Some Mean and Uniform Ergodic Type Theorems

Gencay Oğuza, Cihan Orhan ${ }^{\text {a }}$
${ }^{a}$ Ankara University, Faculty of Science, Department of Mathematics, Tandoğan 06100, Ankara, Turkey

Abstract

Let X be a Banach space and $T \in B(X)$. Cohen determined a class of regular infinite matrices $A=\left(a_{n k}\right)$ for which $L_{n}:=\sum_{k=1}^{\infty} a_{n k} T^{k}$ converges strongly to an element invariant under T. In the present paper we study A-mean and A-uniform ergodic type results when $A=\left(a_{n k}\right)$ is a regular infinite matrix satisfying Cohen's uniformity condition $\lim _{j} \sum_{k=j}^{\infty}\left|a_{n, k+1}-a_{n k}\right|=0$, uniformly in n.

1. Introduction

The ergodic theorem asserts that if $T: X \rightarrow X$ is a bounded linear operator on a reflexive Banach space whose iterates T^{j} form a bounded sequence of bounded linear operators, then its Cesàro averages

$$
M_{n}(T):=\frac{1}{n} \sum_{k=1}^{n} T^{k}
$$

form a sequence of bounded linear operators that converge strongly to a projection onto the kernel of the operator $I-T$.

Now let X be a Banacah space and $T \in B(X)$. An operator $T \in B(X)$ is called mean ergodic, respectively uniformly ergodic, if $\left\{M_{n}(T)\right\}$ is strongly, respectively uniformly convergent in $B(X)$. Cohen [2] determined a class of regular infinite matrices $A=\left(a_{n k}\right)$ for which

$$
L_{n}:=\sum_{k=1}^{\infty} a_{n k} T^{k}
$$

converges strongly to an element invariant under T. He proved that such a sequence $\left\{L_{n}\right\}$ is strongly convergent provided that $\left\{L_{n} x: n \in \mathbb{N}\right\}$ is weakly compact and $\lim _{j} \sum_{k=j}^{\infty}\left|a_{n, k+1}-a_{n k}\right|=0$ uniformly in n. Recall that, if the matrix $A=\left(a_{n k}\right)$ maps convergent sequences into the convergent sequences leaving the limit

[^0]invariant, then A is called a regular matrix. It is well known that A is regular if and only if (i) $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, (ii) For all $k, \lim _{n} a_{n k}=0$, (iii) $\lim _{n} \sum_{k=1}^{\infty} a_{n k}=1$ (see, e.g, [1]).

It seems that Cohen's result provides a generalization of the mean ergodic theorems given by J. von Neumann [11], F. Riesz [10] and K. Yosida [13].

Throughout the paper we will call an operator $T \in B(X)$ an A-mean ergodic operator, respectively A uniformly ergodic operator, if the limit of $\left\{L_{n} x\right\}$, respectively the limit of $\left\{L_{n}\right\}$ exists. In the present paper we first study A-mean ergodic type results in a Banach space. In particular we get an ergodic decomposition. Using this we also give necessary and sufficient conditions in order that $\left\{T^{n} x\right\}$ is convergent. This is an extension of Lemma 4.2 in [8]. Next we examine A-uniform ergodic type results which may be considered as an extension of Lin's result [4].

Inspired by the uniformity condition of Cohen, Yoshimoto [12] introduced a URS-method and gave some sufficent conditions for ergodic theorems in Banach Spaces. Furthermore, Jardas and Sarapa [3] studied this result in locally convex vector spaces. Then Oğuz and Orhan [9] gave a version of Cohen's result with the help of the sequence of infinite matrices.

An infinite matrix A is called a URS-method, if the matrix satisfies the regularity conditions and $\lim _{j \rightarrow \infty} \sum_{k=j}^{\infty}\left|a_{n, k+1}-a_{n k}\right|=0, \quad$ (uniformly in n).

An operator $T \in B(X)$ is called power bounded if $\sup _{n}\left\|T^{n}\right\|<\infty$.

2. Mean Ergodic Type Theorems

In this section, using a URS-method we give some extensions of the mean ergodic type theorems. Our first proposition concerns an inequality for a URS-method. We should recall that our result is motivated by that of Proposition 2.1 of [7] proved for the Cesàro matrix.

Proposition 2.1. Let X be a Banach space and $T \in B(X)$ be a power bounded operator. Suppose that $A=\left(a_{n k}\right)$ is a URS-method. Given that $Y:=\overline{(I-T) X}$ and $C_{T}:=\sup _{n}\left\|T^{n}\right\|$, then we have for all $x \in X$, that

$$
\operatorname{dist}(x, Y) \leq \underset{n \rightarrow \infty}{\lim }\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\| \leq \varlimsup_{n \rightarrow \infty}\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\| \leq\|A\| C_{T} \operatorname{dist}(x, Y)
$$

where $\operatorname{dist}(x, Y)$ stands for the distance of x to the set Y.
Proof. Take an $x \in X$ such that $y=(I-T) x$. Since T is a power bounded operator and $A=\left(a_{n k}\right)$ is a URS-method, the technique used in [2, pg 507], we have

$$
\begin{equation*}
\left\|\sum_{k=1}^{\infty} a_{n k} T^{k}(x-T x)\right\| \rightarrow 0, \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

Since T is a power bounded operator, by (1) we obtain, for all $y \in Y$, that

$$
\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} y\right\| \rightarrow 0, \quad(n \rightarrow \infty)
$$

Then, for $y \in Y$ we find the following inequality

$$
\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x-\sum_{k=1}^{\infty} a_{n k} T^{k} y\right\| \leq\|A\| C_{T}\|x-y\|
$$

which yields

$$
\varlimsup_{n \rightarrow \infty}\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\| \leq\|A\| C_{T} \operatorname{dist}(x, Y)
$$

On the other hand, let us take $\varphi \in X^{\prime}$ such that $T^{*} \varphi=\varphi$ and $\|\varphi\| \leq 1$. This clearly gives $\varphi\left(T^{k} x\right)=\varphi(x)$. Then for all $x \in X$, we can write

$$
\sum_{k=1}^{\infty} a_{n k} \varphi(x)=\varphi\left(\sum_{k=1}^{\infty} a_{n k} T^{k} x\right) .
$$

Using the regularity of A and $\|\varphi\| \leq 1$, one can obtain, for all $x \in X$, that

$$
|\varphi(x)| \leq \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\| .
$$

Finally, the equality $\operatorname{dist}(x, Y)=\sup \left\{|\varphi(x)|: T^{*} \varphi=\varphi,\|\varphi\| \leq 1\right\}$ given in [6] implies that

$$
\operatorname{dist}(x, Y) \leq \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\|
$$

which concludes the proof.
The following corollary is a direct consequence of Proposition 2.1.
Corollary 2.2. Y is characterized by the following set:

$$
Y:=\left\{x \in X: \lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\|=0\right\} .
$$

Motivated by that of Jardas and Sarapa [3] we will give a proof of the ergodic theorem. In order to do this, we shall use Corollary 2.2.

Theorem 2.3. Let X be a Banach space and $T \in B(X)$ be a power bounded operator. Assume that $A=\left(a_{n k}\right)$ is a URS-method and define L_{n} by

$$
L_{n}:=\sum_{k=1}^{\infty} a_{n k} T^{k} \quad(n=1,2, \ldots) .
$$

Let E denote the set of all $x \in X$ such that $\lim _{n \rightarrow \infty} L_{n} x$ exists. Then

$$
E=\operatorname{ker}(I-T) \oplus \overline{(I-T) X} .
$$

Proof. Take $x \in E$ and define $P x:=\lim _{n \rightarrow \infty} L_{n} x$. Then it is obvious that $P: E \rightarrow E$ is a bounded linear operator. Since $x \in E$, we have

$$
(I-T) P x=(I-T) \lim _{n \rightarrow \infty} L_{n} x=\lim _{n \rightarrow \infty} L_{n}(x-T x) .
$$

Following [2, pg 507] we already know that

$$
\lim _{n \rightarrow \infty} L_{n}(x-T x)=0
$$

Thus, we obtain $P=T P$ which immediately yields $P=T^{n} P$ for all $n \in \mathbb{N}$, and we get

$$
\lim _{n \rightarrow \infty} L_{n}(P x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k} T^{k} P x=P x
$$

Hence, for all $x \in E$ we have the following

$$
P^{2} x=P(P x)=\lim _{n \rightarrow \infty} L_{n}(P x)=P x
$$

This directly gives us that

$$
\begin{equation*}
P^{2}=P \tag{2}
\end{equation*}
$$

Now, we need to show that

$$
\begin{equation*}
P(E)=\operatorname{ker}(I-T) \tag{3}
\end{equation*}
$$

Let $x \in \operatorname{ker}(I-T)$, then $T x=x$ and $T^{n} x=x$ for all $n \in \mathbb{N}$. Thus,

$$
\lim _{n \rightarrow \infty} L_{n} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k} T^{k} x=x
$$

Since $P x=\lim L_{n} x=x$, we get $x \in P(E)$. Now take $x \in P(E) \subset E$. Then there exist a $z \in E$ such that $x=P z$. Using (2) we find $x=P z=P^{2} z=P(P z)=P x$. Hence, we have

$$
T x=T P x=P x=x
$$

which yields that $x \in \operatorname{ker}(I-T)$.
On the other hand, we immediately have

$$
\begin{equation*}
\overline{(I-T) X}=\operatorname{ker} P \tag{4}
\end{equation*}
$$

because of Corollary 2.2. By (2), (3) and (4) we obtain

$$
E=\operatorname{ker}(I-T) \oplus \overline{(I-T) X}
$$

which completes the proof.
The next theorem is an extension of Lemma 4.2 in [8].
Theorem 2.4. Let X be a Banach space and let $T \in B(X)$ be a power bounded operator. Assume that $A=\left(a_{n k}\right)$ is a URS-method and $x \in X$. Then the sequence $\left\{T^{n} x\right\}$ is convergent if and only if $\lim _{n \rightarrow \infty}\left\|T^{n+1} x-T^{n} x\right\|=0$ and the sequence $\left\{\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\}_{n=1}^{\infty}$ is convergent.
Proof. The necessity is clear from the regularity of A.
For the sufficiency, let us assume that $\left\{\sum_{k=1}^{\infty} a_{n k} T^{k} x\right\}_{n=1}^{\infty}$ is convergent sequence. Now let

$$
Z:=\left\{y \in X: \lim _{n \rightarrow \infty}\left\|T^{n+1} y-T^{n} y\right\|=0\right\}
$$

The subspace Z is T-invariant and closed. Since $\lim _{n \rightarrow \infty}\left\|T^{n+1} y-T^{n} y\right\|=0$ for all $y \in Z$ and T is a power bounded operator, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} y\right\|=0, \quad \text { for all } y \in \overline{(I-T) Z} \tag{5}
\end{equation*}
$$

Now consider the set $E:=\left\{x \in Z: \lim _{n \rightarrow \infty} L_{n} x\right.$ exists $\}$. By Theorem 2.3, $x \in E$ can be written as $x=x_{0}+y_{0}$ such that $x_{0} \in \operatorname{ker}(I-T)$ and $y_{0} \in \overline{(I-T) Z}$. Hence we have $T^{n} x=T^{n} x_{0}+T^{n} y_{0}$ which yields $T^{n} x=x_{0}+T^{n} y_{0}$. This implies, by (5), that

$$
\left\|T^{n} x-x_{0}\right\| \rightarrow 0, \quad(n \rightarrow \infty)
$$

This concludes the proof.

3. Uniform Ergodic Type Theorems

In this section, we give some extensions of the uniform ergodic theorems ([4],[5]).
Firstly, we present a proposition which will be used in the proof of the main theorem.
Proposition 3.1. Let X be a Banach space and $T \in B(X)$ be a power bounded operator. Suppose that $A=\left(a_{n k}\right)$ is a URS-method and $\sum_{k=1}^{\infty} a_{n k}=1$, (for all $\left.n \in \mathbb{N}\right)$. Let $\operatorname{ker}(I-T)=\{0\}$. Then the following assertions are equivalent:
(i) $I-L_{n}$ is surjective, (for all $n \in \mathbb{N}$).
(ii) $I-T$ is surjective.
(iii) $\lim _{n \rightarrow \infty}\left\|L_{n}\right\|=0$.

Proof. (iii) \Rightarrow (i) Since $\lim _{n \rightarrow \infty}\left\|L_{n}\right\|=0$, we can write $\left\|L_{n_{0}}\right\| \leq 1$ for an $n_{0} \in \mathbb{N}$. Thus, we have that $I-L_{n}$ is invertible which yields $I-L_{n}$ is surjective.
(i) \Rightarrow (ii) Take $y \in X$. There exists an $x \in X$ such that $\left(I-L_{n}\right) x=y$ by (i). Hence,

$$
y=\left(I-L_{n}\right) x=(I-T) \sum_{j=1}^{\infty} a_{n j} \sum_{k=1}^{j} T^{k-1} x .
$$

This gives us that $(I-T)$ is surjective.
(ii) \Rightarrow (iii) Because of the assumption that $\operatorname{ker}(I-T)=\{0\}, I-T$ is injective and onto by (ii). Furthermore it is obvious that $I-T$ is continuous. By the Open Mapping Theorem, the inverse operator $(I-T)^{-1}$ is continuous as well. Let us denote by B the closed unit ball in X. Then $C:=(I-T)^{-1} B$ is bounded. Let $M=\sup _{x \in C}\|x\|$. Then we get

$$
\left\|L_{n}\right\|=\sup _{z \in B}\left\|L_{n} z\right\|=\sup _{x \in C}\left\|L_{n}(I-T) x\right\| \leq M\left\|L_{n}(I-T)\right\| .
$$

From [2, pg 507] we know that $\left\|L_{n}(I-T) x\right\| \leq 3 C_{T} \varepsilon\|x\|$ and then by taking supremum all over x with $\|x\|=1$, we get $\lim _{n \rightarrow \infty}\left\|L_{n}(I-T)\right\|=0$, which immediately yields $\left\|L_{n}\right\| \rightarrow 0,(n \rightarrow \infty)$.

We now present an extension of the Uniform Ergodic Theorem given by Lin [4] with the help of URSmethod.

Theorem 3.2. Let X be a Banach space and $T \in B(X)$ be a power bounded operator. Suppose that $A=\left(a_{n k}\right)$ is a URS-method and $\sum_{k=1}^{\infty} a_{n k}=1$, (for all $n \in \mathbb{N}$). Then the following assertions are equivalent:
(i) T is A-uniformly ergodic operator.
(ii) $(I-T) X$ is closed and $X=\operatorname{ker}(I-T) \oplus(I-T) X$.
(iii) $(I-T)^{2} X$ is closed.
(iv) $(I-T) X$ is closed.

Proof. Throughout the proof we assume that $Y:=\overline{(I-T) X}$.
(i) \Rightarrow (ii) Since T is A-uniformly ergodic operator, there exists a $P \in B(X)$ such that $\left\|L_{n}-P\right\| \rightarrow 0,(n \rightarrow \infty)$. This gives that $\left\|L_{n} x-P x\right\| \rightarrow 0,(n \rightarrow \infty)$. Thus we have $X=\operatorname{ker}(I-T) \oplus \overline{(I-T) X}$ by Theorem 2.3. Now we show that the subspace $(I-T) X$ is closed. In order to do this, take $x \in X$. Hence $T(I-T) x=(I-T) T x \in(I-T) X$. Thus we have,

$$
T(Y)=T(\overline{(I-T) X}) \subseteq \overline{T(I-T) X}=\overline{(I-T) X}=\Upsilon
$$

Hence Y is T-invariant subspace and we can write $S:=T_{\mid Y}$ and $S_{n}:=\left.L_{n}\right|_{Y}$. We also know that ker $P=Y$ from Corollary 2.2 and so we get $\lim _{n \rightarrow \infty}\left\|S_{n}\right\|=0$. Moreover it is clear that $\operatorname{ker}(I-T) \cap \overline{(I-T) X}=\{0\}$ which yields that $Y \cap \overline{(I-T) X}=\{0\}$. So we get $\operatorname{ker}(I-S)=\{0\}$. Therefore, one can get by Proposition 3.1 that $(I-S)$ is onto. Thus,

$$
(I-S) Y=Y=(I-T) Y \subseteq(I-T) X \subseteq Y
$$

This implies that $Y=(I-T) X$ which in turn yields that $(I-T) X$ is closed
(ii) $\Rightarrow($ iii $)$ To prove that $(I-T)^{2} X$ is closed, we need to prove that $Y=(I-T)^{2} X$. We have

$$
\begin{equation*}
(I-T)^{2} X=(I-T)\{(I-T) X\} \subseteq Y \tag{6}
\end{equation*}
$$

On the other hand, take $y \in Y$ and so there exists an $x \in X$ such that $y=(I-T) X$. By (ii), we can write $x=x_{0}+x_{1}$ such that $x_{0} \in(I-T) X$ and $x_{1} \in \operatorname{ker}(I-T)$. Hence, we get

$$
\begin{equation*}
y=(I-T) x=(I-T) x_{0} \in(I-T) Y=(I-T)^{2} X \tag{7}
\end{equation*}
$$

By (6) and (7) we obtain $Y=(I-T)^{2} X$.
$(i i i) \Rightarrow(i v)$ To prove that $(I-T) X$ is closed, we must show that $Y=(I-T) X$. By (iii), one can get,

$$
\begin{equation*}
(I-T) Y=(I-T) \overline{(I-T) X} \subseteq \overline{(I-T)^{2} X}=(I-T)^{2} X \tag{8}
\end{equation*}
$$

Furhermore,

$$
\begin{equation*}
(I-T)^{2} X=(I-T)(I-T) X \subseteq(I-T) \overline{(I-T) X}=(I-T) Y \tag{9}
\end{equation*}
$$

By (8) and (9), we obtain

$$
(I-T) Y=(I-T)^{2} X
$$

from which we conclude that $(I-T) Y$ is closed.
Since $T(Y) \subseteq Y$, the operator $S:=T_{\mid Y}$ is well defined. Thus for all $y \in(I-T) X$, we obtain $\lim _{n \rightarrow \infty} S_{n} y=0$. Now take $y \in Y$. Then,

$$
y-S_{n} y=(I-S) \sum_{j=1}^{\infty} a_{n j} \sum_{k=1}^{j} S^{k-1} y \in(I-S) Y
$$

which implies $y=\lim _{n \rightarrow \infty}\left(y-S_{n} y\right) \in \overline{(I-S) Y}$. Hence we have that $(I-T) X \subseteq \overline{(I-S) Y}$ which leads to

$$
\begin{equation*}
(I-T) X \subseteq \overline{(I-S) Y}=(I-S) Y=(I-T)^{2} X \tag{10}
\end{equation*}
$$

By (10) and the fact that $(I-T)^{2} X \subseteq(I-T) X$, we conclude that $(I-T) X$ is closed.
$(i v) \Rightarrow$ (i) Because of $(i v)$, by the Open Mapping Theorem we find that there exists a $K \geq 0$ such that for each $y \in Y$ there exists $z \in X$ with

$$
(I-T) z=y \quad \text { and } \quad\|z\| \leq K\|y\|
$$

Thus, by the uniformity condition, given $\varepsilon>0$ there is a k_{ε} such that for all $k>k_{\varepsilon}$, we get for all $y \in Y$, that

$$
\left\|L_{n} y\right\|=\left\|L_{n}(I-T) z\right\| \leq C_{T}\|z\|\left(2 \sum_{j=1}^{k_{\varepsilon}}\left|a_{n j}\right|+\varepsilon\right)
$$

(see [2, pg 507], for details). Hence we have $\left\|L_{n} y\right\| \leq 3 C_{T} K \varepsilon\|y\|$. Since $S_{n}:=L_{n} \mid y$ taking supremum all over y with $\|y\|=1$, we get $\lim _{n \rightarrow \infty}\left\|S_{n}\right\|=0$. Therefore, we conclude that by Proposition $3.1(I-S)$ is surjective. This implies that

$$
(I-T) X=Y=(I-S) Y=(I-T)^{2} X
$$

Hence for all $x \in X$ there exists a $y \in Y$ such that $(I-T) x=(I-T) y$. Note that $\operatorname{ker}(I-S)=\{0\}$. Hence ($I-S$) is invertible. So we can write

$$
\begin{equation*}
y=(I-S)^{-1}((I-T) x) \tag{11}
\end{equation*}
$$

Since $(I-S)^{-1}$ is also continuous, one can obtain

$$
\|y\| \leq\left\|(I-S)^{-1}\right\|\|(I-T) x\|
$$

Since $(I-T)(x-y)=0$, we observe that $T(x-y)=(x-y)$ and for all $m \in \mathbb{N}, T^{m}(x-y)=(x-y)$ which yields, for all $n \in \mathbb{N}$, that $L_{n}(x-y)=(x-y)$.

Now we define $P: X \rightarrow X$ by $P x=x-y$ such that y is the unique element defined by (11). It is easily checked that $(I-S)$ is well defined and continuous. Thus, to complete proof, we show that $\left\|L_{n}-P\right\| \rightarrow 0$, $(n \rightarrow \infty)$. To achive this, take $x \in X$ and define y by (11). Then we find

$$
\begin{aligned}
\left\|\left(L_{n}-P\right) x\right\| & =\left\|L_{n} x-P x\right\|=\left\|L_{n} x-(x-y)\right\|=\left\|L_{n} y\right\| \\
& =\left\|L_{n}(I-S)^{-1}((I-T) x)\right\| \leq\left\|(I-S)^{-1}\right\|\left\|L_{n}(I-T) x\right\| \\
& \leq 3 C_{T} \varepsilon\left\|(I-S)^{-1}\right\|\|x\| .
\end{aligned}
$$

Hence taking supremum all over x with $\|x\|=1$, we get that

$$
\left\|L_{n}-P\right\| \leq 3 C_{T} \varepsilon\left\|(I-S)^{-1}\right\|
$$

This concludes the proof.
The following theorem is motivated by Proposion 2.8 in [5].
Theorem 3.3. Let X be a Banach space and $T \in B(X)$ be a power bounded operator. Suppose that $A=\left(a_{n k}\right)$ is a URS-method and $\sum_{k=1}^{\infty} a_{n k}=1$, (for all $n \in \mathbb{N}$). Then the following assertions are equivalent:
(i) $\left\{T^{n}\right\}$ converges uniformly.
(ii) $\left\|T^{n+1}-T^{n}\right\| \rightarrow 0$ and T is A-uniformly ergodic operator.
(iii) $\left\|T^{n+1}-T^{n}\right\| \rightarrow 0$ and $(I-T) X$ is closed.

Proof. Clearly we have $(i) \Rightarrow(i i)$ and $(i i) \Rightarrow(i i i)$.
We just prove $(i i i) \Rightarrow(i)$. Since $(I-T) X$ is closed, following the technique used in the proof of Theorem 3.2 we conclude by the Open Mapping Theorem that $(I-S)$ is invertible on Y. Hence we observe that

$$
(I-T) X=Y=(I-S) Y=(I-T) Y
$$

Thus, for all $x \in X$, there exists a $y \in Y$ such that $(I-T) x=(I-T) y$ then we may write $y=(I-S)^{-1}((I-T) x)$.
Since $(I-S)$ is also continuous, we get

$$
\|y\| \leq\left\|(I-S)^{-1}\right\|\|(I-T) x\|
$$

Since $(I-T)(x-y)=0$, we observe that $T(x-y)=(x-y)$ and for all $m \in \mathbb{N} T^{m}(x-y)=(x-y)$. Let us define $P: X \rightarrow X$ with $P x=x-y$, where y is the unique element defined by (11). It is easily checked that $(I-S)$ is well defined and continuous. In order to complete the proof we show that $\left\|T^{n}-P\right\| \rightarrow 0$. Now take $x \in X$ and define y by (11). Then one can get

$$
\begin{aligned}
\left\|\left(T^{n}-P\right) x\right\| & =\left\|T^{n} x-P x\right\|=\left\|T^{n} x-(x-y)\right\|=\left\|T^{n} x-T^{n}(x-y)\right\|=\left\|T^{n} y\right\| \\
& =\left\|T^{n}(I-S)^{-1}((I-T) x)\right\| \leq\left\|(I-S)^{-1}\right\|\| \| T^{n}(I-T) x \| \\
& \leq\left\|(I-S)^{-1}\right\|\| \| T^{n+1}-T^{n}\| \| x \| .
\end{aligned}
$$

Hence taking supremum all over x with $\|x\|=1$, we observe that

$$
\left\|T^{n}-P\right\| \leq\left\|(I-S)^{-1}\right\|\| \| T^{n+1}-T^{n} \|
$$

from which we get

$$
\left\|T^{n}-P\right\| \rightarrow 0, \quad(n \rightarrow \infty)
$$

by the hypothesis. So, the proof is completed.

References

[1] J. Boos, Classical and Modern Methods in Summability, Oxford Science Publ., London, 2000.
[2] L. W. Cohen, On the mean ergodic theorem, Ann. Math. 41(3) (1940) 505-509.
[3] C. Jardas, N. Sarapa, A Summability Method in Some Strong Laws of Large Numbers, Math. Com. 2 (1997) 107-124.
[4] M. Lin, On the uniform ergodic theorem, Amer. Math. Soc. 43 (1974) 337-340.
[5] M. Lin, D. Shoikhet, L. Suciu, Remaks on uniform ergodic theorems, Acta Sci. Math. (Szeged) 81 (2015) 251-283.
[6] H. Mustafayev, Some convergence theorems in Fourier algebras, Bull. Austr. Math. Soc. 96 (2017) 487-495.
[7] H. Mustafayev, Convergence of iterates of convolution operators in L^{p} spaces, Bull. Sci. Math. 152 (2019) 61-92.
[8] H. Mustafayev, Some convergence theorems for operator sequences, Integr. Equ. Oper. Theory 92(4) (2020) 1-21.
[9] G. Oğuz, C. Orhan, Mean ergodic type theorems, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2) (2019) $2264-2271$.
[10] F. Riesz, Some mean ergodic theorems, J. Lond. Math. Soc. 13 (1938) 274.
[11] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA 18 (1932) 70-82.
[12] T. Yoshimoto, Ergodic theorems and summability methods, Quart. J. Math. 38(3) (1987) 367-379.
[13] K. Yosida, Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo, 14 (1938) 292-294.

[^0]: 2020 Mathematics Subject Classification. Primary 47A35; Secondary 46B15, 40C05
 Keywords. Ergodic theorem; mean ergodic theorem; uniform ergodic theorem; ergodic decomposition; Cesàro average; regular matrix; bounded linear operator; power bounded operator

 Received: 27 June 2021; Accepted: 19 September 2021
 Communicated by Eberhard Malkowsky
 Email addresses: gencayyoguzz@gmail.com (Gencay Oğuz), orhan@science. ankara.edu.tr (Cihan Orhan)

