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Abstract. In this paper we characterize weakly Ricci-symmetric spacetimes (WRS)n endowed with the
Gray’s Decomposition. We provide, several interesting results of (WRS)n in Gray’s Decomposition. In
addition we discuss some results based on weakly Ricci-symmetric Generalized Robertson Walker (GRW)
spacetimes. Moreover, we study (WRS)n spacetimes which satisfy the f (R,T)-gravity equation.

1. Introduction

Einstein’s field equations

Ric(V,W) −
R

2
1(V,W) = κ2T̃(V,W), (1)

indicate that the energymomentum tensor T̃ is divergence free. This requirement is fulfilled if ∇T̃ = 0,
where ∇ denotes the semi-Riemannian connection. In (1), κ2 is the gravitational constant, R is the Ricci
scalar and Ric denotes the Ricci tensor. Chaki and Ray[4] asserted that ∇T̃ = 0 implies ∇Ric = 0. Tamassy
and Binh[32] initiated the notion of wakly Ricci symmetric manifold denoted by (WRS)n which generalizes
∇Ric = 0. A non-flat semi-Riemannian manifold is called (WRS)n if the Ricci tensor Ric fulfills the condition

(∇URic)(V,W) = α(U)Ric(V,W) + β(V)Ric(U,W) + γ(W)Ric(V,U), (2)

α, β, γ being three non-zero 1-forms.

A Lorentzian manifold admitting a globally timelike vector field is known as a spacetime. A Lorentzian
manifold is named weakly Ricci symmetric spacetime if the Ricci tensor satisfies (2).
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In a Lorentzian manifold (Mn, 1) (n > 3) the conformal curvature tensor is given by

C(U,V)W = R(U,V)W −
1

n − 2
[1(V,W)QU − 1(U,W)QV

+Ric(V,W)U − Ric(U,W)V]

+
R

(n − 1)(n − 2)
[1(V,W)U − 1(U,W)V], (3)

R being the Ricci scalar, Q is the Ricci operator defined by 1(QY,Z) = Ric(Y,Z).

De and Mallick[10] proved that a conformally flat (WRS)n with non-zero Ricci scalar is a Robertson-
Walker spacetime. Recently, Mantica and Molinari[21] cultivated some properties for (WRS)n with the
help of Lovelock’s identity. Also several researchers([3], [7], [12], [13], [33]) have explored geometrical and
physical consequences of manifolds and perfect fluid spacetimes in different ways.

Definition 1.1. {[1], [22]}A Lorentzian manifold of dimension n is called a generalized Robertson-Walker (GRW)
spacetime if the metric takes the local form

ds2 = −(dt)2 + r(t)21∗i jdxidx j,

where 1∗i j(x
k) are functions of xk only (i, j, k = 2, 3, · · · ,n) and r is a function of t only. If 1∗i j is of dimension 3 and of

constant curvature, then the GRW spacetime reduces to RW spacetime.

Definition 1.2. [11] A Lorentzian manifold of dimension n whose Ricci tensor Ric satisfies the condition

Ric = a1 + bη ⊗ η, (4)

is often called perfect fluid spacetime; a, b being the scalar fields and ρ is unit timelike vector field, called velocity
vector field defined by 1(U, ρ) = η(U).

In a perfect fluid spacetime, the energymomentum tensor T̃ is of the form [25]

T̃(U,V) = p1(U,V) + (σ + p)η(U)η(V) (5)

σ, p being the energy density and isotropic pressure of the perfect fluid respectively.
If σ = p, the perfect fluid is named stiff matter (for more details we refer to [31]).

Recent observations of the late-time acceleration of the Universe posed a fundamental theoretical challenge
to gravitational theories. Various extended gravity theories, where we replace the Ricci scalar in the
Einstein-Hilbert action by some arbitrary yet observationally and theoretically restricted function of the
Ricci scalar, or other scalar or tensor field, or other geometric quantities, to some extent can explain the
presence of a late-time cosmic acceleration of the Universe. f (R,T)-gravity was introduced by Harko et
al.[17] which modifies general relativity as well as f (R)-gravity[30]. In f (R,T)-gravity they considered
gravitational Lagrangian as an arbitrary function of R and T, T being the trace of T̃. With the help of f (R,T)
modified theory of gravity, the changes in Earth’s atmospheric models have been investigated by Ordines
et al.[26]. Several authors (see [28], [5]) have studied various properties of f (R,T)-gravity in different points
of view.
Also De and his co-authors explored in ([9], [10]) about weakly Ricci-symmetric spacetimes. Related
properties of symmetric spacetimes were also analyzed by Mantica et al. in ([22], [23]), specifically GRW
spacetimes. Furthermore, certain features of (WRS)n spacetimes were also addressed by De and Majhi in
[8]. Recently, Mantica et al. also studied in [24] perfect fluid GRW-spacetime with Gray’s decomposition.
Influenced by the above studies, we aim in this paper to explore the weakly Ricci-symmetric spacetimes
(WRS)n via Gray’s decomposition. In addition, we like to investigate (WRS)4 spacetimes with f (R,T)-
gravity. The importance of (WRS)n spacetimes lies in the fact that such a spacetime illustrates stiffmatter.
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2. Gray’s decomposition and weakly Ricci-symmetric spacetimes

For this section we have required the following results which are essentials to the further results.

Theorem A. [23] Let (M, 1) be an n-dimensional Lorentzian manifold with n > 3. If the Ricci tensor has the form
Ric(U,V) = −Rµ(U)µ(V) and the conformal curvature tensor is divergence free, that is, div C = 0, then (M, 1) is a
GRW spacetime.

Theorem B. [6] A Lorentzian manifold (M, 1) of dimension n > 3 is a GRW spacetime if and only if it admits a
timelike vector field Z such that ∇UZ = f U for some function f on M.

Theorem C. [8] The expression of the Ricci tensor Ric of a (WRS)n spacetime is given by

Ric(U,V) = −Rµ(U)µ(V). (6)

Moreover the Ricci scalarR is not zero, µ = β−γ and ρ is a unit timelike vector field such that 1(U, ρ) = µ(U)
for all vector fields U.

Remark 2.1. The expression (6) implies that the spacetime is Ricci simple (for more details see [23]). In fact
(WRS)n obeying Einstein’s field equations represents stiff matter fluid and massless scalar field spacetime with
timelike gradient vector.

Now, by above remark and Theorem C we conclude the following:

Proposition 2.2. A (WRS)n spacetime obeying Einstein’s field equations represents perfect fluid spacetime with
p = σ.

Gary[14] proposed that the gradient of the Ricci tensor, ∇Ric, can be decomposed into O(n)-invariant terms
(for more details, see [2], [16], [19]). It follows from [14] that the gradient of the Ricci tensor (∇URic)(V,W)
can be decomposed into O(n)-invariant term as follows [24]:

(∇URic)(V,W) = R̃(U,V)W + ξ(U)1(V,W) + ω(V)1(U,W) + ω(W)1(V,U), (7)

where

ξ(U) =
n

(n − 1)(n + 2)
∇UR, ω(U) =

n
(n − 1)(n + 2)

∇UR, (8)

and R̃(U,V)W = R̃(U,W)V is trace-less which can be decomposed as a sum of orthogonal components

R̃(U,V)W =
1
3

[R̃(U,V)W + R̃(V,W)U + R̃(W,U)V]

+
1
3

[R̃(U,V)W − R̃(V,U)W] +
1
3

[R̃(U,V)W − R̃((W,U)V].
(9)

The decompositions (7) and (9) provide O(n)-invariant subspace, characterized by invariant equations that
are linear in (∇URic)(V,W).

The gradient of the Ricci tensor and the divergence of the conformal curvature tensor C are connected
by the following relation (see [24])

(div C)(U,V)W =
n − 3
n − 2

[R̃(U,V)W − R̃(V,U)W]. (10)

In Gray’s decomposition we have the following subspaces:

(i) The trivial subspace ∇Ric = 0.
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(ii) The subspace I is characterized by R̃(U,V)W = 0, i.e.,

(∇URic)(V,W) = ξ(U)1(Y,Z) + ω(V)1(U,W) + ω(W)1(V,U). (11)

It is to be noted that the manifold fulfilling the above equation (11) is named Sinyukov manifold[29].

(iii) The orthogonal complements I′ is characterized by

(∇URic)(V,W) + (∇VRic)(U,W) + (∇WRic)(U,V) = 0. (12)

This implies that the Ricci scalar R = constant. Also this equation reflects that the Ricci tensor is
Killing[35].

(iv) In B and B′ the Ricci tensor is a Codazzi tensor i.e.,

(∇URic)(V,W) = (∇VRic)(U,W). (13)

(v) The subspace I ⊕ A contains tensors that satisfies the cyclic condition

(∇URic)(V,W) + (∇VRic)(U,W) + (∇WRic)(U,V)

= 2
dR(U)
(n + 2)

1(V,W) + 2
dR(V)
(n + 2)

1(U,W) + 2
dR(W)
(n + 2)

1(U,V).
(14)

(vi) The subspace I ⊕ B contains tensors that satisfy the Codazzi condition

∇W[Ric(U,V) −
R

2(n − 1)
1(U,V)] = ∇U[Ric(V,W) −

R

2(n − 1)
1(V,W)], (15)

which implies that div C = 0.

Now, we consider these six cases separately.

Case (i) ∇Ric = 0, which implies R = constant. Also in (WRS)n we have

Ric(U,V) = −Rµ(U)µ(V), (16)

where ρ is a unit timelike vector field associated with the 1-form µ. Taking covariant derivative of (16) and
using R = constant, we derive

R[(∇Wµ)Uµ(V) + µ(U)(∇Wµ)V] = 0.

Since R , 0 in (WRS)n, therefore the foregoing equation becomes

(∇Wµ)Uµ(V) + µ(U)(∇Wµ)V = 0. (17)

Since ρ is a unit timelike vector field, we obtain that 1(∇Uρ, ρ) = 0 and hence (∇Wµ)ρ = 0. Replacing V by ρ
in (17) gives (∇Wµ)U = 0, that is, the 1-form µ is closed.

Now, (∇Wµ)U = 0 implies 1(U,∇Wρ) = 0. Putting Z = ρ provides ∇ρρ = 0. Hence the integral curves of
the velocity vector filed ρ are geodesic. Consequently, we have the following result.

Theorem 2.3. If a (WRS)n spacetime belongs to the trivial subspace, then the 1-form µ is closed and the integral
curves of the velocity vector filed ρ are geodesic.



B.-Y. Chen et al. / Filomat 36:7 (2022), 2391–2401 2395

Case (ii). From (7) we find

(∇URic)(V,W) = R̃(U,V)W + α(U)1(V,W) + β(V)1(U,W) + β(W)1(V,U).

The subspace I is characterized by R̃(U,V)W = 0, i.e.,

(∇URic)(V,W) = α(U)1(V,W) + β(V)1(U,W) + β(W)1(V,U).

Once again, from (9) we have

(div C)(U,V)W =
n − 3
n − 2

[R̃(U,V)W − R̃(V,X)W].

In subspace I Ricci tensor fulfills the condition R̃(U,V)W = 0 and hence from the above result we obtain
div C = 0. Also in a (WRS)n spacetime, Ric(U,V) = −Rµ(U)µ(V). Hence in the light of Theorem A, we
conclude the following:

Theorem 2.4. If a (WRS)n spacetime belongs to the subspace I , then the spacetime is a GRW spacetime.

Case (iii). To discuss the case we first define Killing tensor and then prove a lemma.

Definition 2.5. [35] A second order symmetric tensor K is said to be a Killing tensor if

(∇UK)(V,W) + (∇VK)(W,U) + (∇WK)(U,V) = 0.

Lemma 2.6. In a spacetime the energy momentum tensor is Killing if and only if the Ricci tensor is Killing.

Proof. Taking covariant derivative of the Einstein’s field equations (1), we get

(∇ZRic)(U,V) −
dR(Z)

2
1(U,V) = κ(∇ZT̃)(U,V),

which implies

(∇ZRic)(U,V) + (∇VRic)(Z,U) + (∇URic)(V,Z) −
dR(Z)

2
1(U,V)

−
dR(V)

2
1(Z,U) −

dR(U)
2
1(V,Z) = κ{(∇ZT̃)(U,V) + (∇VT̃)(Z,U)

+(∇UT̃)(V,Z)}. (18)

First suppose that T̃ is Killing . Then (18) infers

(∇ZRic)(U,V) + (∇VRic)(Z,U) + (∇URic)(V,Z)

=
dR(Z)

2
1(U,V) +

dR(V)
2
1(Z,U) +

dR(U)
2
1(V,Z). (19)

Contracting U and V gives R = constant.
Hence equation (19) reflects that the Ricci tensor is Killing. Conversely, if the Ricci tensor is Killing, then
R = constant and hence from (18) it follows that the energy momentum tensor is Killing. This finishes the
proof.

In [27] Sharma and Ghosh obtained an interesting result as follows:

Theorem D. [27] Let (M, 1) be a perfect fluid spacetime such that its energy momentum tensor is Killing. Then (i)
M is expansion-free and shear-free and its flow is geodesic, however, not necessarily vorticity-free, and (ii) its energy
density and isotropic pressure are constant on M.

Now invirtue of Lemma (2.6) and Theorem D, we state the following:
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Theorem 2.7. If a (WRS)n perfect fluid spcetime belongs to the class I′, then (i) the spacetime is expansion-free and
shear-free and its flow is geodesic, however, not necessarily vorticity-free, and (ii) its energy density and isotropic
pressure are constant.

Case (iv). If (WRS)n belongs to B and B′ , then

(∇URic)(V,W) = (∇VRic)(U,W),

which implies R = constant.
Note that Guilfoyle and Nolan [15] named a Yang pure space as a four dimensional Lorentzian manifold

whose metric solves Yang’s equation:

(∇URic)(V,W) = (∇VRic)(U,W). (20)

In any dimension, they are equivalent to the condition: div C = 0 with constant scalar curvature.
For n ≥ 4, Mantica and Molinari [23] stated the following:

Proposition 2.8. An n-dimensional perfect fluid Yang pure space with p + σ , 0 is a GRW spacetime.

Since (WRS)n is a perfect fluid spacetime satisfying p = σ and (20), we have the following result from
Proposition 2.8.

Theorem 2.9. If a (WRS)n spacetime belongs to class B and B′ , then the spacetime is a GRW spacetime.

Case (v). In this case, we have

(∇URic)(V,W) + (∇VRic)(U,W) + (∇WRic)(U,V) = 2
dR(U)
(n + 2)

1(V,W)

+2
dR(V)
(n + 2)

1(U,W) + 2
dR(W)
(n + 2)

1(U,V). (21)

Applying (2) in the above equation, we find

F(U)Ric(V,W) + F(V)Ric(U,W) + F(W)Ric(U,V)

= 2
dR(U)
(n + 2)

1(V,W) + 2
dR(V)
(n + 2)

1(U,W) + 2
dR(W)
(n + 2)

1(U,V),

where F(U) = α(U) + β(U) + γ(U). Now contracting V and W in the foregoing equation, we obtain

F(U)R + Ric(U, ρ̃) + Ric(U, ρ̃) = 2dR(U),

where 1(U, ρ̃) = F(U) for all U. Hence, we get

F(U)R + 2Ric(U, ρ̃) = 2dR(U).

Contracting equation (21) we get R = constant.
Therefore, we have the following:

Theorem 2.10. If a (WRS)n spacetime belongs to the subspace I ⊕ A, then ρ̃ is an eigenvector corresponding to the
eigenvalue −R2 .

Case (vi). Let the (WRS)n belongs to I ⊕ B. In this case, we get div C = 0. Also in a (WRS)n we have
Ric(U,V) = −Rµ(U)µ(V). Hence from Theorem A, we obtain

Theorem 2.11. If a (WRS)n spacetime belongs to the subspace I ⊕ B, then it is a GRW spacetime.
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3. Weakly Ricci-symmetric Generalized Robertson walker spacetimes

In this section we characterize (WRS)n GRW spacetimes. Mantica et al. proved

Proposition 3.1. ([23]) A perfect fluid spacetime with div C = 0 is a GRW-spacetime with Einstein fibers provided
the velocity vector field is irrotational.

By combining the above result and Theorem C we state

Remark 3.2. A (WRS)n spacetime satisfying div C = 0 is a GRW-spacetime provided that the velocity vector field is
irrotational.

For GRW spacetimes, let us assume that ρ is a concircular vector field according to Theorem B. Then we
get ∇Uρ = f U, which implies

R(U,V)ρ = (U f )V − (V f )U. (22)

Hence

Ric(V, ρ) = (1 − n)(V f ). (23)

For (WRS)n we have Ric(U,V) = −Rµ(U)µ(V), which gives

Ric(V, ρ) = Rµ(V). (24)

Equation (23) and (24) together yield

V f =
R

1 − n
µ(V). (25)

Using (25) in (22) we turn up

R(U,V)ρ =
R

(1 − n)
[µ(U)V − µ(V)U]. (26)

Now, adopting (3) we obtain

C(U,V,W, ρ) =R(U,V,W, ρ) −
1

(n − 2)
[Ric(V,W)1(U, ρ)

− Ric(U,W)1(V, ρ) + Ric(U, ρ)1(V,W) − Ric(V, ρ)1(U,W)]

+
R

(n − 1)(n − 2)
[1(Y,W)1(U, ρ) − 1(U,W)1(V, ρ)]

=
R

(1 − n)
[µ(V)1(U,W) − µ(U)1(V,W)]

−
1

(n − 2)
[Ric(V,W)µ(U) − Ric(U,W)µ(V)

+ Rµ(U)1(V,W) − Rµ(V)1(U,W)]

+
R

(n − 1)(n − 2)
[1(V,W)µ(U) − 1(U,W)µ(V)].

(27)

Using (24), (26), (27) and (6), we finally obtain C(U,V,W, ρ) = 0. Therefore, we get C(U,V)ρ = 0, which
implies that the conformal curvature tensor is purely electric [18]. Further it is known that in a GRW
spacetime div C = 0 if and only if C(U,V)ρ = 0 [22].

Consenquetly, we obtain:
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Theorem 3.3. In a (WRS)n GRW spacetime, the conformal curvature tensor is purely electric and it is also divergence
free.

For dimension n = 4, the condition C(U,V)ρ = 0 is equivalent to

µ(Y)C(U,V,Z,W) + µ(U)C(V,Y,Z,W) + µ(V)C(Y,U,Z,W) = 0,

where µ(Y) = 1(Y, ρ) for all vector fields Y. Now, replacing Y by ρ in the above expression, we obtain
C(U,V,Z,W) = 0 [20].

In [34], Vazquez et al. proved that “A GRW spacetime M is conformally flat if and only if M is a
Robertson-Walker spacetime”. Hence we have the following two corollaries.

Corollary 3.4. In dimension n = 4, a weakly Ricci-symmetric GRW-spacetime is a RW spacetime.

Corollary 3.5. [20] A 4-dimensional weakly Ricci symmetric GRW-spacetime is of Petrov type O.

4. (WRS)4-spacetime satisfying f (R, T)-gravity

In this Section we characterize (WRS)4 spacetimes satifying f (R,T)-gravity which is the generalization of
f (R)-gravity. Harko et al[17] introduced this modified gravity theory. The corresponding field equations
have been executed in metric formaslism for several particular cases of f (R,T) gravity. Also Harko et al[17]
pursued posibility of reconstructing the FRW cosmologies by an approprite choice of f (T) for the model
f (R,T) = R + 2 f (T). Here we choose

f (R,T) = R + 2 f (T), (28)

f (T) being an arbitrary function on the trace T of T̃ and the term 2 f (T) in the gravitational action modifies
the gravitational interaction between matter and curvature.

We assume a modified Einstein-Hilbert action term

H =
1

16π

∫
[ f (R,T) +Lm]

√
(−1)d4x, (29)

where f (R,T) is an arbitrary function of scalar curvatureR and the trace T of the energy-momentum tensor,
and Lm is the matter Lagrangian of the scalar field. The stress energy tensor of the matter is given by

Tab =
−2δ(

√
−1)Lm

√
−1δab

. (30)

Let us consider that the matter Lagrangian of the scalar field depends only on the metric tensor 1ab, and not
on its derivatives.
The variation of action (29) with respect to the metric tensor 1ab yields the field equations of f (R,T)-gravity

fR(R,T)Ricab −
1
2

f (R,T)1ab + (1ab∇c∇
c
− ∇a∇b) fR(R,T)

= 8πTab − fT(R,T)Tab − fT(R,T)ψab,
(31)

where fR and fT denote the partial derivatives of f (R,T) with respect to R and T, respectively. As per usual
notation, ∇a is the covariant derivative, □ ≡ ∇c∇

c is the d’Alembert operator, and ψab is defined by

ψab = −2Tab + 1abLm − 21lk ∂2
Lm

∂1ab∂1lk
. (32)

If we consider f (R,T) = f (R), then (31) provides the field equations of f (R)-gravity.
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Let consider the matter of a perfect fluid (WRS)n spacetime with isotropic pressure p, energy density σ,
and velocity vector ρ is given by 1(X, ρ) = µ(X) for all X. Also, we know that there is no unique value of
Lagrangian, therefore we assume that Lm = −p and using (5) we turn up

T̃(U,V) = p1(U,V) + (σ + p)η(U)η(V), (33)

where 1(ρ, ρ) = −1. Using (33), we can easily obtain the variation of stress energy in the following form

ψ(U,V) = −p1(U,V) − 2T̃(U,V). (34)

After adopting (28) and (31) we get the form

Ric(U,V) =
R

2
1(U,V) − 2 f

′

(T)T̃(U,V) − 2 f
′

(T)ψ(U,V) + f (T)1(U,V) + 8πT̃(U,V). (35)

Throughout this study we consider (WRS)n spacetime solution of f (R,T)-gravity equation where the velocity
vector η = µ, so that equation (16) becomes

Ric(U,V) = −Rη(U)η(V). (36)

Replacing V by ρ in (36) entails that

Ric(U, ρ) = Rη(U). (37)

In light of (33), (34), and (35) we get

Ric(U,V) = {
1
2
R + f (T) + 4p f

′

(T) + 8pπ}1(U,V) + {(σ + p)(8π + 2 f
′

(T))}η(U)η(V). (38)

Contracting (38) we get

R = (σ + p)(8π + 2 f
′

(T) − 4{8pπ + f (T) + 4p f
′

(T)}. (39)

On the other hand using (37) in (38) we acquire

R = −2(σ + p){8π + 2 f
′

(T)} + 2{8pπ + f (T) + 4p f
′

(T)}. (40)

Now equations (39) and (40) together yield

σ + p = −
R

8π + 2 f ′ (T)
. (41)

Since in a (WRS)4 spacetime R , 0, consequently σ + p , 0.
Also (39) and (40) give

p = −
R + 2 f (T)

8{2π + f ′ (T)}
. (42)

and equations (41) infers

σ =
−2R{4π + 3 f ′ (T)} + 4 f (T){4π + f ′ (T)}

8{2π + f ′ (T)}{8π + 2 f ′ (T)}
. (43)

Thus we obtain

Theorem 4.1. In a perfect fluid (WRS)n spacetime obeying f (R,T)-gravity equation, if the four-velocity vector is
identical with µa, then p and σ are given by in (42) and (43) which are not constant in this special situation.
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Since the scalar curvature R is non-zero in a (WRS)n spacetime, it follows from (41) that (σ + p) , 0.
Hence we write

Corollary 4.2. Every perfect fluid (WRS)n spacetime obeying f (R,T)-gravity equation cannot admit dark matter.

Consider dust matter fluid i.e., p = 0, then we get from (41) and (43) that

f (T) = −
R

2
, (44)

provided 4π + f ′ (T) , 0.
Therefore, we obtain

Corollary 4.3. A perfect fluid (WRS)n spacetime unable to illustrate dust era for any viable f (R,T), provided
4π + f ′ (T) , 0.

In particular, if f (T) = 0, then f (R,T)-gravity recovers f (R)-gravity. In this case we obtain from (42) and
(43) that

p = −
1

16π
R and σ = −

1
16π
R.

Hence we have

Corollary 4.4. A perfect fluid (WRS)n spacetime obeying f (R)-gravity equation stands for stiff matter fluid.

5. Discussion

In the present investigation, we study weakly Ricci-symmetric spacetimes (WRS)n endowed with the
Gray’s Decomposition. Specifically, it is observed that a (WRS)n spacetime becomes a GRW spacetime
under certain condition. The GRW spacetime is investigated in this setting and obtained that, the conformal
curvature tensor is purely electric and divergence free. Also, We consider, a perfect fluid (WRS)n spacetime
obeying f (R,T)-gravity equation and the four-velocity vector is identical with µa and observe the spacetime
cannot admit dark matter era but stands for stiffmatter fluid for f (R)-gravity.
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