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Asymptotic Behaviour of Negative Eigenvalues of an Operator
Differential Equation
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Abstract. In this work, we find the asymptotic formulas for the sum of the negative eigenvalues
smaller than —¢ (¢ > 0) of a self-adjoint operator L defined by the following differential expression
() = —(p(x)y () — Q(x)y(x) with the boundary condition y(0) = 0 in the space L,(0, oo; H).

1. Introduction and History

One of the main problems of spectral theory of the differential equations is to investigate asymptotic
behaviour of eigenvalues and is studied by many mathematicians. There exists important applications in
mathematics and mathematical physics.In particular, unbounded self-adjoint operators are of paramount
importance for quantum mechanics. Accordingly, this research area has been receiving growing attention
since 1960s.

Skachek [1] in 1963 obtained eigenvalue asymptotics for scalar differential operator. Kostyuchenko and
Levitan [2] examined the spectrum of Sturm-Liouville Operator. Afterthat, Gorbacuk, M.L [3], Gorbacuk, V.
and Gorbacuk, M.L [4-5], Otelbayev, M. [6], Solomyak, M.Z [7] investigated the spectrum of the differential
operator with operator coefficient. Maksudov, EG et all [8] studied asymptotics of the spectrum of high
order differential operator. Adiguzelov, E. et all [9] obtained asymptotic formulas for eigenvalues of Sturm-
Liouville Operator with singularity. Furthermore, Hashimoglu [10], Baksi and Ismayilov [11], Sezer[12]
derived eigenvalue asymptotics for various differential operators. Only a few works in literature concentrate
on differential operators with operator coefficient. The aim of our work is to establish asymptotic formulas
for negative eigenvalues of Sturm-Liouville problem (1). This paper divided into three parts. The first
part outlines some historical background, related researches in the theory and describes the problem. The

second part presents formulation of regularized trace and gives main results. The last part contains the
proof of theorems.

Return to our problem:

Let H be an infinite dimensional separable Hilbert space. Let us consider the operator L in the Hilbert space
L>(0, o0; H) defined by the differantial expression

Uy) = —(p(x)y (1)) — Q)y(x) (1)
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and with the boundary condition y(0) = 0.

Assume that the scalar function p(x) and the operator function Q(x) satisfy the following conditions:

p1) For every x € [0, o), there are positive constants ci,c; such that ¢; < p(x) < ¢,

p2) The function p(x) has continuous and bounded derivative,

p3) The function p(x) is not decreasing in the interval [0, o0),

Q1) For every x € [0, o) the operator Q(x) : H — H is self-adjoint, compact and positive,

Q2) The operator Q(x) is monotone decreasing,

Q3) Q(x) is a continuous operator function with respect to the norm in B(H) and lim,_,« [|Q(x)|| = 0.

D(L) denotes the set of all functions y(x) € L,(0, oo; H) satisfying the following conditions:

y1) y(x) and ¥ (x) are absolute continuous with respect to the norm in the space H in every infinite interval
[0,a],

¥ () = ~(p)y @) ~ Q)Y() € La(0, o0; H),

¥3) y(0) = 0 and, (Ly)(x) = —(p(x)y (x)) — Q(x)y(x).

It is proved that the operator D(L) — L, (0, o0; H) is self-adjoint, semi bounded-below and the negative part
of the spectrum of the operator L is discreate [13]. Let —A4; < -1, < ... £ —A, < ... be negative eigenvalues
of the operator L. In this work, we find asymptotic formulas for the sum

Y, Aie>0),

—Ai<—¢

as ¢ — +0.

2. Main Results

The main purpose of this section is to obtain some formulas for the negative eigenvalues of the operator
L. Let a1(x) 2 az(x) > ... > aj(x) > ... be the eigenvalues of the operator Q(x) : H — H. Since the operator
function Q(x) is monotone decreasing, the functions a1 (x), @2(x), ..., @;(x), ... are also monotone decreasing
[14]. Moreover, since

() = sup(QW)f, ),
lIf11=1
[15] and
IQM)Il = “sflﬂlp1 I(QM)f, HI = llelipl (QM)f, f),

[16], ax(x) = [IQ(x)I|. Let
Yj(e) =supf{x € [0,00) : aj(x) 2 ¢} (j=1,2,...) @)

and 17 denotes the inverse function of a;. On the other hand, since

lim, e a1(x) = 0, the function a; has a continuous inverse function defined in the interval (0, a1(0)]. We
consider the following operators:

1) L% and L' be operators in the space L,(0,¢1(¢); H), which are formed by expression (1) and with the
boundary conditions y(0) = y(y1(¢)) =0, ¥ (0) =y (W1(e)) =0, respectively. Here, ¢ € (0, a1(0)].

2)L;and L;. be operators in the space Ly(x;_1, x;; H) which are formed by expression (1) and with the boundary
conditions y(xi-1) = y(x;) = 0, y (xi-1) = ¥ (x;) = 0, respectively.

3)Li1) be operator in the space Ly(x;_1, x;; H) which is formed by the differential expression —p(xi)y" (x) —
Q(x;)y(x) and with the boundary conditions y(x;_1) = y(x;) = 0.

4) L;(l) be operator in the space Ly(x;_1, x;; H) which is formed by the differential expression —p(x,-_l)y” (x) -
Q(xi-1)y(x) and with the boundary conditions v (x;-1) = ¥/ (x;) = 0.

Divide the interval [0, {1 (¢)] by the intervals at the length

_ 1(e)
[P +1
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Here, k € (0,1) is constant number and ¢ is any positive number satisfying the inequality ¢%(¢) > 2. [.] shows
the greatest integer function whose value at any number X is the greatest integer less than or equal to x. Let
the partition points of the interval [0, 1(¢)] be 0 = xp < x1 < ... < xp = P1(€). Let N(A), N°(A), N'(A), ni(e)
and n;1y(A) be numbers of eigenvalues smaller than —A (A > 0) of the operators L, 19,L',L;, and Liqy,
respectively. Let us write n;, ;1) instead of n;(¢), niq)(€), respectively. If Q(x) and p(x) satisfy the conditions
Q1) — Q3) and p1) — p3) respectively,then the inequalities

Ne) < N(e) < N'(e) 4)
are satisfied, [13]. We can similarly show that the inequality (5)

N°(A) < N(A) < N'(A) (YA € [¢, 0)) (5)

is satisfied.
Let —pian < =i < —Hiays < ... be eigenvalues of the operator L;qy and

50 =ai@) - pE P (=1.2..) ©
6 Ja)-e

b(éfx)—;\/w (Gj=12,..) (7)
bj(e,x) .

Bile,x) = fo aj(x,t)dt  (j=1,2,...) 8

(Pi,j(E) = min{x;1, 1,[)](5)} (1 =12,... M- ]) (9)

Lemma 1 If the operator function Q(x) and the scalar function p(x) satisfy the conditions Q1)-Q3) and p1)-p3), then

we have
N1y

Zyl(l)m 5 Z f(p’] Bi(e, x)dx — 32 a;(0

a,(xl)>é a7(0)>e
for small positive values of .

Theorem 2 If the operator function Q(x) and the scalar function p(x) satisfy the conditions Q1) — Q3), pl) — p3),
then we have

¥i(e) L0
Bj(e, x)dx — const. Z f ]% (x)dx — const. ¢1(s Z a;(0)
j=1 0

N(s) 1 le

for small positive values of €. Here, I, = ), 1.
a;j(0)=e

Lemma 3 If the operator function Q(x) and the scalar function p(x) satisfy the conditions Q1) — Q3), p1) — p3), then
the inequality

%

0 =1

f Hictym 35 Z fﬁ](é x)dx+Za,(0) i=2,3,..)
aj(xi- 1)>$.

is satisfied for the small positive values of ¢.
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Theorem 4 If the operator functions Q(x) and the scalar function p(x) satisfy the condition Q1) — Q3), and p1) — p3),
then we have

N(e)

¥i(e)
ZA <Zym 6Zfﬁ](sx)dx ‘bl()z a(0)

for the small positive values of ¢.

—

Theorem 5 If the operator function Q(x) and the scalar function p(x) satisfy the conditions Q1) — Q3), and p1) — p3),
then we have

N(e) RN )
1
; <3 Z:; (f Bj(e, x)dx + const. Z fa (x)dx + const. 1/11(8) ]Z; a;(0)

for small positive values of .

Let us denote the function of the form Inox = x, In,x = In(In,-1x) by In,x (n =0,1,2,...) and we sup-
pose that the function a;(x) = [|Q(x)|| satisfies the following conditions:

a1) There are a number & > 0 and a natural number 7 > 1 such that the function a;(x) — (In,x)~¢ is neither
negative nor monotone increasing in the interval [b, c0) (b > 0).

a2) For every 1 > 0, lim a;(x)x*~" = lim [a;(x)x**1]~! = 0. Here, k is a constant in the interval (0, %).
xX—00 xX—00
We are at the position to give to the main results.

Theorem 6 If the operator function Q(x), the scaler function p(x), and a(x) satisfy the conditions Q1) —Q3), p1) —p3)

and al), respectively. In addition, the series Z [a;(0)]™ is convergent for a constant m € (0, o), then the asymptotic
j=1
formula

Y ai= —[1+O(e“ﬁ]z f ,/a’(x)) (2a1;(x) + £)ddx
—Ai<—¢

aj(x)=e
is satisfied as ¢ — +0. Here, B is a positive constant.

Theorem 7 If the operator function Q(x), the scalar function p(x) and a(x) satisfy the conditions Q1) — Q3),

p1) — p3) and al) — a2) respectively. In addition, the series ) [aj(0)]" is convergent for a constant m satisfying the
=1
condition

2- 3k0)2
0<m< ol =3k (10)

then the asymptotic formula

_,\Z< S/\ = —[1 +0(e")] Z f F(Zaj(x) + &)dx

a](x)>s

is satisfied as ¢ — 0, where t is a positive constant.
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3. Proofs

Proof. [Proof of Lemma 1] Let us consider the operator L;1y which is formed by differential expression
—p(x))y” (x) — Q(x))y(x) with the boundary conditions y(x;-1) = y(x;) = 0. The eigenvalues of the operator

mr

2
Li) are P(xi)(xl—xi,l) —aj(x)(m=1,2,...;j=1,2,...), therefore n;) is the number of pairs (i, j) (m,j > 1)

satisfying the inequality
mmn
P(Xi)(7)2 —aj(x) <-¢ (6=x —xi1) (1)

By using (5),(6) and (11), we obtain

1
i#i(nm: Z Z aj(xi, m)
m=1 m

LN
aj(xi)>e aj(xim)>e

[bj(ex)]-1
> Z Z a;(xi, m) (12)

i m=1
a,-(x,-)>e'
[bj(e,xi)]-1
Forthesum )},  a;(x;,m)in (12)
m=1
[b;(exi)]-1 bj(e,x;)-2 bi(e,x;) 1
aj(x;,m) > f aj(x;, t)dt = f aj(x;, t)dt — faj(xi, t)dt
m=1 1 0 0
b]‘(é',x,’) b/({'/xi)

- f aj(xi, H)dt > f (aj(x,', Hdt — 3(1]‘(Xj))dt

bj(e,x;)-2 0
= Bj(e, xi) — 3aj(xi) (13)

is obtained. If we consider that the functions (¢, x) (j = 1,2,...) are decreasing, from (9),(12) and (13)

Xi
(1) i+1

1
Z#i(l)m> 5 Z fﬁj(f,xi)dx—3 Z @;(0)
m=1 ] X; ]
aj(x;)>e a;j(0)>e
@ij(€)
1
25 Z fﬁj(s,xi)dx—i% Z‘ a]-(O)
i j
aj(xi)>e a;j(0)>e

is obtained. [

Proof. [Proof of Theorem 2] We can easily show that L; < Ly). In this case, it is known that
1;(A) = niqy(A) (14)

[17]. On the other hand, from variation principles of R. Courant [18], we have

M
NO(A) > Z 1ni(A). (15)
i=1
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From (14) and (15)

M
N 2 Y niy(d) (A2 e) (16)
i=1

is obtained. From (5) and (16)

M
N 2 Y miay(d) (YA =€) (17)

i=1

is found. By using (17), we can show that the inequality

N(e
i= i=1 m=1
is satisfied. By the Lemma 2 and (18)
N(e) M-1 l Pis(©) I,
IREDME f Bile, x)dx =3 a;(0)}
i=1 i=1 j j=1
aj(x)>e
({71/(é
== Z Z f Bile, x)dx — 3(M — 1)201](0) (19)
a,(x,)>e
is obtained. Since the functions a;(x) (j = 1,2,...) are decreasing, we have
(PXJ(S (PI](S)
Z Z f Bile, x)dx = Z Z f Bi(e, x)dx. (20)
a; *c,)>a a](x1)>e a}(’fx)>f i
From (19) and (20)
N(e) (Pt,j(f)

I,
Z)\ 25 Z Z fﬁj(e,x)dx—3MZaj(O) (21)
j=1

X
/(X1)>é “1(x1)>é !

is obtained. Putting (9) into the right-hand side of inequality (21)

Pj(e)

N(e
Z f Bi(e, )ddx + f Bi(e, )dx + .. f Bite, x)d]

i=1 a i(x1)>e x

I,
=3M ) a;(0) (22)
j=1

is found. Here, iy is a natural number satisfying the following condition:

Xiy < Pj(€) < Xigs1-
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By using (9) and (22)
pe 21 s le 1 & vite)
Z z5 Z f Bi(e, x)dx — SMZ a;(0) = 5 Z f i(e, x)dx
i=1 Yj(e)>x x j=1 j=1 0
, Pie) . X 1
-5 Z f Bile, x)dx — 5 Z fﬁj(e, x)dx — BMZ a;(0)
Pi(e)<x Yie)z =1
FROIO L P0e) .
1y 1 & :
=5 f Bi(e, x)dx — 5 f Bi(e, x)dx — 3M Z a;(0) (23)
j=1 0 j=1 0 j=1
is obtained. From (6),(7), and (8)
bj(e,x)
1 it 2 ( ) 3
sPite.x) = [aj(x) - p(x)(—) ldt = a](x)b (e, ) = 2 bi(e, X)

1 p(x) 1 |aj(x)—¢ p(x)
= bj(e, Mla(x) - 255 b (e, )] = ,/W[aj<x>_n2ﬁ.

2( . —¢

T p(x)
is found. From (9) and (24),

(PO/(S)

%IZ f i(e,x)dx < const. Z f a? (x)dx (25)
j=1

is obtained. From (3),(23) and (25)

N(e) RS A
% Z f j(e,x)dx — const. Z fa (x)dx — const. 1/)1(8) Z @;(0)
i=1 =19 j=1

yz an S pl ap < pl ap S e be eigenvalues of the operator L;.(l) and n;(l)(/\) be number of the

elgenvalues smaller than —A (/\ > 0) of the operator L;.(l). Moreover, we will simply write n;(l) instead of
ni(l)(e).

2
1)n
. S |~ e o =

1,2,...;7=1,2,...). Therefore, n i(l) is the number of pairs (m, j) (m, j > 1) satisfying the inequality

Proof. [Proof of Lemma 3] The e1genvalues of the operator L, are the form p(xi_1)| %

(m-1mn

Xi — Xi- 1] — aj(Xia) < —¢ 26)

P(xi—l)[
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From (6),(7) and (26)
1(1)
Pi= T L oo
o xl]1)>£ aj(xi n=T)>e
[bj(e,xi-1)]+1
= ), ), afwam-1
j m=1
aj(xi-1)>e
is found. It is easy to see that
[b;(c i) 41 bilerxi-1)
aj(xi-1,m—1) < aj(xi1) + f aj(xio1, t)dt
m=1 0

= aj(xi1) + Bj(e, xi1)

Since the functions f;(¢,x) (j = 1,2,...) are monotone decreasing by (27) and (28),

o) I,

m=1 j=1
a](xz 1)>5

<% Zj" fﬁj(e,x)dx+gaj(0) (i=2,3,..)

Xi-2
aj(xi-1)>€

is obtained. O

Let n;(/\) be number of the eigenvalues smaller than —A (A > 0) of the operator L;., -

eigenvalues of the operator L, and 7;(¢) = n..

Proof. [Proof of Theorem 4] We can easily show that L, > L;.(l). In this case we have

i (A) < myp)(A)

[17]. On the other hand, from variation principles of R.Courant [18], we have

M
N'() <Y )
i=1
From (29) and (30),
M
N'() <Y mg )+, (1)
i=2

is obtained. From (5) and (31)

M
NA) < ) g (D) +13(A) (YA =€)
i=2

ZH;’(nm < Z(X](O)*‘ Z fﬁ](é xi_1)dx

2418

(27)

(28)

..be

(29)

(30)

(81)

(32)
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is found. By using (32), we have

:
)

M "
ZED WD W
P

m=1 m=1

=z

I\
—_

i

By using Lemma 1 and (33)

N(e)

Y A Zym 62 Z fﬁ,ex)dx+MZa,(0)

i=1 Xia
(X, 1)>¢€

Z Z fﬁ](e x)dx+MZa](O)

i>2

3 ME‘

a](xl 1)>€

is found. Since the functions aj(x) (j =1,2,...) are monotone decreasing, we have

Z Z fﬁj(e,x)dx= fﬁ](e x)dx.

j i>2 i>2

2
aj(xi)>e a](r1)>sa](x: 1)>e

Y i< Z Z ) f Bic, x)dHMZa]m) Z#m

2
a}(t1)>s a;(xz 1)>é i

5 L f Bite, o + f Bye, f Bie ] + MZa](o

Xig-1
a](x1)>s 0~

is obtained. Here, ij is a natural number satisfying the conditions

aj(xip) > ¢ aj(Xi1) < €.
From (2.1)
Xy < 1{11(6)
From (36) and (37),
: ’ Pj(e)
N(e) Lo .
| ‘/’1( €)
ZAI-<ZW+EZ Bile, x)dx + Z (0)
i=1 m=1 j=1 0
isfound. O
Let
5 = it (=12,...;60=0)

[6i_1¢(1i+1)k—1] 1

2419

(33)

(34)

(35)

(36)

(37)

(38)
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”f“)(x'”=“f<X>—P<X>(7§—f)zf biote,x) = & a](x()x)—s

bji(e,x)

Biw(e, x) = faj(,-)(x,t)dt

(P]'(éi, é‘) = min{éi, 1{1](&)} (l =0,12,.. ) (39)

Let L(; be operator in the space L,(0, 6;; H) which is formed by the expression (1) and with the boundary
conditions

y(0)=y(5)=0. (40)

Moreover, let LE?)) be operator which is formed by the expression —p(0)y” (x) - Q(0)y(x) and with the boundary

©) (0)

conditions (40). Let —pan < —p@e < ... and —pg) < =y, <

.. be eigenvalues smaller than —A (A > 0) of
the operators L and ng),respectively.

Let n;(A) and ng,))) (A) be numbers of the eigenvalues smaller than —A (A > 0) of the operators L and LE )),
respectively.

Since L) > LY, we have

@’
ne(A) <nP(A), (41)

[17]. By using (41), we can show that

Z Haom < Z M (42)

Here, ng; = ngy(e), nél)) = ng)))(e). Since 6_1 = 1(¢) and from the formula (39)
Oi_ i i
— = g™ @1+ 1< 0™ ) + 1

_ Oi2
[61_21l)§k_1 al+1

(1i+1).k—1(€) +1

61 1
< —kzl D +1=ghe) +1(=1,2,...)
1 le) ( )
is obtained. From the last relation, we find
% <20fe), (=12..) (43)

for the values of ¢ satisfying the inequality X (¢) > 2.
Proof. [Proof of Theorem 5] By the similar way to the proof of Theorem 4, the following inequality

IP](S)

I,
Z Uy < Z Ham + 5= f Bjay(e, x)dx + 5 fﬁ](l (&, x)dx + 6_0 ;aj(O) (44)

m=1 1;;/(& <dp 0 ¢](6)>60 0
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can be proved. If we use the equation (39) in (44), then we have

”; 1
Y <Y Ham 51_1
m=1

m=1 j=1

I, ®j(60,€) I

Z Bi(e, x)dx + =2 a;(0).
0

)

>

If we apply the inequality (45) for the eigenvalues of the operator L, then

) T(i+1) 1 I, (0ue) 5 I,

) i
Z Him < Z Hatm + 5 f Bjne, x)dx + = Z a;(0)
m=1 m=1 j=1 0 j=1

is obtained. From (43) and (46)

. 6./ 3
o) 1) ¢i(0ie)

I, I
1 (3 &

Zi Piym < Z Uity + 5 Z f By (€, x)dx + 245 (e) ;‘ a;(0)
m= 0 =

m=1 j=1

is found. By using (27) and (28)

0)
s I

2 it = D (400 + By (e, 0)

m=1 j=1

is obtained. Moreover, if we use the equation (24), then we get
3
Bjir1)(€, %) < const.0sia; ().

From (42), (48) and (49),
N(i+1)

Wirym < Z @;(0) + const.dir1 Z a?

is obtained. By using inequality (38), we find
Oip+1 < 1.

Here, iy € N is a constant satisfying the condition iy > l — 2. From (50) and (51), we get

N(ig+1) I,
Z Hig+1ym < const. Z a;(0).
m=1 =1

From (43),(45),(47) and (52),

@;(6i,€)

Z Uy, < const. 2 a;(0) + Z 5 f Bji+1) (€, X)dx + 2(ig + 1)gb1 €) Z a;(0)

m=1
is found. From (39),(49) and (53),

€

’ b
ny 1
’ 3
Z Uy < CONSE. Z fa]z (x)dx + const. tpl(e) Z a;(0
j=1 0 j=1

m=1

2421

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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is obtained. By the Theorem 4 and (54), we have

I, '1[}/(&)

N(e
Z %Z fﬁ](g x)dx + const. Zfll (x)dx + const. lP1(€)Z‘0‘ ©)
p =1

is obtained. O

Proof. [Proof of Theorem 6] By using Theorem 2 and Lemma 3, we have

N(e) 1 L, S
’Z Aj= 5 Z f i(e, x)dx < const.l.(6 + P (e))
P [

0

for the small positive values of ¢ . If we take k = 5 1 and consider (3)

N(e) 1 & ¥i(e) )
|Z SZ f (e,x)dx|<const.lftpf(e) (55)
i=1 j=1

0

is found. Let us take f(¢) = 1(e)[Inp1(e)]™! By using the function p(x) which satisfies the condition (p1)
and the inequality (24)

1, Yil® ¥1(e) Pi(e) o
ay1(x)—¢
$L [ Blendx>§ [ pulex)de = [ [Hr2an() + e)dx
0 0 0

j=1
f(e)
a1;9z)) Qo (x) + e)dx > const.f(e)(ar(f(€)) — €)? 56)

zf(f)
is obtained. It is proved that

a1(f(e)) — & > (Inhy (e)) €D+ (57)
for the small values of ¢ > 0, [13]. From (56) and (57)

1.
1y , $1(€) (R)EFD)(+1)
5 Z f Bi(e, x)dx > const.lmpl(e) (Inyn (€)=
0
> const.gbl%(e) (58)

is found. From (55) and (58)

N(e)
YA
i=1

‘ 1 ¥i®
oty f Bjle, x)dx
=1 o

-1l < COI’ZSt.lglPl_Tl(E) (59)

is obtained. Since the series }. [a;(0)]" is convergent, we have

m=1
const > Z [a;(0)]" = Z e =¢e"l,.

aj(0)=¢ a;j(0)ze
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From last inequality

I, < const.e™™

is found. Since the function a;(x) satisfy the condition a1), we have
e = a1 (Y1(€)) = (Iny1(€))™¢ = (Imp1(e))~ for the small values of ¢ > 0. From the last inequality,

Yi(e) > et
is obtained. From (59),(60) and (61)
N(e)

LA .

- o ZleE
| v — 1| < const.e™er ¢
I, Vilé

61y, f Bje, x)dx
=10

< const.e™< P

is found. We can rewrite inequality (62)

N(e)

YA
i=1

1, Pj(e)
51Y, [ Bile, x)dx
=1oo

~1=0@"")

as ¢ — 0. From (3),(24) and (63)

Y, di=s-l1+0E MY, f %(Za](x)+s))dx

—Ai<—¢ j a,-(x)Zs

as ¢ — 0, is obtained. [
Proof. [Proof of Theorem 7] By Theorem 2 and Lemma 3, we have

I, IP](S)

|I\£A’ _5 12 fﬁ](a x)dx < const.l, (foc (x)derlpl(é))

0

for small values of ¢ > 0. Since the function a4(x) is decreasing,

a1 (x) 2 o (P(2e)) = 2¢

in the interval [0, 11 (2¢)]. Since the function p(x) satisfies the condition p1) and (24),(65) we find

I, ¥ie) P1(e)
5! f ﬁj(f,x)dx>— f ,/“1(’() Qa1 (x) + €)dx
j=1 0

If we consider that the function a4 (x) satisfies the condition a2) and
lim 11 (¢) = oo, then we have lim [a(11(2¢))(¥1(2¢))*1]! = 0. From the last equality, we obtain

> const.e? P1(2¢).

1(2€) > (e)7

2423

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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for the small value of ¢ > 0. From (66) and (67)

1l’/(f)
3ko+3n-2

Bj(e, x)dx > const.e 2f+n (68)

6_1

1.
j=1 0

o
is found. We limit the integral f alg (x)dx at the right hand side of the inequality (64). Since the function
0

a1 (x) satisfies the condition a2), we have
a1 (x) < const.x™ (7 < ko) (69)

Therefore we have
5 5
f leg (x)dx < const. f x2(R0) gy < const.52@ 3k+3n), (70)
0 0
On the other hand, from (3)

5 < i) (71)
is obtained. If we take x = 11(¢) in the inequality (69), then we find
a1(1(e) < const.p] " (e)  (n <ko)
or
Pi(e) < const.eFon. (72)

From (70),(71) and (72), we have

5
3 _ 1-h03k+3n)
f a; (x)dx < const.e o, (73)
0
From (60),(72) and (73)
b
3 e (1-k)(2-3kg +3n)
le | aj(x)dx < const.e ko= (74)
0
X —m(kg—n)+k
Ly (€) < const.e” T (75)
are found. From (68),(74) and (75) we obtain
6 3
le f a; (x)dx
0 < const.eh® (76)
1, ¥i®
1Y [ Bile,x)dx
=10
Lk (e)dx
V1 () < const.e™M. (77)

1, Wite)
61y, fﬁj(e,x)dx
=1 o
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Here,
3 (1-k)(2-3ky+3n) 3ko+3n-2
Fam) = =m = 2(ko — 1) T 20k + 1)
_ mko—n)+k 3ko+3n-2
Fa(n) = - ko—1) T Tl )

There is a number w = w(t) >0 (0 < 1 < w) such that

2k — 2k0m - 3kk0 _

Fi(n) > 2% t, (78)
2 — 3k — 2kom — 2k
Fa(n) > 00 —t (79)
2k
for every t > 0. If we take
(2 = Bko)* + 6k3m ot 1
= y = 0 =
4(2 = 3ko) 16ko((2 — 3ko)? + 6k2m — 8korn)

in the inequalities (78) and (79), then we have

Fi(n) > to;  Fa(n) > to. (80)

Since the number m satisfies the condition (10), we have k € (0,1) and ¢y > 0. From (64),(76), (77) and (80)
we obtain

N(e)

YA
i1

1Y, [ Bie,x)dx

=1 o

— 1| < const.e™. (81)

By (24),(78) and (81) we have the asymptotic formula

1 ai(x)—¢
Z Ai=o-l1+ O(e")] Z f JPT(Z[X]'(X) +&)dx

—Ai<—e ] aj(x)=e

as ¢ — 0. This completes the proof. [
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