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Abstract. Let X be a Banach space and T ∈ B(X). Cohen determined a class of regular infinite matrices

A = (ank) for which Ln :=
∞∑

k=1
ankTk converges strongly to an element invariant under T. In the present paper

we study A-mean and A-uniform ergodic type results when A = (ank) is a regular infinite matrix satisfying

Cohen’s uniformity condition lim
j

∞∑
k= j
|an,k+1 − ank| = 0, uniformly in n.

1. Introduction

The ergodic theorem asserts that if T : X → X is a bounded linear operator on a reflexive Banach space
whose iterates T j form a bounded sequence of bounded linear operators, then its Cesàro averages

Mn(T) :=
1
n

n∑
k=1

Tk

form a sequence of bounded linear operators that converge strongly to a projection onto the kernel of the
operator I − T.

Now let X be a Banacah space and T ∈ B(X). An operator T ∈ B(X) is called mean ergodic, respectively
uniformly ergodic, if {Mn(T)} is strongly, respectively uniformly convergent in B(X). Cohen [2] determined
a class of regular infinite matrices A = (ank) for which

Ln :=
∞∑

k=1

ankTk

converges strongly to an element invariant under T. He proved that such a sequence {Ln} is strongly

convergent provided that {Lnx : n ∈N} is weakly compact and lim
j

∞∑
k= j
|an,k+1 − ank| = 0 uniformly in n. Recall

that, if the matrix A = (ank) maps convergent sequences into the convergent sequences leaving the limit
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G. Oğuz, C. Orhan / Filomat 36:7 (2022), 2403–2410 2404

invariant, then A is called a regular matrix. It is well known that A is regular if and only if (i) sup
n

∞∑
k=1
|ank| < ∞,

(ii) For all k, lim
n

ank = 0, (iii) lim
n

∞∑
k=1

ank = 1 (see, e.g, [1]).

It seems that Cohen’s result provides a generalization of the mean ergodic theorems given by J. von
Neumann [11], F. Riesz [10] and K. Yosida [13].

Throughout the paper we will call an operator T ∈ B(X) an A-mean ergodic operator, respectively A-
uniformly ergodic operator, if the limit of {Lnx}, respectively the limit of {Ln} exists. In the present paper we
first study A-mean ergodic type results in a Banach space. In particular we get an ergodic decomposition.
Using this we also give necessary and sufficient conditions in order that {Tnx} is convergent. This is an
extension of Lemma 4.2 in [8]. Next we examine A-uniform ergodic type results which may be considered
as an extension of Lin’s result [4].

Inspired by the uniformity condition of Cohen, Yoshimoto [12] introduced a URS-method and gave
some sufficent conditions for ergodic theorems in Banach Spaces. Furthermore, Jardas and Sarapa [3]
studied this result in locally convex vector spaces. Then Oğuz and Orhan [9] gave a version of Cohen’s
result with the help of the sequence of infinite matrices.

An infinite matrix A is called a URS-method, if the matrix satisfies the regularity conditions and

lim
j→∞

∞∑
k= j
|an,k+1 − ank| = 0, (uniformly in n).

An operator T ∈ B(X) is called power bounded if sup
n
∥Tn
∥ < ∞.

2. Mean Ergodic Type Theorems

In this section, using a URS-method we give some extensions of the mean ergodic type theorems. Our
first proposition concerns an inequality for a URS-method. We should recall that our result is motivated by
that of Proposition 2.1 of [7] proved for the Cesàro matrix.

Proposition 2.1. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Suppose that A = (ank) is a
URS-method. Given that Y := (I − T)X and CT := sup

n
∥Tn
∥, then we have for all x ∈ X, that

dist(x,Y) ≤ lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥ ≤ lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥ ≤ ∥A∥CT dist(x,Y),

where dist(x,Y) stands for the distance of x to the set Y.

Proof. Take an x ∈ X such that y = (I − T)x. Since T is a power bounded operator and A = (ank) is a
URS-method, the technique used in [2, pg 507], we have∥∥∥∥∥∥∥

∞∑
k=1

ankTk(x − Tx)

∥∥∥∥∥∥∥→ 0, (n→∞). (1)

Since T is a power bounded operator, by (1) we obtain, for all y ∈ Y, that

∥∥∥∥∥∥∥
∞∑

k=1

ankTky

∥∥∥∥∥∥∥→ 0, (n→∞).

Then, for y ∈ Y we find the following inequality∥∥∥∥∥∥∥
∞∑

k=1

ankTkx −
∞∑

k=1

ankTky

∥∥∥∥∥∥∥ ≤ ∥A∥CT∥x − y∥
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which yields

lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥ ≤ ∥A∥CT dist(x,Y).

On the other hand, let us take φ ∈ X′ such that T∗φ = φ and ∥φ∥ ≤ 1. This clearly gives φ(Tkx) = φ(x). Then
for all x ∈ X, we can write

∞∑
k=1

ankφ(x) = φ

 ∞∑
k=1

ankTkx

 .
Using the regularity of A and ∥φ∥ ≤ 1, one can obtain, for all x ∈ X, that

|φ(x)| ≤ lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥ .
Finally, the equality dist(x,Y) = sup{|φ(x)| : T∗φ = φ, ∥φ∥ ≤ 1} given in [6] implies that

dist(x,Y) ≤ lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥
which concludes the proof.

The following corollary is a direct consequence of Proposition 2.1.

Corollary 2.2. Y is characterized by the following set:

Y := {x ∈ X : lim
n→∞

∥∥∥∥∥∥∥
∞∑

k=1

ankTkx

∥∥∥∥∥∥∥ = 0}.

Motivated by that of Jardas and Sarapa [3] we will give a proof of the ergodic theorem. In order to do
this, we shall use Corollary 2.2.

Theorem 2.3. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Assume that A = (ank) is a
URS-method and define Ln by

Ln :=
∞∑

k=1

ankTk (n = 1, 2, ...).

Let E denote the set of all x ∈ X such that lim
n→∞

Lnx exists. Then

E = ker(I − T) ⊕ (I − T)X.

Proof. Take x ∈ E and define Px := lim
n→∞

Lnx. Then it is obvious that P : E→ E is a bounded linear operator.
Since x ∈ E, we have

(I − T)Px = (I − T) lim
n→∞

Lnx = lim
n→∞

Ln(x − Tx).

Following [2, pg 507] we already know that

lim
n→∞

Ln(x − Tx) = 0.
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Thus, we obtain P = TP which immediately yields P = TnP for all n ∈N, and we get

lim
n→∞

Ln(Px) = lim
n→∞

∞∑
k=1

ankTkPx = Px.

Hence, for all x ∈ E we have the following

P2x = P(Px) = lim
n→∞

Ln(Px) = Px.

This directly gives us that

P2 = P. (2)

Now, we need to show that

P(E) = ker(I − T). (3)

Let x ∈ ker(I − T), then Tx = x and Tnx = x for all n ∈N. Thus,

lim
n→∞

Lnx = lim
n→∞

∞∑
k=1

ankTkx = x.

Since Px = lim Lnx = x, we get x ∈ P(E). Now take x ∈ P(E) ⊂ E. Then there exist a z ∈ E such that x = Pz.
Using (2) we find x = Pz = P2z = P(Pz) = Px. Hence, we have

Tx = TPx = Px = x

which yields that x ∈ ker(I − T).
On the other hand, we immediately have

(I − T)X = ker P (4)

because of Corollary 2.2. By (2), (3) and (4) we obtain

E = ker(I − T) ⊕ (I − T)X

which completes the proof.

The next theorem is an extension of Lemma 4.2 in [8].

Theorem 2.4. Let X be a Banach space and let T ∈ B(X) be a power bounded operator. Assume that A = (ank) is
a URS-method and x ∈ X. Then the sequence {Tnx} is convergent if and only if lim

n→∞
∥Tn+1x − Tnx∥ = 0 and the

sequence
{
∞∑

k=1
ankTkx

}∞
n=1

is convergent.

Proof. The necessity is clear from the regularity of A.

For the sufficiency, let us assume that
{
∞∑

k=1
ankTkx

}∞
n=1

is convergent sequence. Now let

Z := {y ∈ X : lim
n→∞
∥Tn+1y − Tny∥ = 0}.

The subspace Z is T-invariant and closed. Since lim
n→∞
∥Tn+1y − Tny∥ = 0 for all y ∈ Z and T is a power

bounded operator, we obtain

lim
n→∞
∥Tny∥ = 0, for all y ∈ (I − T)Z. (5)
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Now consider the set E := {x ∈ Z : lim
n→∞

Lnx exists}. By Theorem 2.3, x ∈ E can be written as x = x0 + y0

such that x0 ∈ ker(I − T) and y0 ∈ (I − T)Z. Hence we have Tnx = Tnx0 + Tny0 which yields Tnx = x0 + Tny0.
This implies, by (5), that

∥Tnx − x0∥ → 0, (n→∞).

This concludes the proof.

3. Uniform Ergodic Type Theorems

In this section, we give some extensions of the uniform ergodic theorems ([4],[5]).
Firstly, we present a proposition which will be used in the proof of the main theorem.

Proposition 3.1. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Suppose that A = (ank) is a

URS-method and
∞∑

k=1
ank = 1, (for all n ∈N). Let ker(I − T) = {0}. Then the following assertions are equivalent:

(i) I − Ln is surjective, (for all n ∈N).
(ii) I − T is surjective.

(iii) lim
n→∞
∥Ln∥ = 0.

Proof. (iii) ⇒ (i) Since lim
n→∞
∥Ln∥ = 0, we can write ∥Ln0∥ ≤ 1 for an n0 ∈ N. Thus, we have that I − Ln is

invertible which yields I − Ln is surjective.
(i)⇒ (ii) Take y ∈ X. There exists an x ∈ X such that (I − Ln)x = y by (i). Hence,

y = (I − Ln)x = (I − T)
∞∑
j=1

anj

j∑
k=1

Tk−1x.

This gives us that (I − T) is surjective.
(ii)⇒ (iii) Because of the assumption that ker(I−T) = {0}, I−T is injective and onto by (ii). Furthermore

it is obvious that I − T is continuous. By the Open Mapping Theorem, the inverse operator (I − T)−1 is
continuous as well. Let us denote by B the closed unit ball in X. Then C := (I − T)−1B is bounded. Let
M = sup

x∈C
∥x∥. Then we get

∥Ln∥ = sup
z∈B
∥Lnz∥ = sup

x∈C
∥Ln(I − T)x∥ ≤M∥Ln(I − T)∥.

From [2, pg 507] we know that ∥Ln(I−T)x∥ ≤ 3CTε∥x∥ and then by taking supremum all over x with ∥x∥ = 1,
we get lim

n→∞
∥Ln(I − T)∥ = 0, which immediately yields ∥Ln∥ → 0, (n→∞).

We now present an extension of the Uniform Ergodic Theorem given by Lin [4] with the help of URS-
method.

Theorem 3.2. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Suppose that A = (ank) is a

URS-method and
∞∑

k=1
ank = 1, (for all n ∈N). Then the following assertions are equivalent:

(i) T is A-uniformly ergodic operator.
(ii) (I − T)X is closed and X = ker(I − T) ⊕ (I − T)X.

(iii) (I − T)2X is closed.
(iv) (I − T)X is closed.
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Proof. Throughout the proof we assume that Y := (I − T)X.
(i)⇒ (ii) Since T is A-uniformly ergodic operator, there exists a P ∈ B(X) such that ∥Ln−P∥ → 0, (n→∞).

This gives that ∥Lnx − Px∥ → 0, (n→∞). Thus we have X = ker(I − T) ⊕ (I − T)X by Theorem 2.3. Now we
show that the subspace (I−T)X is closed. In order to do this, take x ∈ X. Hence T(I−T)x = (I−T)Tx ∈ (I−T)X.
Thus we have,

T(Y) = T((I − T)X) ⊆ T(I − T)X = (I − T)X = Y.

Hence Y is T-invariant subspace and we can write S := T|Y and Sn := Ln|Y. We also know that ker P = Y
from Corollary 2.2 and so we get lim

n→∞
∥Sn∥ = 0. Moreover it is clear that ker(I − T) ∩ (I − T)X = {0} which

yields that Y∩ (I − T)X = {0}. So we get ker(I−S) = {0}. Therefore, one can get by Proposition 3.1 that (I−S)
is onto. Thus,

(I − S)Y = Y = (I − T)Y ⊆ (I − T)X ⊆ Y.

This implies that Y = (I − T)X which in turn yields that (I − T)X is closed
(ii)⇒ (iii) To prove that (I − T)2X is closed, we need to prove that Y = (I − T)2X. We have

(I − T)2X = (I − T){(I − T)X} ⊆ Y. (6)

On the other hand, take y ∈ Y and so there exists an x ∈ X such that y = (I − T)X. By (ii), we can write
x = x0 + x1 such that x0 ∈ (I − T)X and x1 ∈ ker(I − T). Hence, we get

y = (I − T)x = (I − T)x0 ∈ (I − T)Y = (I − T)2X. (7)

By (6) and (7) we obtain Y = (I − T)2X.
(iii)⇒ (iv) To prove that (I − T)X is closed, we must show that Y = (I − T)X. By (iii), one can get,

(I − T)Y = (I − T)(I − T)X ⊆ (I − T)2X = (I − T)2X. (8)

Furhermore,

(I − T)2X = (I − T)(I − T)X ⊆ (I − T)(I − T)X = (I − T)Y. (9)

By (8) and (9), we obtain

(I − T)Y = (I − T)2X

from which we conclude that (I − T)Y is closed.
Since T(Y) ⊆ Y, the operator S := T|Y is well defined. Thus for all y ∈ (I − T)X, we obtain lim

n→∞
Sny = 0.

Now take y ∈ Y. Then,

y − Sny = (I − S)
∞∑
j=1

anj

j∑
k=1

Sk−1y ∈ (I − S)Y

which implies y = lim
n→∞

(y − Sny) ∈ (I − S)Y. Hence we have that (I − T)X ⊆ (I − S)Y which leads to

(I − T)X ⊆ (I − S)Y = (I − S)Y = (I − T)2X. (10)

By (10) and the fact that (I − T)2X ⊆ (I − T)X, we conclude that (I − T)X is closed.
(iv)⇒ (i) Because of (iv), by the Open Mapping Theorem we find that there exists a K ≥ 0 such that for

each y ∈ Y there exists z ∈ X with

(I − T)z = y and ∥z∥ ≤ K∥y∥.
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Thus, by the uniformity condition, given ε > 0 there is a kε such that for all k > kε, we get for all y ∈ Y, that

∥Lny∥ = ∥Ln(I − T)z∥ ≤ CT∥z∥

2 kε∑
j=1

|anj| + ε

 .
(see [2, pg 507], for details). Hence we have ∥Lny∥ ≤ 3CTKε∥y∥. Since Sn := Ln|Y taking supremum all over y
with ∥y∥ = 1, we get lim

n→∞
∥Sn∥ = 0. Therefore, we conclude that by Proposition 3.1 (I − S) is surjective. This

implies that

(I − T)X = Y = (I − S)Y = (I − T)2X.

Hence for all x ∈ X there exists a y ∈ Y such that (I − T)x = (I − T)y. Note that ker(I − S) = {0}. Hence
(I − S) is invertible. So we can write

y = (I − S)−1((I − T)x). (11)

Since (I − S)−1 is also continuous, one can obtain

∥y∥ ≤ ∥(I − S)−1
∥∥(I − T)x∥.

Since (I−T)(x− y) = 0, we observe that T(x− y) = (x− y) and for all m ∈N, Tm(x− y) = (x− y) which yields,
for all n ∈N, that Ln(x − y) = (x − y).

Now we define P : X → X by Px = x − y such that y is the unique element defined by (11). It is easily
checked that (I − S) is well defined and continuous. Thus, to complete proof, we show that ∥Ln − P∥ → 0,
(n→∞). To achive this, take x ∈ X and define y by (11). Then we find

∥(Ln − P)x∥ = ∥Lnx − Px∥ = ∥Lnx − (x − y)∥ = ∥Lny∥

= ∥Ln(I − S)−1((I − T)x)∥ ≤ ∥(I − S)−1
∥∥Ln(I − T)x∥

≤ 3CTε∥(I − S)−1
∥∥x∥.

Hence taking supremum all over x with ∥x∥ = 1, we get that

∥Ln − P∥ ≤ 3CTε∥(I − S)−1
∥.

This concludes the proof.

The following theorem is motivated by Proposion 2.8 in [5].

Theorem 3.3. Let X be a Banach space and T ∈ B(X) be a power bounded operator. Suppose that A = (ank) is a

URS-method and
∞∑

k=1
ank = 1, (for all n ∈N). Then the following assertions are equivalent:

(i) {Tn
} converges uniformly.

(ii) ∥Tn+1
− Tn
∥ → 0 and T is A-uniformly ergodic operator.

(iii) ∥Tn+1
− Tn
∥ → 0 and (I − T)X is closed.

Proof. Clearly we have (i)⇒ (ii) and (ii)⇒ (iii).
We just prove (iii)⇒ (i). Since (I − T)X is closed, following the technique used in the proof of Theorem

3.2 we conclude by the Open Mapping Theorem that (I − S) is invertible on Y. Hence we observe that

(I − T)X = Y = (I − S)Y = (I − T)Y.

Thus, for all x ∈ X, there exists a y ∈ Y such that (I −T)x = (I −T)y then we may write y = (I − S)−1((I −T)x).
Since (I − S) is also continuous, we get

∥y∥ ≤ ∥(I − S)−1
∥∥(I − T)x∥.
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Since (I−T)(x− y) = 0, we observe that T(x− y) = (x− y) and for all m ∈N Tm(x− y) = (x− y). Let us define
P : X→ X with Px = x − y, where y is the unique element defined by (11). It is easily checked that (I − S) is
well defined and continuous. In order to complete the proof we show that ∥Tn

− P∥ → 0. Now take x ∈ X
and define y by (11). Then one can get

∥(Tn
− P)x∥ = ∥Tnx − Px∥ = ∥Tnx − (x − y)∥ = ∥Tnx − Tn(x − y)∥ = ∥Tny∥

= ∥Tn(I − S)−1((I − T)x)∥ ≤ ∥(I − S)−1
∥∥Tn(I − T)x∥

≤ ∥(I − S)−1
∥∥Tn+1

− Tn
∥∥x∥.

Hence taking supremum all over x with ∥x∥ = 1, we observe that

∥Tn
− P∥ ≤ ∥(I − S)−1

∥∥Tn+1
− Tn
∥

from which we get

∥Tn
− P∥ → 0, (n→∞)

by the hypothesis. So, the proof is completed.
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