
Filomat 36:7 (2022), 2427–2438
https://doi.org/10.2298/FIL2207427C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The strong Whitney convergence on bornology introduced by Caserta in [9] is a generalization
of the strong uniform convergence on bornology introduced by Beer-Levi in [5]. This paper aims to study
some important topological properties of the space of all real valued continuous functions on a metric space
endowed with the topologies of Whitney and strong Whitney convergence on bornology. More precisely,
we investigate metrizability, various countability properties, countable tightness, and Fréchet property of
these spaces. In the process, we also present a new characterization for a bornology to be shielded from
closed sets.

1. Introduction

Let C(X,Y) denote the set of all continuous functions from a metric space (X, d) to a metric space (Y, ρ).
For Y = R with the usual metric, the space C(X,R) is simply denoted by C(X). A family B of nonempty
subsets of X is called a bornology on X if B forms an ideal and covers X (see [21]). A subfamily B0 of B
satisfying that for every B ∈ B there is an element B′ ∈ B0 such that B ⊆ B′ is called base for the bornologyB.
If every member ofB0 is closed (respectively, compact) in (X, d), thenB is said to have a closed (respectively,
compact) base.

The smallest (respectively, largest) bornology on X is the collection F of all finite (respectively, P0(X) of
all nonempty) subsets of X. Another important bornology on X is K , the family of all nonempty relatively
compact subsets (that is, subsets with compact closure) of X.

In the literature, several topologies have been defined and studied on the set C(X,Y). Some of these
topologies, such as the topology of pointwise convergence τp, the topology of uniform convergence τu, and
the topology of uniform convergence on compacta τk, are extensively studied (see [14, 29]).

Another well-known topology on C(X,Y) is the Whitney topology τw, introduced by H. Whitney in
[31]. This topology is also sometimes called the fine topology or m-topology and is finer than the topology
of uniform convergence τu. It plays an important role in the study of rings of continuous functions (see
[16, 19]), approximation theory [1], and differential topology [20]. The Whitney topology has been studied
in [13, 17, 23, 25, 27]. For more details on Whitney topology, we refer readers to the research monograph
[28].

For any two metric spaces (X, d), (Y, ρ) and a bornologyB on X, the topology τw
B

of Whitney convergence
on B is a generalization of the Whitney topology τw on C(X,Y). The topology τw

B
reduces to τw when

B = P0(X). In [9], Caserta introduced a stronger version of the topology τw
B

known as the topology of
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strong Whitney convergence on B, which is denoted by τsw
B

. The topology τsw
B

is a stronger form of the
topology τw

B
in the same vein as the topology τs

B
of strong uniform convergence on B is of the classical

topology of uniform convergence on B, denoted by τB. The topology τs
B

was introduced by Beer and Levi
in [5]. However, for B = F , a similar topology was considered by Bouleau in [7, 8]. The topological space
(C(X), τs

B
) is well studied in [3, 5, 10, 11, 22, 24].

The properties of the spaces (C(X), τw
B

) and (C(X), τsw
B

) are yet to be explored in detail. Recently, τw
B

-
convergence and τsw

B
-convergence have been studied in [12]. The main objective of this paper is to char-

acterize the metrizability and various countability properties of C(X) equipped with the topologies τw
B

and
τsw
B

. It comes out that the first countability, second countability and metrizability all are equivalent for these
function spaces. Note that these three properties of (C(X), τsw

B
) are also considered in [9] (Corollary 2 and

Corollary 3). Our results (Theorem 3.2 and Theorem 3.11) show that these corollaries are not true in the
form given in [9].

The notion of a bornology being shielded from closed sets is pivotal to studying the topology of strong
Whitney (strong uniform) convergence. In [6], many applications of the concept of shielded from closed
sets are given. In this paper, we present a new characterization for a bornology to be shielded from closed
sets in terms of a covering property associated with the bornology which is useful to relate the tightness
and Fréchet property of spaces (C(X), τw

B
) and (C(X), τsw

B
).

2. Preliminaries

All metric spaces are assumed to have at least two points. For any x ∈ X and δ > 0, Sδ(x) denotes the
open ball with center x and radius δ. For any nonempty subset A of X, Aδ represents the δ-enlargement of A

defined as Aδ = ∪x∈ASδ(x) = {x ∈ X : d(x,A) < δ}. Note that Aδ = A
δ
, where A denotes the closure of A. We

denote by f0 the constant function zero on X, that is, f0 : X→ R such that f0(X) = 0 for all x ∈ X. For other
terms and notations, we refer to [14, 29, 32].

Let B be a bornology on (X, d) and let (Y, ρ) be any other metric space. Then the classical topology τB
of uniform convergence on B for the space C(X,Y) is determined by the uniformity which has a base for its
entourages all sets of the form

[B, ϵ] = {( f , 1) : ρ( f (x), 1(x)) < ϵ for all x ∈ B} (B ∈ B, ϵ > 0).

Note that the topology τF is the topology of pointwise convergence τp; if B = P0(X) (respectively,K ), then
the topology τP0(X) (respectively, τK ) is the topology of uniform convergence τu (respectively, the topology
of uniform convergence on compact subsets τk).

Definition 2.1. ([5]) Let (X, d) and (Y, ρ) be metric spaces and let B be a bornology on X. Then the topology
τs
B

of strong uniform convergence on B is determined by a uniformity on C(X,Y) having as a base all sets of
the form

[B, ϵ]s = {( f , 1) : ∃ δ > 0 ∀x ∈ Bδ, ρ( f (x), 1(x)) < ϵ} (B ∈ B, ϵ > 0).

In [6], the authors found a necessary and sufficient condition for topologies τs
B

and τB to agree on C(X,Y)
using the notion of a shield. The concept of a shield was introduced by Beer et al. in [4] while studying
bornological convergence. Recall that for a nonempty subset A of X, a superset A1 of A is called a shield
for A provided that for every closed subset C of X with C ∩ A1 = ∅, we have C cannot be near to A, that is,
there exists a δ > 0 such that C ∩ Aδ = ∅. Equivalently, a superset A1 of A is a shield for A if every open

neighborhood of A1 contains Aδ for some δ > 0. Since Aδ = A
δ
, a set A1 is a shield for A if and only if A1 is

a shield for A. Evidently, X is a shield for all A ∈ P0(X).
A bornology B on X is called shielded from closed sets if B contains a shield for each of its members. It is

known that every bornology with a compact base is shielded from closed sets, in particular, the bornologies
F andK are shielded from closed sets.
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Let B be a bornology on a metric space (X, d). The classical uniformity for the topology τw
B

of Whitney
convergence on B for C(X,Y) has as a base for its entourages all sets of the form

[B, ϵ]w = {( f , 1) : ρ( f (x), 1(x)) < ϵ(x) for all x ∈ B} (B ∈ B, ϵ ∈ C+(X)).

Here C+(X) represents the set of all positive real-valued continuous functions defined on X. Note that if
B = P0(X), then the above uniformity generates the topology τw of Whitney convergence on C(X,Y).

Definition 2.2. ([9]) Let (X, d) and (Y, ρ) be metric spaces and let B be a bornology on X. Then the topology
τsw
B

of strong Whitney convergence on B is determined by a uniformity on C(X,Y) having as a base all sets of
the form

[B, ϵ]sw = {( f , 1) : ∃ δ > 0 ∀x ∈ Bδ, ρ( f (x), 1(x)) < ϵ(x)}

with B ∈ B, ϵ ∈ C+(X).

Remark 2.3. For an arbitrary bornology B on X, we have [B, ϵ]s = [B, ϵ]s and [B, ϵ]sw = [B, ϵ]sw for every
B ∈ B. Moreover,B = {B : B ∈ B} is a bornology on X. Hence there is no loss of generality, if in the definition
of τs

B
as well as τsw

B
, we assume B has a closed base.

In [9], the τsw
F

-convergence is shown to be equivalent to Arzelà-Whitney convergence on compact sets.
The Arzelà-Whitney convergence was introduced in [15].

For any bornologyB, we have F ⊆ B. So each of the above defined topologies is finer than the topology
of pointwise convergence, and hence is Hausdorff. Since all of them are induced by a uniformity, they are
Tychonoff.

In general, on C(X,Y) the above defined topologies are related as follows:

τB ⊆ τ
s
B
⊆ τsw

B
and τB ⊆ τw

B
⊆ τsw

B
⊆ τw.

The relationships between the above mentioned topologies are thoroughly studied in [12]. The following
result proved in [12], we need in the sequel.

Theorem 2.4. ([12, Corollary 3.11] Let B be a bornology on a metric space (X, d) with a closed base. Then the
following conditions are equivalent:

(a) for every metric space (Y, ρ), τsw
B
= τs

B
= τw

B
= τB on C(X,Y);

(b) B ⊆ K .

Note that for a bornology B on a metric space (X, d) with a closed base, B ⊆ K if and only if B
has a compact base. We can easily observe that if B is a bornology on (X, d) with a compact base, then
τF ⊆ τw

B
= τs

B
= τsw

B
⊆ τsw

K
= τK on C(X,Y) for every metric space (Y, ρ).

3. Metrizability and Countability Properties

In this section, we characterize metrizability and various countability properties such as countable chain
condition, separability, second countability, being a cosmic space, (hereditary) Lindelöf property and ω-
narrowness of spaces (C(X), τsw

B
) and (C(X), τw

B
). Since these spaces are topological groups, it follows from

the Birkhoff-Kakutani theorem that they are metrizable if and only if they are first countable.
We show that metrizability of (C(X), τsw

B
) is also equivalent to some weaker properties. We first recall

their definitions. A topological space X is called pointwise countable type if every point of X is contained in
a compact set having a countable character. A subset A of a topological space X is said to have countable
character in X if there exists a countable collection {Un : n ∈ N} of open subsets of X such that each Un
contains A and for every open set U in X with A ⊆ U, there exists a Un such that Un ⊆ U. A topological
space X is called a q-space if for each point x ∈ X, there exists a sequence {Un : n ∈N} of neighborhoods of x
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such that if xn ∈ Un for each n, then {xn : n ∈N} has a cluster point. It is known that a first countable space
is of pointwise countable type and every pointwise countable type space is a q-space (see [30]).

In a number of subsequent results, we use the following lemma given in [28]. We include its statement
here for the readers’ convenience.

Lemma 3.1. (Lemma 1.1 on page 7, [28]) If A is a C-embedded subset of a Tychonoff space X, then any continuous
function f : A→ (0,∞) can be extended to a continuous function F : X→ (0,∞).

Theorem 3.2. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) B has a countable base consisting of compact sets;

(b) for every metric space (Y, ρ), (C(X,Y), τsw
B

) is metrizable;

(c) for every metric space (Y, ρ), (C(X,Y), τsw
B

) is first countable;

(d) (C(X), τsw
B

) is metrizable;

(e) (C(X), τsw
B

) is first countable;

(f) (C(X), τsw
B

) is of pointwise countable type;

(g) (C(X), τsw
B

) is a q-space.

Proof. (a) ⇒ (b) Since B has a countable base consisting of compact sets, by Theorem 2.4, τs
B
= τsw

B
on

C(X,Y). But for such a bornology, (C(X,Y), τs
B

) is metrizable by Theorem 7.1 of [5].
The implications (b)⇒ (c)⇒ (e) and (b)⇒ (d)⇒ (e) are immediate.
(e) ⇒ (a) Let B( f0) = {[Bn, ϕn]sw( f0) : n ∈ N} be a countable base at f0, where Bn ∈ B and ϕn ∈ C+(X) for

each n ∈N.
Suppose B0 ∈ B is closed but not compact. So there exists a countably infinite subset D = {xn : n ∈ N}

of B0 which is closed and discrete in X. By Lemma 3.1, the continuous function ϵ′ : D → R such that
ϵ′(xn) = ϕn(xn)

2 for all xn ∈ D can be extended to a function ϵ ∈ C+(X). Thus for every n ∈ N, we have
[Bn, ϕn]sw( f0) ⊈ [B0, ϵ]sw( f0). We arrive at a contradiction. Hence B has a base consisting of compact sets.
Consequently, by Theorem 2.4, τs

B
= τsw

B
on C(X), and by Theorem 7.1 of [5], B has a countable base.

The implications (e)⇒ ( f )⇒ (1) follow from the above discussion.
(1) ⇒ (e) We can prove that B has a countable base in a manner similar to the proof of implication

(vi)⇒(i) of Theorem 3.1 in [10]. Hence (C(X), τs
B

) is metrizable. Consequently, every point of C(X) is Gδ in
(C(X), τsw

B
). But by Lemma 3.2 in [18] a regular q-space in which singleton sets are Gδ, is first countable.

Remark 3.3. We now give an example showing that Proposition 4 and Corollary 2 of [9] do not hold in
general.

Example 3.4. Let (X, d) = R with the usual metric and B = K . Then τsw
K
= τK on C(R). Hence (C(R), τsw

K
) is

first countable but R is not compact.

Similarly, we can prove the following result for the topology τw
B

.

Theorem 3.5. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) B has a countable base consisting of compact sets;

(b) for every metric space (Y, ρ), (C(X,Y), τw
B

) is metrizable;

(c) for every metric space (Y, ρ), (C(X,Y), τw
B

) is first countable;
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(d) (C(X), τw
B

) is metrizable;

(e) (C(X), τw
B

) is first countable;

(f) (C(X), τw
B

) is of pointwise countable type;

(g) (C(X), τw
B

) is a q-space.

A topological space X is said to have countable chain condition (ccc) if any family of mutually disjoint
open subsets of X is atmost countable.

Theorem 3.6. Let B be a bornology on a metric space (X, d) with a closed base. Then the following conditions are
equivalent:

(a) (C(X), τsw
B

) has countable chain condition;

(b) (C(X), τw
B

) has countable chain condition;

(c) B ⊆ K .

Proof. (a)⇒ (b) Since the topology τsw
B

is finer than τw
B

, (C(X), τw
B

) has countable chain condition.
(b) ⇒ (c) Suppose there exists a non-compact closed member B0 ∈ B. So we can find a countably

infinite subset D = {xn : n ∈ N} of B0 which is closed and discrete in X. If P(D) denotes the power set of
D, then |P(D)| > ℵ0. For every A ∈ P(D), by Tietze’s extension theorem define a function fA ∈ C(X) such
that fA(x) = 0 for all x ∈ A and fA(x) = 1 for all x ∈ D \ A . Also by Lemma 3.1, the continuous function
ϵ′ : D→ R defined by ϵ′(xn) = 1

4n for all xn ∈ D can be extended to a function ϵ ∈ C+(X). Then the collection
G = {[B0, ϵ]w( fA) : A ∈ P(D)} of basic open sets in (C(X), τw

B
) is a pairwise disjoint family with |G| > ℵ0. We

arrive at a contradiction.
(c) ⇒ (a) Suppose B ⊆ K . By Theorem 2.4, τsw

B
= τB and τB is coarser than τK on C(X). Since X is a

metric space, (C(X), τK ) has countable chain condition (see Exercise 2(a), page 68 in [29]). Hence (C(X), τsw
B

)
has countable chain condition.

Theorem 3.7. Let B be a bornology on a metric space (X, d) with a closed base. Then the following conditions are
equivalent:

(a) (C(X), τsw
B

) is separable;

(b) (C(X), τw
B

) is separable;

(c) B ⊆ K and X has a weaker separable metrizable topology.

Proof. (a)⇒ (b) Since τw
B
⊆ τsw

B
, (C(X), τw

B
) is separable.

(b) ⇒ (c) If (C(X), τw
B

) is separable, then (C(X), τw
B

) has countable chain condition. Consequently, by
Theorem 3.6, B ⊆ K . Since τF is coarser than τw

B
, (C(X), τF ) is also separable. Hence by Corollary 4.2.2 in

[29], X has a weaker separable metrizable topology.
(c) ⇒ (a) Since B ⊆ K , τsw

B
is weaker than τsw

K
= τK (by Theorem 2.4). But by Corollary 4.2.2 in [29],

(C(X), τK ) is separable.

For a topological space X, a family N of nonempty subsets of X is called a network (respectively, k-
network) provided that for every x ∈ X (respectively, compact subset K of X) and every open set U containig
x (respectively, K), there exists a member N ∈ N such that x ∈ N ⊆ U (respectively, K ⊆ N ⊆ U). A
topological space having a countable network is called a cosmic space. It is easy to see that every cosmic
space is Lindelöf as well as separable, and a separable metric space has a countable k-network.

Theorem 3.8. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:
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(a) (C(X), τsw
B

) is a cosmic space;

(b) (C(X), τw
B

) is a cosmic space;

(c) B ⊆ K and X is separable.

Proof. (a)⇒ (b) is immediate.
(b) ⇒ (c) (C(X), τw

B
) being a cosmic space implies that (C(X), τw

B
) is separable and (C(X), τF ) is cosmic.

Consequently, by Theorem 3.7,B ⊆ K and by Corollary 4.1.3 in [29] X has a countable network and therefore
X is separable.

(c) ⇒ (a) Since X is separable, X has a countable k-network. By Corollary 4.1.3 in [29], (C(X), τK ) has
a countable network. Since B ⊆ K , τsw

B
= τB and τB is coarser than τK on C(X). Hence (C(X), τsw

B
) has a

countable network.

Theorem 3.9. Let (X, d) be a metric space and let B be a bornology with a closed base. Then the following conditions
are equivalent:

(a) (C(X), τsw
B

) is (hereditary) Lindelöf;

(b) (C(X), τw
B

) is (hereditary) Lindelöf;

(c) B ⊆ K and X is separable.

Proof. (a)⇒ (b) is immediate.
(b) ⇒ (c) Suppose B ⊈ K . Then there exists a closed member B0 ∈ B which is not compact. So there

is a countably infinite subset D = {xn : n ∈ N} of B0 which is closed and discrete in X. By Lemma 3.1, the
continuous function ϵ′ : D→ R such that ϵ′(xn) = 1

n for all xn ∈ D can be extended to a function ϵ ∈ C+(X).
Then the collection G = {[B0, ϵ]w( f ) : f ∈ C(X)} of basic open sets in (C(X), τw

B
) forms an open cover of C(X).

We claim that there is no countable subcover ofG. LetG0 = {[B0, ϵ]w( fn) : n ∈N} be any countable subfamily
ofG. Define a continuous function h : D→ R such that h(xn) = fn(xn)+ 1

n for all xn ∈ D. By Tietze’s extension
theorem, there is a function H ∈ C(X) such that H|D = h. Clearly, no member of G0 contains H.

Since τw
B

is finer than τF on C(X), the space (C(X), τF ) is Lindelöf. By Corollary 2 of [26], X is Lindelöf.
Since X is a metric space, it is separable.

(c) ⇒ (a) It follows from the Theorem 3.8 and the fact that a space having a countable network is
(hereditary) Lindelöf (see, 3.12.7 (e) page 225 of [14]).

To give a characterization of the second countability of these spaces, we need the following lemma.

Lemma 3.10. If a bornology B on a metric space (X, d) has a countable base consisting of compact sets, then X is
separable.

Theorem 3.11. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) B has a countable base consisting of compact sets;

(b) (C(X), τsw
B

) is second countable;

(c) (C(X), τw
B

) is second countable.

Proof. (a) ⇒ (b) Since B has a countable base consisting of compact sets, by Theorems 3.2, (C(X), τsw
B

) is
metrizable. Also by Lemma 3.10 and Theorem 3.7, (C(X), τsw

B
) is separable.

(b)⇒ (a). If (C(X), τsw
B

) is second countable, then (C(X), τsw
B

) is first countable. Hence by Theorem 3.2, B
has a countable base consisting of compact sets.

Similarly, (a)⇔ (c) follows from Theorems 3.5 and 3.7.
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Example 3.12. For X = R with the usual metric, we have (C(R), τsw
K

) is second countable.

Remark 3.13. The above example together with Theorem 3.11 shows that the assumption of X being
pseudocompact in Corollary 3 of [9] is redundant.

A topological group G (under addition) is said to beω-narrow if for every neighborhood U of the identity
element of G, there exists a countable subset S of G such that U + S = {u + s : u ∈ U and s ∈ S} = G.

Theorem 3.14. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) (C(X), τsw
B

) is ω-narrow;

(b) (C(X), τw
B

) is ω-narrow;

(c) B ⊆ K .

Proof. (a)⇒ (b) It follows as τsw
B

is finer than τw
B

.
(b) ⇒ (c) Suppose there is a member B0 ∈ B such that B0 is closed but not compact. So there exists

a countably infinite subset D = {xn : n ∈ N} of B0 which is closed and discrete in X. Consider a basic
open neighborhood U = [B0, ϵ]w( f0) of f0, the identity element of the topological group (C(X), τw

B
), where

ϵ ∈ C+(X) such that 0 < ϵ(x) < 1 for all x ∈ X. Since (C(X), τw
B

) is ω-narrow, there is a countable subset
S = { fn : n ∈ N} of C(X) such that U + S = {h + fn : h ∈ U and n ∈ N} = C(X). Define a continuous function
1′ : D → R such that 1′(xn) = fn(xn) for all n ∈ N. So by Tietze’s extension theorem there is a function
1 ∈ C(X) such that 1(x) = 1′(x) for all x ∈ D. Since for every h ∈ U, h(x) < ϵ(x) < 1 for all x ∈ B0 and
1(xn) = fn(xn) for every n ∈ N, we have |h(xn) + fn(xn)| < 1 + |1(xn)| for all n ∈ N. Thus 1 + |1| ∈ C(X) but
1 + |1| < U + S. Which gives a contradiction.

(c) ⇒ (a) Suppose B ⊆ K . By Theorem 3.6, the space (C(X), τsw
B

) has countable chain condition. Hence
by Proposition 3.4.7 on page 163, [2], it is ω-narrow.

In a similar manner, we can also prove the following result.

Theorem 3.15. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) (C(X), τs
B

) is ω-narrow;

(b) (C(X), τB) is ω-narrow;

(c) B ⊆ K .

We now give some examples to clarify the relations among various properties studied above for the
space (C(X), τsw

B
).

Example 3.16. For any bornologyB on a compact metric space (X, d) with a closed base, the space (C(X), τsw
B

)
is separable, Lindelöf, cosmic space, ω-narrow, and has countable chain condition but need not be first
countable. For example, (C([0, 1]), τsw

F
) is not first countable.

Example 3.17. For X = Rwith the usual metric, the space (C(R), τsw
F

) is separable and Lindelöf but not first
countable. However, (C(R), τsw

K
) is second countable.

Example 3.18. For X = R with the discrete metric, we have (C(R), τsw
F

) = (C(R), τsw
K

) and by Theorem 3.7,
(C(R), τsw

F
) is separable. But it is neither Lindelöf nor second countable.

Example 3.19. Let X be a countable discrete metric space. Then (C(X), τsw
F

) = (C(X), τsw
K

) is second countable.
So it is first countable, separable, and Lindelöf.
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4. Countable Tightness and Fréchet Property

In this section, we characterize the countable tightness and Fréchet property of the spaces (C(X), τw
B

) and
(C(X), τsw

B
). We first recall definitions of a Fréchet and countably tight space. A topological space X is called

Fréchet if for every nonempty subset A of X and every x ∈ A there exists a sequence (xn) in A that converges
to x; and a topological space X is called countably tight if for every x ∈ X and every subset C of X such that
x ∈ C, there exists a countable subset C0 of C such that x ∈ C0. Clearly, every first countable space is Fréchet,
and every Fréchet space is countably tight.

In order to study countable tightness of (C(X), τw
B

) and (C(X), τsw
B

), we need the following definitions.

Definitions 4.1. LetA be a family of nonempty subsets of a metric space (X, d). Then a cover G of X is said
to be anA-cover, if for every A ∈ A there exists G ∈ G such that A ⊆ G; and a cover G of X is called a strong
A-cover (denoted byAs-cover, see Definition 3.9 of [10]), if for every A ∈ A there exist G ∈ G and δ > 0 such
that Aδ ⊆ G.

Note that every strongA-cover is always anA-cover. The next example shows that converse need not
be true.

Example 4.2. Let X = Rwith the usual metric and letBbe the bornology onRwith baseB0 = {F∪N : F ∈ F }.
Consider the family G = {(R \ A) ∪ F : F ∈ F } of open sets in R where A = {n + 1

n+1 : n ∈ N}. Clearly, G is
an open B-cover. But G is not an open Bs-cover as N ∈ B and for every δ > 0 and every F ∈ F , we have
Nδ ∩ (A \ F) , ∅.

Theorem 4.3. For a bornology B on a metric space (X, d) with a closed base, the following conditions are equivalent:

(a) B is shielded from closed sets;

(b) every open B-cover is an open Bs-cover.

Proof. (a) ⇒ (b) Let G be an open B-cover and consider B ∈ B. Without loss of generality, suppose B is
closed. Since B is shielded from closed sets, there is a member B1 ∈ B which is a shield of B. Since G is an
open B-cover, there exists G ∈ G such that B ⊆ B1 ⊆ G. Our claim is that Bδ ⊆ G for some δ > 0. Suppose
no such δ > 0 exists. So for every n ∈ N there exists xn ∈ B1/n

\ G. If A = {xn : n ∈ N}, then A ∩ B1 = ∅. If
A is closed, then as B1 is a shield of B there exists n0 ∈ N such that A ∩ B1/n0 = ∅. Which is not possible as
xn0 ∈ A ∩ B1/n0 . If A has a cluster point x0, then x0 ∈ B1 ⊆ G. Therefore G contains infinitely many points of
A which contradicts that A ∩ G = ∅.

(b)⇒ (a) Suppose B0 ∈ B has no shield in B. So for every B ∈ Bwith B0 ⊆ B, there exists a closed subset
CB of X such that CB ∩ B = ∅ but for every δ > 0, CB ∩ Bδ0 , ∅. Let G = {X \ CB : B ∈ Bwith B0 ⊆ B}. Then
every member of G is open and B ⊆ X \ CB′ for every B ∈ B where B′ = B0 ∪ B. So G is an open B-cover of
X. But G is not an open Bs-cover of X as Bδ0 ⊈ X \ CB for any B ∈ Bwith B0 ⊆ B and δ > 0.

Corollary 4.4. Let B be a bornology on a metric space (X, d) having a compact base. Then G is an open B-cover of
X if and only if G is an open Bs-cover of X.

Theorem 4.5. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) (C(X), τsw
B

) has countable tightness;

(b) every open Bs-cover of X has a countable Bs-subcover and B ⊆ K .

Proof. (a)⇒ (b) To show thatB ⊆ K , suppose that there exists a closed set B0 ∈ Bwhich is not compact. Let
D = {xn : n ∈N} ⊆ B0 be closed and discrete in X. Define E ⊆ C(X) by E = {1 ∈ C(X) : 1(xn) , 0 for all n ∈N}.
For every B ∈ B and every ϵ ∈ C+(X), we have ϵ

2 ∈ [B, ϵ]sw( f0) ∩ E. Thus f0 ∈ E in (C(X), τsw
B

). So there
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exists a countable subset E′ = {1n : n ∈ N} of E such that f0 ∈ E′ in (C(X), τsw
B

). By Lemma 3.1, the

function ϵ1 : D→ (0,∞) such that ϵ1(xn) = |1n(xn)|
2 can be extended to a continuous function ϵ0 : X → (0,∞).

Then f0 < E′ as [B0, ϵ0]sw( f0) ∩ E′ = ∅. This contradiction implies that B ⊆ K . Hence by Theorem 2.4,
(C(X), τsw

B
) = (C(X), τs

B
). The remaining part of the implication now follows from Theorem 3.12 of [10].

The implication (b)⇒ (a) follows from Theorem 3.12 of [10] and Theorem 2.4.

The next result can be proved in a manner similar to the previous theorem.

Theorem 4.6. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) (C(X), τw
B

) has countable tightness;

(b) every open B-cover of X has a countable B-subcover and B ⊆ K .

By Corollary 4.4, we have the following result.

Theorem 4.7. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) (C(X), τsw
B

) has countable tightness;

(b) (C(X), τw
B

) has countable tightness;

(c) every open B-cover of X has a countable B-subcover and B ⊆ K ;

(d) every open Bs-cover of X has a countable Bs-subcover and B ⊆ K .

To study the Fréchet property of the spaces (C(X), τsw
B

) and (C(X), τw
B

), we need the concepts ofA-sequence
and strongA-sequence for a familyA of nonempty subsets of X.

Definitions 4.8. Let A be a family of nonempty subsets of a space X. Then a sequence {Cn : n ∈ N} of
subsets of X is called anA-sequence if for each A ∈ A there exists m ∈N such that for all n ≥ m, A ⊆ Cn; and
a sequence {Cn : n ∈N} of subsets of X is called a strongA-sequence (denoted byAs-sequence, see Definition
3.10 of [10]) if for each A ∈ A there exist m ∈ N and a sequence {δn : n ≥ m} of positive real numbers such
that for all n ≥ m, Aδn ⊆ Cn.

Note that every strongA-sequence is always anA-sequence. However, the converse is not true.

Example 4.9. Let X = R with the usual metric and let A = F . For every n ∈ N, define Dn = {
1
m : m ∈

N and m ≥ n}. Consider the sequence {Cn = R \ Dn : n ∈ N} of subsets of R. Clearly, the sequence
{Cn : n ∈N} is an F -sequence. Since {0}δ ⊈ Cn for every δ > 0 and every n ∈N, the sequence {Cn : n ∈N} is
not an F s-sequence.

Note that if a bornology B is stable under small enlargements, then every B-sequence is also a strong
B-sequence.

Theorem 4.10. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) the space (C(X), τsw
B

) is Fréchet;

(b) every open Bs-cover of X has a Bs-sequence and B ⊆ K ;

(c) every open B-cover of X has a Bs-sequence and B ⊆ K .



T.K. Chauhan, V. Jindal / Filomat 36:7 (2022), 2427–2438 2436

Proof. (a) ⇒ (b) Since (C(X), τsw
B

) is a Fréchet space, it has countable tightness. By Theorem 4.5, B ⊆ K .
Consequently, by Theorem 2.4, (C(X), τs

B
) = (C(X), τsw

B
) is a Fréchet space. Hence by Theorem 3.14 of [10],

every open Bs-cover of X has a Bs-sequence.
(b)⇒ (a) This implication follows from Theorem 3.14 of [10] and Theorem 2.4.
(b)⇒ (c) follows from Corollary 4.4 and (c)⇒ (b) is immediate.

Lemma 4.11. IfB is a bornology on a metric space (X, d) with a compact base, then everyB-sequence of open subsets
is also a Bs-sequence.

Proof. It follows from the fact that for any compact subset K and open subset U of X with K ⊆ U, there
exists a δ > 0 such that K ⊆ Kδ ⊆ U.

Theorem 4.12. Let (X, d) be a metric space and let B be a bornology on X with a closed base. Then the following
conditions are equivalent:

(a) the space (C(X), τsw
B

) is Fréchet;

(b) the space (C(X), τw
B

) is Fréchet;

(c) every open Bs-cover of X has a Bs-sequence and B ⊆ K ;

(d) every open B-cover of X has a Bs-sequence and B ⊆ K ;

(e) every open B-cover of X has a B-sequence and B ⊆ K .

Proof. The equivalences (a) ⇔ (c) ⇔ (d) ⇔ (e) follow from Theroem 4.10, Corollary 4.4, and Lemma 4.11.
The equivalence (b)⇔ (c) follows from Theorems 2.4, 4.7 and 4.10.

Proposition 4.13. Let B be a bornology on a metric space (X, d) with a closed base. If B is stable under small
enlargements, then the following conditions are equivalent:

(a) B has a countable base;

(b) every open B-cover of X has a countable B-subcover.

Proof. (a)⇒ (b) It is immediate.
(b) ⇒ (a) Since B is stable under small enlargements, for every B ∈ B there is a δB > 0 such that

BδB ∈ B. Thus by the hypothesis, the open B-cover {BδB : B ∈ B} of X has a countable B-subcover

{BδBn
n : Bn ∈ B and n ∈ N}. Since B has a closed base, (BδBn

n ) ∈ B for every n ∈ N. Therefore the collection

{(BδBn
n ) : Bn ∈ B and n ∈N} forms a countable base for B.

Our next result follows from Theorems 3.2, 3.11, 4.7, and Proposition 4.13.

Theorem 4.14. Let B be a bornology on a metric space (X, d) with a closed base. If B is stable under small
enlargements, then the following conditions are equivalent:

(a) B has a countable base consisting of compact sets;

(b) for every metric space (Y, ρ), (C(X,Y), τsw
B

) is metrizable;

(c) for every metric space (Y, ρ), (C(X,Y), τsw
B

) is first countable;

(d) (C(X), τsw
B

) is metrizable;

(e) (C(X), τsw
B

) is first countable;

(f) (C(X), τsw
B

) is second countable;
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(g) (C(X), τsw
B

) is a Fréchet space;

(h) (C(X), τsw
B

) has countable tightness.

Corollary 4.15. If (X, d) is locally compact, then the following conditions are equivalent:

(a) K has a countable base;

(b) for every metric space (Y, ρ), (C(X,Y), τK ) is metrizable;

(c) for every metric space (Y, ρ), (C(X,Y), τK ) is first countable;

(d) (C(X), τK ) is metrizable;

(e) (C(X), τK ) is first countable;

(f) (C(X), τK ) is second countable;

(g) (C(X), τK ) is a Fréchet space;

(h) (C(X), τK ) has countable tightness.
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