of A.

Definition 2.5. ([8]) Let I be an ideal of A. If I , A, then I is a proper ideal of A.
•([8]) A proper ideal I of A is called prime ideal if for all x, y ∈ A, x ∧ y ∈ I, then x ∈ I or y ∈ I.
We denote by Spec(A) the set of all prime ideals of an MV−algebra A.
•([8]) An ideal I of A is called a minimal prime ideal of A:
1)I ∈ Spec(A);
2) I f there exists Q ∈ Spec(A) such that Q ⊆ I, then I = Q.
We denote by Min(A) the set of all minimal prime ideals of A.
•([15]) An ideal I of A is called maximal if and only if for each ideal J , I, if I ⊆ J, then J = A.
We denote by Max(A) the set of all maximal ideals of A.

Definition 2.6. ([15]) Let X be a nonempty subset of A. Then Ann(X) is the annihilator of X defined by:

Ann(X) = {a ∈ A : a ∧ x = 0,∀x ∈ X}.

Remark 2.7. ([15]) Let X ⊆ A. The ideal of A generated by X will be denoted by (X].We have
(1)(X] = {a ∈ A | a ⩽ x1 ⊕ x2 ⊕ ... ⊕ xn, f or some n ∈ N and x1, ..., xn ∈ X}. In particular, (a] = {x ∈ A | x ⩽
na, f or some n ∈N}.
We denote by (a1, a2, ..., an], the ideal of A generated by X = {a1, a2, ..., an}.
(2) For I1, I2 ∈ Id(A),

I1 ∧ I2 = I1 ∩ I2 , I1 ∨ I2 = (I1 ∪ I2] = {a ∈ A : a ≤ x ⊕ y ; x ∈ I1, y ∈ I2}.

Definition 2.8. ([10]) Let X be a nonempty subset of A. The set of all zero-divisors of X is denoted by ZX(A)
and is defined as follows:

ZX(A) = {a ∈ A : ∃0 , x ∈ X such that x ∧ a = 0}.

Zero element of an MV−algebra is a zero divisor, which is called trivial zero divisor. We denote by ZA the
set of all zero divisors of A.

One can easily show that Ann(X) ⊆ ZX(A).

Notation: let a ∈ A. Define

M(a) = {M ∈Max(A) : a ∈M} P(a) = {P ∈Min(A) : a ∈ P}.

Ma =
⋂
{M : M ∈Max(A), a ∈M} Pa =

⋂
{P : P ∈Min(A), a ∈ P}.

If I is an ideal of A, define

MI =
⋂
{M : M ∈Max(A), I ⊆M} PI =

⋂
{P : P ∈Min(A), I ⊆ P}.

Theorem 2.9. ([9]) Let P ∈Min(A) and I be finitely generated ideal. Then I ⊆ P if and only if Ann(I) ⊈ P.
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Lemma 2.10. ([9]) If 0 , x ∈ A, then there exists P ∈Min(A) such that x < P.

Definition 2.11. ([1]) (1) A proper ideal I of A is called a Z◦−ideal if Pa ⊆ I, for each a ∈ I.
(2) A proper ideal I of A is called a Z−ideal if Ma ⊆ I, for each a ∈ I.

Remark 2.12. ([1]) If a is a zero divisor of MV−algebra of A, then Pa is a Z◦−ideal which is called a basic
Z◦−ideal. Also, every intersection of Z◦−ideals (Z−ideals) is a Z◦−ideal (Z−ideal).

Proposition 2.13. ([1]) If a ∈ A and X is a subset of A, then
(1) Pa = {b ∈ A|Ann(a) ⊆ Ann(b)},
(2) Pa = Ann(Ann(a))
(3) Ann(Ann(Ann(X)) = Ann(X).

Theorem 2.14. ([1]) Every Z−ideal of A is the intersection of the minimal prime ideals containing it.

We have [0, 1] and [−∞,+∞] are homeomorphic, so we can replace the definitions that depend on
[−∞,+∞] with [0, 1]. Such as the following definition:

Definition 2.15. ([11]) A space X is said to be completely regular provided that it is a Husdorff space such
that, whenever F is a closed set and x is a point in its complement, there exists a function f ∈ C(X) such that
f (x) = 1 and f (F) = {0}.

Remark 2.16. ([11]) Let f ∈ C(X). The set Z( f ) = {x ∈ X : f (x) = 0} is called zero set and X \ Z( f ) is called
cozero-set.

Definition 2.17. ([11]) A space X is said to be extremally disconnected if every open set has an open closure;
X is basically disconnected if every cozero-set has an open closure.

Lemma 2.18. ([14]) Let X = A ∪ B such that A and B be closed subsets of X. Also, let f : A→ Y and 1 : B→ Y be
continuous functions. If f (x) = 1(x) for all x ∈ A ∩ B, then there exists continuous function h : X → Y such that
h(x) = f (x) for all x ∈ A, and h(x) = 1(x) for all x ∈ B.

Theorem 2.19. ([14]) Let X be a topological space. If ζ is a collection of compact subsets of X such that every finite
intersection of elements ζ be nonempty, then intersection of all the elements of ζ is nonempty.

Theorem 2.20. ([14]) Let X be a compact space and f ∈ C(X). Then there exist c, d ∈ X such that f (c) ≤ f (x) ≤ f (d),
for all x ∈ X.

3. Ideal theory of C(X)

Let X be a completely regular space. In this paper, we denote by C(X) the MV−algebra of all continuous
functions on topological space X to standard MV−algebra ([0, 1],⊕, ∗, 0). For every f , 1 ∈ C(X) we define
( f ⊕ 1)(x) = f (x) ⊕ 1(x), f ∗(x) = ( f (x))∗ and 0(x) = 0, for all x ∈ X. Obviously, (C(X),⊕, ∗, 0) is an MV−algebra.
Let f ∈ C(X) and I be an ideal of C(X). Define

Z( f ) = {x ∈ X : f (x) = 0} Z(X) = {Z( f ) : f ∈ C(X)}

Z(I) = {Z( f ) : ∀ f ∈ I} Z−1(Z(I)) = { f ∈ C(X) : Z( f ) ∈ Z(I)}.

Lemma 3.1. Let f1, f2 ∈ C(X). Then
(1) Z( f1 ⊕ f2) = Z( f1) ∩ Z( f2),
(2) intZ( f1 ⊕ f2) = intZ( f1) ∩ intZ( f2).
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Proof. (1) It is clear.
(2) If x ∈ intZ( f1) ∩ intZ( f2), then there exist open subsets U1 and U2 of X such that x ∈ U1 ⊆ intZ( f1)

and x ∈ U2 ⊆ intZ( f2). Put U = U1 ∩U2. Obviously, U ⊆ intZ( f1) ∩ intZ( f2). Hence U ⊆ int(Z( f1) ∩ Z( f2)), so
U ⊆ Z( f1)∩Z( f2). Thus x ∈ Z( f1)∩Z( f2) then f1(x) = f2(x) = 0, hence ( f1 ⊕ f2)(x) = 0 so x ∈ Z( f1 ⊕ f2).On the
other hand U is an open subset of X such that x ∈ U so x ∈ U ⊆ Z( f1 ⊕ f2). Then x ∈ intZ( f1 ⊕ f2), implies
that intZ( f1) ∩ intZ( f2) ⊆ intZ( f1 ⊕ f2). Now, if y ∈ intZ( f1 ⊕ f2), then y ∈ Z( f1 ⊕ f2). So ( f1 ⊕ f2)(y) = 0, thus
f1(y) = f2(y) = 0 which implies that Z( f1⊕ f2) ⊆ Z( f1) and Z( f1⊕ f2) ⊆ Z( f2).Hence intZ( f1⊕ f2) ⊆ intZ( f1) and
intZ( f1 ⊕ f2) ⊆ intZ( f2). So intZ( f1 ⊕ f2) ⊆ intZ( f1)∩ intZ( f2). Therefore intZ( f1 ⊕ f2) = intZ( f1)∩ intZ( f2).

Theorem 3.2. Let τ = {intZ( f ) : f ∈ C(X)}. Then τ is a topological basis for X.

Proof. By Lemma 3.1(2), it is sufficient to show that for an open set U and x ∈ U, there exists f ∈ C(X) such
that x ∈ intZ( f ) ⊆ U. If U is an open subset of X and x ∈ U, then there exists 1 ∈ C(X) such that 1(X \U) = {0}
and 1(x) = 1. Put f = |(1 − (1/4)) ∧ 0|. Obviously,

x ∈ intZ( f ) ⊆ Z( f ) = {x ∈ X : 1(x) ≥ 1/4} = 1−1([1/4, 1]) ⊆ U.

Therefore τ is a basis for X.

Example 3.3. Let X = R and (a, b) be an open interval in R. Put

f (x) =


1 x ∈ (−∞, a − 1]

−x + a x ∈ (a − 1, a)
0 x ∈ [a, b]

x − b x ∈ (b, b + 1)
1 x ∈ [b,∞)

Obviously, (a, b) = intZ( f ). Then τ = {intZ( f ) : f ∈ C(R)} is a basis for standard topology on R.

Lemma 3.4. Let I be an ideal of C(X). Then Z(I) is closed under finite intersections and supersets.

Proof. Let Z1,Z2 ∈ Z(I). Then there exist f1, f2 ∈ I such that Z1 = Z( f1),Z2 = Z( f2). Hence f1 ⊕ f2 ∈ I, so
Z( f1 ⊕ f2) ∈ Z(I). By Lemma 3.1(1), Z( f1)∩Z( f2) ∈ Z(I). Let Z1 ∈ Z(I),Z′ ∈ Z(X) and Z1 ⊆ Z′ . Then there exist
f1 ∈ I and f ∈ C(X) such that Z1 = Z( f1) and Z′ = Z( f ). Hence f1 ∧ f ∈ I, so Z( f1 ∧ f ) ∈ Z(I). Obviously,
Z( f ) = Z( f1 ∧ f ) thus Z′ ∈ Z(I).

Proposition 3.5. If I is an ideal of C(X), then Z−1(Z(I)) is an ideal of C(X). Also I ⊆ Z−1(Z(I)).

Proof. Obviously, Z−1(Z(I)) is a nonempty subset of C(X). Let f , 1 ∈ Z−1(Z(I)). Then Z( f ),Z(1) ∈ Z(I). By
Lemma 3.4, we get that Z( f )∩Z(1) ∈ Z(I) thus Z( f⊕1) ∈ Z(I), then f⊕1 ∈ Z−1(Z(I)).Let f ∈ Z−1(Z(I)), 1 ∈ C(X)
and 1 ≤ f . Then Z( f ) ∈ Z(I) and Z( f ) ⊆ Z(1). It follows from Lemma 3.4, that Z(1) ∈ Z(I) thus 1 ∈ Z−1(Z(I)).
Obviously, I ⊆ Z−1(Z(I)).

Lemma 3.6. Let f , 1 ∈ C(X). Then the following statements are equivalent:
(1) P1 ⊆ P f ,
(2) P( f ) ⊆ P(1),
(3) intZ( f ) ⊆ intZ(1),
(4) Ann( f ) ⊆ Ann(1).

Proof. (1⇒ 2) Let P ∈ P( f ). Then P f ⊆ P, hence P1 ⊆ P. So 1 ∈ P, thus P ∈ P(1). Then P( f ) ⊆ P(1).
(2⇒ 1) It is clear.
(3⇒ 4) Let intZ( f ) ⊆ intZ(1) and h ∈ Ann( f ). Then (h∧ f )(x) = 0, for all x ∈ X which implies that h(x) = 0

or f (x) = 0, so X \ Z(h) ⊆ Z( f ). Since Z(h) is closed subset of X we get int(X \ Z(h)) = Z(h). Hence

X \ Z(h) ⊆ intZ( f ) ⊆ intZ(1) ⊆ Z(1).
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Then (1 ∧ h)(x) = 0, for all x ∈ X. Therefore h ∈ Ann(1).
(4 ⇒ 3) Let Ann( f ) ⊆ Ann(1). To prove that intZ( f ) ⊆ intZ(1), it suffices to show that intZ( f ) ⊆ Z(1).

Suppose x ∈ intZ( f ) and x < Z(1). Since x < X\intZ( f ), then there exists 0 , h ∈ C(X) such that h(X\intZ( f )) =
{0} and h(x) = 1. Clearly, (h ∧ f )(x) = 0 and (h ∧ 1)(x) , 0,which is impossible.

(4 ⇔ 1) By Proposition 2.13 (2,3), we get that P1 ⊆ P f if and only if Ann(Ann(1)) ⊆ Ann(Ann( f )) if and
only if Ann(Ann(Ann( f ))) ⊆ Ann(Ann(Ann(1))) if and only if Ann( f ) ⊆ Ann(1).

Corollary 3.7. (1) Let f , 1 ∈ C(X). Then intZ( f ) = intZ(1) if and only if Ann( f ) = Ann(1).
(2) Let f ∈ C(X). Then P f = {1 ∈ C(X)|intZ( f ) ⊆ intZ(1)}.

Proposition 3.8. Let I be an ideal of C(X). Then the following statements are equivalent:
(1) I is a Z◦−ideal,
(2) intZ( f ) ⊆ intZ(1) and f ∈ I imply that 1 ∈ I.

Proof. (1 ⇒ 2) Let intZ( f ) ⊆ intZ(1) and f ∈ I. Since I is a Z◦−ideal, hence P f ⊆ I. It follows from Lemma
3.6, that P1 ⊆ P f , so 1 ∈ I.

(2⇒ 1) For every f ∈ I,We must show that P f ⊆ I. Let 1 ∈ P f . Obviously, P1 ⊆ P f by Lemma 3.6, we get
that intZ( f ) ⊆ intZ(1), then 1 ∈ I.

Corollary 3.9. Let J be a Z◦−ideal of C(X) and f ∈ J. Then intZ( f ) , ∅.

Proof. Let intZ( f ) = ∅. Then intZ( f ) = intZ(i) such that i(x) = 1, for all x ∈ X. Hence i ∈ J, so J = C(X) that is
impossible.

The following is an example that the join of two Z◦−ideal in C(X) is a proper ideal that is not a Z◦−ideal.
In addition, It has been shown that every ideal contains a Z◦−ideal in C(X) is not necessary a Z◦−ideal.

Example 3.10. (1) Let X = R, I = { f ∈ C(X) : [0,∞) ⊆ Z( f )} and J = { f ∈ C(X) : (−∞, 0] ⊆ Z( f )}. Obviously, I
and J are Z◦−ideals of C(X).Define k1(x) = 1∧|x|, for all x ∈ (−∞, 0) and k1(x) = 0, for all x ∈ [0,∞), k2(x) = 1∧x,
for all x ∈ (0,∞) and k2(x) = 0, for all x ∈ (−∞, 0], k(x) = |x|, for all x ∈ [−1, 1] and k(x) = 1, for all x ∈ R\[−1, 1].
Obviously, k1 ∈ I, k2 ∈ J and k = k1 ⊕ k2. Since k ∈ I ∨ J and intZ(k) = ∅, then I ∨ J is not a Z◦−ideal.

(2) Let I = { f ∈ C(X) : (−∞, 1] ⊆ Z( f )} and J = { f ∈ C(X) : (−∞, 0] ∪ {
1
2
} ⊆ Z( f )}.

It is claimed that I is a Z◦−ideal. Let f , 1 ∈ C(X) such that (−∞, 1] ⊆ Z( f ) and (−∞, 1) = intZ( f ) = intZ(1).
On the other hand (−∞, 1) = (−∞, 1] ⊆ Z(1), hence 1 ∈ I. We deduce that I is a Z◦−ideal. Now, J is not

a Z◦−ideal, since for each f , 1 ∈ C(X) such that Z( f ) = (−∞, 0] ∪ {
1
2
} and Z(1) = (−∞, 0] ∪ {

1
3
}, we have

intZ( f ) = intZ(1), f ∈ I and 1 < I. Obviously, I is a subset of J.Hence every ideal contains a Z◦−ideal in C(X)
is not necessary a Z◦−ideal.

Now, we are going to investigate topological spaces X, such that the join of two Z◦−ideals in C(X) is
either a Z◦−ideal or C(X).

Theorem 3.11. If I and J are Z◦−ideals of C(X) and X is a basically disconnected space, then I∨ J is either a Z◦−ideal
or C(X).

Proof. Let I and J be two Z◦−ideal in C(X) and suppose that I∨ J , C(X). Let f ∈ I∨ J, and intZ( f ) ⊆ intZ(1),
for some 1 ∈ C(X). It is claimed that 1 ∈ I∨ J. Since f ∈ I∨ J, then f ≤ h⊕ k where h ∈ I and k ∈ J.We consider
two cases:

Case 1. if h(x) = k(x) = 0, for all x ∈ X, then f = 0. So Z( f ) = X hence intZ( f ) = X, thus intZ(1) = X, then
Z(1) = X. So 1(x) = 0, for all x ∈ X.We obtain 1 ∈ I ∨ J.

Case 2. if h , 0 and k , 0, we show that 1 ∈ I ∨ J. Now, since X is a basically disconnected space,
intZ(k) and intZ(h) are closed subsets of X. By Corollary 3.9, we have intZ(h) , ∅ and intZ(k) , ∅. Put
A = X \ intZ(k), then A and intZ(k) are disjoint clopen subsets of X. Thus there exists k′ ∈ C(X) such that
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k′ (A) = {1} and k′ (intZ(k)) = {0}. So Z(k′ ) = intZ(k). Then intZ(k′ ) = intZ(k) thus k′ ∈ J. Similarly, there exists
h′ ∈ C(X) such that Z(h′ ) = intZ(h) and h′ ∈ I. Obviously, Z(h) ∩ Z(k) ⊆ Z( f ) then intZ(h) ∩ intZ(k) ⊆ intZ( f ),
so Z(h′ ) ∩ Z(k′ ) ⊆ intZ( f ). Thus Z(h′ ⊕ k′ ) ⊆ intZ( f ), hence Z(h′ ⊕ k′ ) ⊆ intZ(1), then Z(h′ ⊕ k′ ) ⊆ Z(1). We
consider two cases:

Case 1. if x ∈ Z(1), then 1(x) = 0 So 1(x) ≤ h′ (x) ⊕ k′ (x).
Case 2. if x < Z(1), then x < Z(h′ ⊕ k′ ). So x < Z(h′ ) or x < Z(k′ ), hence h′ (x) = 1 or k′ (x) = 1, thus

(h′ ⊕ k′ )(x) = 1. So 1(x) ≤ (h′ ⊕ k′ )(x).
Therefore 1(x) ≤ (h′ ⊕ k′ )(x), for all x ∈ X. Hence 1 ∈ I ∨ J.

Theorem 3.12. Let x0 ∈ X. Then I = { f ∈ C(X) : f (x0) = 0} is a maximal ideal of C(X).

Proof. Obviously, I ∈ Id(C(X)). Let Q ∈ Id(C(X)) be such that I ⊊ Q ⊆ C(X). Then there exists 11 ∈ Q such
that 11 < I. So 11(x0) , 0. Put U = {x ∈ X : (1/2)11(x0) < 11(x)} = {x ∈ X : x ∈ 1−1

1 ((1/2)11(x0), 1]}, hence U is
an open subset of X and C = X⧹U is a closed subset of X. Thus there exists f ∈ C(X) such that f (C) = 1 and
f (x0) = 0, imply that f ∈ I. Put 1 = f ⊕ 11. Obviously, 1 ∈ Q. Now, we consider two cases:

Case 1: if x ∈ C, then f (x) = 1 hence 1(x) = 1.

Case 2: if x ∈ U, then (1/2)11(x0) < 11(x).

Therefore 0 < (1/2)11(x0) ≤ 1(x), for all x ∈ X. So, by Archimedean property there exists m ∈N such that
m1(x) = 1, for all x ∈ X. Hence Q = C(X). Therefore I ∈Max(C(X)).

Now, converse of Theorem 3.12, is proved with an extra condition.

Theorem 3.13. If X is a compact space, then every maximal ideal M of C(X) has the form Mx for a unique x ∈ X
where

Mx = { f ∈ C(X) : f (x) = 0}.

Proof. First we show that
⋂
f∈M

Z( f ) , ∅. By Theorem 2.19, it suffices to show that Z( f1)∩Z( f2)∩ ...∩Z( fn) , ∅,

where fi ∈ M, for all 1 ≤ i ≤ n. Let Z( f1) ∩ Z( f2) ∩ ... ∩ Z( fn) = ∅. Hence (⊕n
i=1 fi)(x) , 0, for all x ∈ X. So

by Theorem 2.20, there exist x′ ∈ X and p ∈ (0, 1] such that min(⊕n
i=1 fi)(x

′

) = p. Then there exists t ∈ N
such that t(⊕n

i=1 fi)(x) = 1, for all x ∈ X this implies that M = C(X), which is a contradiction. Hence there
exists x ∈

⋂
f∈M

Z( f ) such that M = { f ∈ C(X) : f (x) = 0}. If there exists y ∈
⋂
f∈M

Z( f ) such that x , y, then

M ⊊ { f ∈ C(X) : f (x) = f (y) = 0},which is a contradiction.

Example 3.14. If X = [0, 1], then I = { f ∈ C(X) : f (1/2) = 0} and J = { f ∈ C(X) : f (1/3) = 0} are maximal
ideals of C(X). Hence C(X) is not a local MV−algebra.

Lemma 3.15. Let f , 1 ∈ C(X). Then the following statements are equivalent:
(1) M1 ⊆M f ,
(2) M( f ) ⊆M(1).

Proof. (1 ⇒ 2) Let M ∈ M( f ). Then M ∈ Max(C(X)) and f ∈ M. So M f ⊆ M thus M1 ⊆ M.We obtain 1 ∈ M,
hence M ∈M(1).

(2 ⇒ 1) Let t ∈ M1 but t < M f . Then there exists M ∈ Max(C(X)) such that f ∈ M and t < M. Since
M( f ) ⊆M(1), thus 1 ∈M. Hence t <M1,which is impossible.

Lemma 3.16. If f , 1 ∈ C(X) and M( f ) ⊆M(1), then Z( f ) ⊆ Z(1).

Proof. Let x ∈ Z( f ). Then f ∈ M such that M ∈ Max(C(X)). Hence M ∈ M( f ), so M ∈ M(1). Thus 1 ∈ M
implies that x ∈ Z(1).We deduce that Z( f ) ⊆ Z(1).
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The following example shows that the converse Lemma 3.16, is not necessary correct.

Example 3.17. Let f , 1 ∈ C((0, 1)), such that f (x) = sin(
πx
2

) and 1(x) = |
1
2
− sin(

πx
2

)|, for all x ∈ (0, 1). Then

Z( f ) = ∅ and Z(1) = {
1
2
}, we deduce that Z( f ) ⊆ Z(1). It is claimed that M( f ) ⊈ M(1). If M( f ) ⊆ M(1), then

there exists M ∈M(1) such that f ∈M. On the other hand,

1
2
= |sin(

πx
2

) +
1
2
− sin(

πx
2

)| ⩽ |sin(
πx
2

)| + |
1
2
− sin(

πx
2

)| = sin(
πx
2

) + |
1
2
− sin(

πx
2

)|,∀x ∈ (0, 1)

Put K := f ⊕ 1. Hence k ∈ M, such that k(x) ≥
1
2
, for all x ∈ (0, 1).We obtain i ∈ M, such that i(x) = 1, for all

x ∈ (0, 1) that is impossible. Therefore M( f ) ⊈M(1).

Proposition 3.18. Let I be an ideal of C(X). Then the following statements are equivalent:
(1) I is a Z−ideal,
(2) Z( f ) ⊆ Z(1) and f ∈ I imply that 1 ∈ I.

Proof. (1 ⇒ 2) Let Z( f ) ⊆ Z(1) and f ∈ I. Then intZ( f ) ⊆ intZ(1). It follows from Lemma 3.6, that Ann( f ) ⊆
Ann(1). Since f ∈ I by Theorem 2.14, we have f ∈ PI, i.e, f ∈ P, for each P ∈ Min(C(X)) such that I ⊆ P. It
follows from Theorem 2.9, that Ann( f ) ⊈ P, thus Ann(1) ⊈ P. By Theorem 2.9, so 1 ∈ P.Hence 1 ∈ PI. So 1 ∈ I.

(2 ⇒ 1) Let f ∈ I. We must show that M f ⊆ I. Let 1 ∈ M f , obviously M1 ⊆ M f . By Lemma 3.15 and
Lemma 3.16, we get that Z( f ) ⊆ Z(1), then 1 ∈ I.

Corollary 3.19. (1) If I is a Z◦−ideal of C(X), then I is a Z−ideal.
(2) Let J be a Z−ideal of C(X) and f ∈ J. Then Z( f ) , ∅.

Now, we give examples that are shown every Z−ideal is not necessary a Z◦−ideal and there exists an
ideal of C(X) such that is not a Z−ideal nor Z◦−ideal.

Example 3.20. (1) Let X = R. Then I = { f ∈ C(X) : [0, 1] ∪ {2} ⊆ Z( f )} is a Z−ideal, but I is not a Z◦−ideal,
since for each f , 1 ∈ C(X) such that Z( f ) = [0, 1] ∪ {2} and Z(1) = [0, 1] ∪ {3}, we have intZ( f ) = intZ(1), f ∈ I
and 1 < I.

(2) Let X = [0, 1], I = ( f ] such that f (x) = x, for all x ∈ X and suppose that 1(x) =
√

x, for all x ∈ X.
Obviously, Z( f ) = Z(1) = 0, intZ( f ) = intZ(1) = ∅. It is claimed that 1 < I. If 1 ∈ I, then there exists n ∈ N
such that

√
x ≤ nx, for each x ∈ [0, 1]. Hence 1 ≤ n

√
x, for each x ∈ [0, 1] which is impossible. Therefore I is

not a Z−ideal nor Z◦−ideal.

Theorem 3.21. If I and J are Z−ideals of C(X), then I ∨ J is a Z−ideal of C(X).

Proof. Let Z(1) ⊆ Z( f ) and 1 ∈ I∨ J.Then 1 ≤ 11⊕12 such that 11 ∈ I and 12 ∈ J.Obviously, Z(11)∩Z(12) ⊆ Z(1),
so Z(11) ∩ Z(12) ⊆ Z( f ). Define

h(x) =


0 x ∈ Z(11) ∩ Z(12)

f (x)(
11(x)

11(x) + 12(x)
) x < Z(11) ∩ Z(12)

and

k(x) =


0 x ∈ Z(11) ∩ Z(12)

f (x)(
12(x)

11(x) + 12(x)
) x < Z(11) ∩ Z(12)

Now, we show that h and k are continuous functions. Let ε > 0 and x0 ∈ Z(11) ∩ Z(12). Since f ∈ C(X)
then there exists open subset V of X such that f (V) ⊆ (−ε, ε). On the other hand h(x) ≤ f (x) < ε, for all
x ∈ V. So h(V) ⊆ (−ε, ε), thus h is continuous at x0. Therefore h ∈ C(X). Similarly, it is proved that k ∈ C(X).
Obviously, f = h ⊕ k,Z(11) ⊆ Z(h) and Z(12) ⊆ Z(k). So h ∈ I and k ∈ J,we deduce that f ∈ I ∨ J.
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It was shown in Example 3.20(1), that every Z−ideal is not a Z◦−ideal. Now, conditions are provided
that Z−ideals connection by Z◦−ideals.

Lemma 3.22. Let e ∈ A. Then e ∈ B(A) if and only if Ann(e) = (e∗].

Proof. If e ∈ B(A), then e ∧ e∗ = 0.We obtain e∗ ∈ Ann(e), hence (e∗] ⊆ Ann(e). Let x ∈ Ann(e). Then x ∧ e = 0,
thus x ⊙ a = 0. So x ≤ e∗, then x ∈ (e∗]. Hence Ann(e) ⊆ (e∗]. Therefore Ann(e) = (e∗]. Converse is clear.

Corollary 3.23. Let e ∈ B(A). Then Pe = (e].

Proof. Let e ∈ B(A). Then Ann(e) = (e∗], so Ann(Ann(e)) = Ann((e∗]). By Lemma 3.22 and Proposition 2.13 (2),
we get that Pe = (e].

Lemma 3.24. (1) If f ∈ C(X), then Ann( f ) = {0} if and only if intZ( f ) = ∅.
(2) If e ∈ B(C(X)), then Z(e) is an open subset of X.
(3) Let f ∈ C(X) be such that in f ( f (X\Z( f )) , 0 and Z( f ) be an open subset of X. Then there exists e ∈ B(C(X))
such that (e] = ( f ].

Proof. (1) Let i ∈ C(X) be such that i(x) = 1, for all x ∈ X. Obviously, Ann(i) = {0},Z(i) = ∅ and intZ(i) = ∅.
Now, if Ann( f ) = {0}, then Ann( f ) = Ann(i). It follows from Corollary 3.7(1), that intZ( f ) = intZ(i). Hence
intZ( f ) = ∅.

Conversely, if intZ( f ) = ∅, then intZ( f ) = intZ(i). It follows from Corollary 3.7(1), that Ann( f ) = Ann(i)
implies that Ann( f ) = {0}.

(2) By hypothesis e ∈ B(C(X)), so (e⊕ e)(x) = e(x), for all x ∈ X.We deduce that e(x)⊕ e(x) = min{2e(x), 1} =
e(x), for all x ∈ X. Hence e(x) = 0 or e(x) = 1, for all x ∈ X. Put K = {x : e(x) = 1}. Obviously, Z(e) ∩ K = ∅ and
Z(e) ∪ K = X, then K and Z(e) are clopen subsets of X. Therefore intZ(e) = Z(e).

(3) Define e : X→ [0, 1] by e(x) = 0, for all x ∈ Z( f ) and e(x) = 1, for all x < Z( f ). By Lemma 2.18, we get
that e ∈ C(X). Obviously, e ∈ B(C(X)) and Z( f ) = intZ( f ) = Z(e). It is claimed that ( f ] = (e]. we consider two
cases:

Case 1. if x ∈ Z( f ), then e(x) = f (x) = 0. So e(x) ≤ f (x).
Case 2. if x < Z( f ), then f (x) , 0. By hypothesis in f f (x) , 0, we imply that there exists n ∈ N such that

n f (x) = 1. So e(x) ≤ n f (x).
Hence e ∈ ( f ], thus (e] ⊆ ( f ]. Now, it is clear that ( f ] ⊆ (e]. Then (e] = ( f ].

Proposition 3.25. Let K be finitely generated Z−ideal in C(X).Then K is a basic Z◦−ideal and there exists e ∈ B(C(X))
such that K = (e].

Proof. Let K = ( f1, f2, ..., fn] and f := f1 ⊕ f2 ⊕ ... ⊕ fn. Obviously, f ∈ K hence ( f ] ⊆ K. On the other hand,
fi ≤ f , for all 1 ≤ i ≤ n, hence fi ∈ ( f ], for all 1 ≤ i ≤ n. Thus { f1, f2, ..., fn} ⊆ ( f ], so ( f1, f2, ..., fn] ⊆ ( f ],
implies that K ⊆ ( f ]. Hence K = ( f ]. Obviously, Z( f ) = Z(

√
f ) and f ∈ K, by hypothesis and Proposition

3.18, hence
√

f ∈ K. So there exists n ∈ N such that
√

f (x) ≤ n f (x), for all x ∈ X. Now, f (x) , 0, for
all x < Z( f ), hence

√
f (x) ≤ n f (x). So 1 ≤ n

√
f (x), thus (1/n) ≤

√
f (x) implies that (1/n2) ≤ f (x). So

β = {x ∈ X : (1/n2) ≤ f (x)} = {x ∈ X : f (x) ∈ [1/n2, 1]} is a closed subset of X and X = Z( f ) ∪ β, imply that
Z( f ) is a clopen subset of X. It follows from Lemma 3.24 (3), that there exists e ∈ B(C(X) such that (e] = ( f ].
By Corollary 3.23, we get that K = (e] = Pe.

Now, we give an example for previous proposition.

Example 3.26. Let X = (0, 1) ∪ (1, 2) and I = ( f1, f2] such that

f1(x) =
{

0 x ∈ (0, 1)
1/2x x ∈ (1, 2)

and
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f2(x) =
{

0 x ∈ (0, 1)
x/4 x ∈ (1, 2)

We define f = f1 ⊕ f2 and e ∈ C(X) such that e(x) = 0, for all x ∈ (0, 1) and e(x) = 1, for all x ∈ (1, 2).
Obviously, I = ( f ] is a Z−ideal and I = (e] = Pe.

Theorem 3.27. (1) Every basic Z◦−ideal in C(X) is principal if and only if X is basically disconnected.
(2) Any arbitrary intersections of basic Z◦−ideals in C(X) is principal if and only if X is extremally disconnected.

Proof. (1) Suppose that every basic Z◦−ideal in C(X) is principal. To prove that X − Z( f ) is open subset of
X, it suffices to show that intZ( f ) is closed, for all f ∈ C(X).We consider two cases:

Case 1. if f is not a zero divisor, then Ann( f ) = {0}. It follows from Lemma 3.24(1), that intZ( f ) = ∅.
Case 2. if f is a zero divisor, then Ann( f ) , {0}. By hypothesis, there exists 1 ∈ C(X) such that P f = (1].

By Corollary 3.19(1) and Proposition 3.25, there exists e ∈ B(C(X)) such that P f = (e].Now, it is claimed that
intZ( f ) = intZ(e). Obviously, f ∈ P f = (e], so f ∈ (e]. Hence there exists n ∈ N such that f (x) ≤ ne(x), for all
x ∈ X. Thus Z(e) ⊆ Z( f ) implies that intZ(e) ⊆ intZ( f ). Let e ∈ P f . Obviously, by Corollary 3.7(2), we have
intZ( f ) ⊆ intZ(e). Now, by Lemma 3.24(2),we get that intZ( f ) = Z(e).

Conversely, let X be a basically disconnected space and f ∈ C(X) with Ann( f ) , {0}. By Lemma 3.24 (1),
we have F = intZ( f ) , ∅ is a closed subset of X. Define e1 : F→ [0, 1] where e1(F) = 0 and e2 : X \ F→ [0, 1]
where e2(X \ F) = 1. It follows from Lemma 2.18, that there exists e ∈ C(X) such that

e(x) =
{

e1(x) x ∈ F
e2(x) x ∈ X \ F

Obviously, e ∈ B(C(X)) and it is claimed that P f = (e]. Let 1 ∈ P f .We consider two cases:
Case 1. if x ∈ X \ F, then e(x) = 1. Hence 1(x) ≤ e(x), for all x ∈ X \ F.
Case 2. if x ∈ F = intZ( f ), hence by hypothesis 1 ∈ P f and Lemma 3.24 (2),we get that intZ( f ) ⊆ intZ(1).

Then x ∈ intZ(1) so x ∈ Z(1), hence 1(x) = 0.We obtain 1(x) ≤ e(x), for all x ∈ F.
Then 1 ∈ (e] hence P f ⊆ (e]. Let k ∈ (e]. Then there exists n ∈ N such that k(x) ≤ (ne)(x), for all x ∈ X. So

Z(e) ⊆ Z(k), hence intZ( f ) ⊆ Z(k) then intZ( f ) ⊆ intZ(k). It follows from Corollary 3.7(2), that k ∈ P f thus
(e] ⊆ P f . Therefore (e] = P f .

(2) Suppose that every intersection of basic Z◦−ideals is principal and G is an open subset of X. By
Theorem 3.2, there exists S ⊆ C(X) such that G =

⋃
f∈S intZ( f ) and intZ( f ) , ∅. By Lemma 3.24, we have

Ann( f ) , {0} so f is a zero divisor of C(X). By hypothesis, there exists 1 ∈ C(X) such that
⋂

f∈S P f = (1].
Then (1] is a Z◦−ideal so by Corollary 3.19, (1] is a Z−ideal. It follows from Proposition 3.25, that there
exists e ∈ B(C(X)) such that (1] = (e]. Now, by Lemma 3.24(2), this shows that Z(1) = Z(e) is an open subset
of X. It is claimed that G = Z(1). Let x ∈ G =

⋃
f∈S intZ( f ). Then there exists f ∈ S such that x ∈ intZ( f ).

Because (1] =
⋂

f∈S P f , for every f ∈ S thus 1 ∈ P f by Corollary 3.7(2), we get that intZ( f ) ⊆ intZ(1). Hence
intZ( f ) ⊆ Z(1), so G ⊆ Z(1) implies that G ⊆ Z(1). Let x ∈ Z(1) and x < G. Then there exists h ∈ C(X) such
that h(x) = 1 and h(G) = {0}. Let β ∈ intZ( f ), for every f ∈ S. Then β ∈ G, hence β ∈ G so h(β) = 0.We deduce
that β ∈ Z(h), so intZ( f ) ⊆ Z(h).Hence intZ( f ) ⊆ intZ(h) thus h ∈ P f implies that h ∈

⋂
f∈S P f = (1].Therefore

there exists n ∈ N such that h(α) ≤ (n1)(α), for all α ∈ X. On the other hand, h(x) = 1 and 1(x) = 0, which is
a contradiction. Hence Z(1) ⊆ G, therefore Z(1) = G.

Conversely, let X be an extremally disconnected space and I =
⋂

f∈S P f be such that S ⊆ C(X).Obviously,

G =
⋃

f∈S intZ( f ) is an open and closed subset of X. Define e1 : G→ [0, 1] where e1(G) = 0 and e2 : X \ G→
[0, 1] where e2(X \ G) = 1. It follows from Lemma 2.18, that there exists e ∈ C(X) such that

e(x) =
{

e1(x) x ∈ G
e2(x) x ∈ X \ G
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Obviously, e ∈ B(C(X)) and by Lemma 3.24(2), we get that Z(e) is an open subset of X hence intZ( f ) ⊆
intZ(e), for all f ∈ S. It follows from Corollary 3.7(2), that e ∈ P f , for all f ∈ S. So e ∈

⋂
f∈S P f = I, then (e] ⊆ I.

Let 1 ∈ I =
⋂

f∈S P f . Then 1 ∈ P f , for all f ∈ S. It follows from Corollary 3.7(2), that intZ( f ) ⊆ intZ(1), for all

f ∈ S thus intZ( f ) ⊆ Z(1), for all f ∈ S therefore G =
⋃

f∈S intZ( f ) ⊆ Z(1). Since X = G ∪ (X \ G) we consider
two cases:

Case 1. if x ∈ G, then x ∈ Z(1). So 1(x) ≤ e(x), for all x ∈ G.
Case 2. if x ∈ X \ G, then e(x) = 1. Hence 1(x) ≤ e(x), for all x ∈ X \ G.
Thus 1 ∈ (e],we obtain I ⊆ (e]. Therefore I = (e].

Theorem 3.28. Let every ideal of C(X) containing zero divisors be a Z◦−ideal. Then every f ∈ C(X) with ∅ , Z( f ) ⊊
X is a zero divisor and P f is a principal ideal of C(X).

Proof. We consider two cases:
Case 1. if f (X) is a finite subset of [0, 1] and {a0 = 0, a1, ..., an} ⊆ [0, 1] be such that f−1(0) = A0 =

Z( f ), f−1(a1) = A1, ..., f−1(an) = An and X = A0 ∪ A1 ∪ ... ∪ An. We define 1 : X → [0, 1] such that 1(x) = 1,
for all x ∈ Z( f ) and 1(x) = 0, for all x < Z( f ). Obviously, by Lemma 2.18, we have 1 ∈ C(X). Hence
( f ∧ 1)(x) = min{ f (x), 1(x)} = 0, for all x ∈ X, then f is a zero divisor.

Case 2. if f (X) is an infinite subset of [0, 1] and a, b ∈ f (X) such that 0 < a < b < 1. Define

C = {y ∈ X : a ≥ f (y)} = {y ∈ X : f (y) ∈ [0, a]} = f−1([0, a])

B = {y ∈ X : a ≤ f (y)} = {y ∈ X : f (y) ∈ [a, 1]} = f−1([a, 1]).

Obviously, since 0 < a < b < 1, neither B contains C nor C contains B. It is clear that B and C are closed
subset of X such that X = B ∪ C and B∩ C = {x ∈ X : f (x) = a}. Define ϕ1 : C→ [0, 1] where ϕ1(x) = f (x), for
all x ∈ C and ϕ2 : B→ [0, 1] where ϕ2(B) = a. Obviously ϕ1(B∩ C) = ϕ2(B∩ C). It follows from Lemma 2.18,
that

ϕ(x) =
{
ϕ1(x) x ∈ C
ϕ2(x) x ∈ B

is a continuous function. Put h(x) = |ϕ(x) − f (x)|, for all x ∈ X. It is clear that h , 0 and Z(h) = C. Similarly,
there exists 1 ∈ C(X) such that Z(1) = B and 1 , 0. Then ( f ∧ 1 ∧ h)(x) = 0, for all x ∈ X so h ∈ Ann( f ∧ 1)
hence Ann( f ∧ 1) , {0} thus f ∧ 1 is a zero divisor of C(X). Since f ∧ 1 ∈ ( f ∧ 1], so by hypothesis, ( f ∧ 1]
is a Z◦−ideal and by Corollary 3.19, we get that ( f ∧ 1] is a Z−ideal. Now, by Proposition 3.25, there exists
e ∈ B(C(X)) such that ( f ∧ 1] = (e]. It follows from Lemma 3.24(2), that Z(( f ∧ 1]) = Z(e) = intZ(e).Obviously,
Z( f ∧ 1) = Z( f ) ∪ Z(1) = Z(e) and Z( f ) ∩ Z(1) = ∅, then Z( f ) = Z( f ∧ 1) \ Z(1) = Z( f ∧ 1) ∩ (Z(1))c. Hence
Z( f ) is an open subset of X and Z( f ) = intZ( f ). By hypothesis intZ( f ) , ∅ and by Lemma 3.24 (2), we have
Ann( f ) , {0}. Hence f is a zero divisor of C(X).

On the other hand, f is a zero divisor, then ( f ] is a Z◦−ideal so P f ⊆ ( f ]. Obviously, ( f ] ⊆ P f , hence
( f ] = P f .

4. Conclusion

We investigated ideals of continuous of functions C(X) and concluded that if X is compact space, then
every maximal ideal M of C(X) has the form Mx for a unique x ∈ X where Mx = { f ∈ C(X) : f (x) = 0}.
For every element f of Z−ideal (Z◦−ideal) has Z( f ) , ∅ (intZ( f ) , ∅) and every Z◦−ideal is a Z−ideal but
converse is not true. Also join of two Z−ideals is a Z−ideal but if X is a basically disconnected, then join
of two Z◦−ideals is a Z◦−ideal. If 1 is a complemented element of C(X), then Z(1) is an open subset of X
and if 1 is an element of C(X) such that in f (1(X)) , 0 then Z(1) is an open subset of X. Furthermore, every
f ∈ C(X) is not a zero divisor if and only if intZ( f ) , ∅. It is proved that for each complemented element
e of C(X),Ann(e) = (e∗] and Z(e) is an open subset of X. Also, we conclude that there exist connections
between elements X and C(X), for example for every f , 1 ∈ C(X), if M( f ) ⊆ M(1), then Z( f ) ⊆ Z(1) and
intZ( f ) ⊆ intZ(1) if and only if Ann( f ) ⊆ Ann(1).
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