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Separable Vectors with Applications
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Abstract. In this article we provide generalizations of Niezgoda inequality for similarly separable vectors
followed by refinements. We also highlight its importance by giving applications. Our results will be
generalizing many previously established results.

1. Introduction and Preliminaries

Jensen’s inequality for convex functions is amongst the most celebrated inequalities in mathematics
and statistics. It has a significant role in various branches of sciences. Various renowned inequalities are
a consequence of Jensen’s inequality: for example, the Arithmetic-Geometric inequality is a consequence
of Jensen’s Inequality for convex functions. Also, the general inequality between means of orders p and
q, such as Hölder’s and Minkowski’s inequalities, are also consequences of Jensen’s inequality. There are
numerous variants, generalizations and refinements of Jensen’s inequalities (for reference see [2–4, 7–10, 14–
22, 42, 43, 45, 46]). We also adduce to [6] and [38] for detailed discussion on Jensen’s inequality and for
some remarks on literature and history of the topic.

Throughout the article we assume that J is an interval in R and for real weights w1, . . . ,wn, we define
the notation

Wi =

i∑
γ=1

wγ, i ∈ In and clearly Wn =

n∑
γ=1

wγ.

Also in our article, we denote Im = {1, 2, . . . ,m}.
Here we state some results from [38] (see also [30, 31, 41]). Let us start with Jensen’s inequality.

Proposition 1.1. AssumeΨ is a convex function on J. Take x to be an n-tuple such that xi ∈ J, for i ∈ In. Let w be a
nonnegative n-tuple such that Wn > 0. Then the following inequality holds

Ψ

 1
Wn

∑
i∈In

wixi

 ≤ 1
Wn

∑
i∈In

wiΨ(xi). (1)

Steffensen in 1919 [38, p. 57] presented a more general form of Jensen’s inequality which we usually refer
to as Jensen-Steffensen inequality. This may be stated as:
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Proposition 1.2. AssumeΨ is a convex function on J. Take x to be a monotonic n-tuple such that xi ∈ J, i ∈ In. Let
w be a real n-tuple such that

0 ≤Wi ≤Wn for i ∈ In, Wn > 0. (2)

Then (1) holds.

In mathematical literature, the following inequality is referred to as Reverse-Jensen inequality [38, p. 83].

Proposition 1.3. If Ψ is a convex function on J. Take x to be an n-tuple such that xi ∈ J for i ∈ In. Let w be a real
n-tuple with 1

Wn

∑n
i=1 wixi ∈ J, where w1 > 0, wi ≤ 0 for i ∈ {2, . . . ,n} and Wn > 0. Then reverse inequality in (1)

holds.

Mercer [29] proved a variant of Jensen’s inequality as follows. We will refer to it as Jensen-Mercer inequality.

Proposition 1.4. Under the assumptions of Proposition 1.1, the following inequality holds

Ψ

L +M −
1

Wn

∑
i∈In

wixi

 ≤ Ψ(L) +Ψ(M) −
1

Wn

∑
i∈In

wiΨ(xi) (3)

where
L = min

xi∈J
{xi} and M = max

xi∈J
{xi}.

By imposing different conditions on weights wi for i ∈ In, as we observed in aforementioned propositions,
we get different variants of Proposition 1.4.

In [1] (see also [33]), we can find the following variant of Jensen-Mercer inequality.

Proposition 1.5. Assume Ψ is a convex function on J. Take x to be a monotonic nondecreasing n-tuple such that
xi ∈ J, i ∈ In. Let w be a real n-tuple such that conditions on weights given in (2) be valid. Then inequality (3) holds.

The following result has been proved in [28]:

Proposition 1.6. Under the assumptions of Proposition 1.3, inequality (3) holds.

Now we state the definition of majorization from [25] as follows: Let two m-tuples x = (x1, . . . , xm) and
y =

(
y1, . . . , ym

)
be such that x[1] ≥ · · · ≥ x[m], y[1] ≥ · · · ≥ y[m] be their ordered components.

Definition 1.7. For x, y ∈ Rm,

x ≺ y if


∑
i∈Iκ

x[i] ≤
∑
i∈Iκ

y[i] , κ ∈ Im−1,∑
i∈Im

x[i] =
∑
i∈Im

y[i] .

When x ≺ y, we say “y majorizes x” or “x is majorized by y”.

This concept of majorization was first introduced by Hardy et al. in 1934. In their book “Inequalities” [13],
we can find the well-known majorization theorem. Using the defintion of majorization stated above, we
are ready to state an extension of inequality (3) presented by Niezgoda in [33]. We refer to it as Niezgoda’s
inequality (see [23, 34, 36] for recent extensions of inequality (3)).

Proposition 1.8. AssumeΨ is a continuous convex function on J. Suppose a = (a1, . . . , am) is an m-tuple such that
ai ∈ J and X = (xγ) = (xiγ) is an n ×m matrix such that xiγ ∈ J for all i ∈ In and γ ∈ Im.

If a majorizes each row of X, i.e.,

xi. = (xi1, . . . , xim) ≺ (a1, . . . , am) = a for each i ∈ In,

then the following inequality holds:

Ψ

∑
γ∈Im

aγ −
∑
γ∈Im−1

∑
i∈In

wixiγ

 ≤∑
γ∈Im

Ψ(aγ) −
∑
γ∈Im−1

∑
i∈In

wiΨ(xiγ), (4)

where
∑n

i=1 wi = 1 with wi ≥ 0.
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2. Generalized Niezgoda inequality for similarly separable vectors

In current section we provide generalization of Niezgoda’s inequality (4). For this purpose, some
notations are required here. We also quote some relevant definitions from [33] (see also [35] and [37]).

Throughout the paper, we assume that p = (p1, . . . , pm) is a positive m-tuple.
Here we introduce inner product on Rm for a = (a1, . . . , am) and b = (b1, . . . , bm) by

⟨a,b⟩ =
∑
γ∈Im

pγaγbγ. (5)

For λ ∈ Im, we denote

Pλ =
∑
γ∈Iλ

pγ, P̂λ =
∑
γ∈Iλ

γpγ, P̃λ =
∑
γ∈Iλ

γ2pγ.

Unless specified elsewise, we take ε = {e1, . . . , em} as an ordered basis in Rm and D = {d1, . . . ,dm} as the
dual basis of ε , that is, ⟨ei,dγ⟩ = δiγ (Kronecker delta) for i, γ ∈ Im.

Definition 2.1. We define a vector v ∈ Rm to be ε-positive if ⟨ei,v⟩ > 0 for all i ∈ Im. Let J1 and J2 be two sets of
indices such that J1 ∪ J2 = J. Given µ ∈ R and v ∈ Rm, a vector z ∈ Rm is known as µ,v-separable on J1 and J2 (with
respect to basis ε), if

⟨ei, z − µv⟩ ≥ 0 for i ∈ J1 and ⟨eγ, z − µv⟩ ≤ 0 for γ ∈ J2. (6)

We say z is µ,v-separable on J1 and J2 with respect to the basis ε if and only if

max
i∈J2

⟨ei, z⟩
⟨ei,v⟩

≤ µ ≤ min
γ∈J1

⟨eγ, z⟩
⟨eγ,v⟩

(7)

where v is ε-positive.

Definition 2.2. A vector z ∈ Rm is v-separable on J1 and J2 (with respect to the basis ε), if for some µ ∈ R, z is
µ,v-separable on J1 and J2.

Definition 2.3. A map ϕ : J → R is said to preserve v-separability on J1 and J2 with respect to ε, if ϕ(z) =
(ϕ(z1), . . . , ϕ(zm)) is v-separable on J1 and J2 with respect to ε, whenever z = (z1, . . . , zm) ∈ Jm is v-separable on J1
and J2 with respect to ε.

Remark 2.4. In case where v is ε-positive, J1 = {λ0} and J2 = J\{λ0}, the v-separability of z is implied by:

⟨eλ, z⟩
⟨eλ,v⟩

≤
⟨eλ0 , z⟩
⟨eλ0 ,v⟩

(8)

for λ ∈ Im.

Definition 2.5. [41, pp. 32, 110] Given a real convex functionΨ on J, ∂Ψ denotes the subdifferential ofΨ. It is the
set of all functions ϕ : J→ [−∞,∞] such that ϕ(Jo) ⊆ R and

Ψ(x) ≥ Ψ(a) + (x − a)ϕ(a) for any x, a ∈ J.

Using the notations defined until now, we now present our main result:

Theorem 2.6. DefineΨ : J → R to be a convex function on an open interval J ⊆ R. Suppose a = (a1, . . . , am) ∈ Jm

and X = (xγ) = (xiγ) is an n×m matrix such that xiγ ∈ J and (xγ) is a monotonic m-tuple for all i ∈ In, γ ∈ Im. Also

assume that the weight wi for i ∈ In satisfying the conditions as in (2) and
1

Wn

∑
i∈In

wiΨ(xiγ) ≤ Ψ(aγ) for γ ∈ Im. We

further let that ⟨a − xi.,v⟩ = 0 for i ∈ In. Then the following inequality holds:
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Ψ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

ϵpγvγ
∑
i∈In

wixiγ −
1

Wn

m∑
γ=κ+1

ϵpγvγ
∑
i∈In

wixiγ


≤

1
pκ

∑
γ∈Im

pγΨ(aγ) −
1
pκ

1
Wn

κ−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ) −
1
pκ

1
Wn

m∑
γ=κ+1

pγ
∑
i∈In

wiΨ(xiγ), (9)

where ϵ = 1
pκvκ

with vκ , 0 for κ ∈ Im.

Proof. First, we use the assumption that for each γ ∈ Im

1
Wn

∑
i∈In

wiΨ(xiγ) ≤ Ψ(aγ)

multiplying it by pγ and taking sum over γ ∈ Im, we get

1
Wn

∑
i∈In

∑
γ∈Im

pγwiΨ(xiγ) ≤
∑
γ∈Im

pγΨ(aγ). (10)

Since ⟨a − xi.,v⟩ = 0 for all i ∈ In by (5) we have for each i ∈ In.

ϵ

∑
γ∈Im

pγvγaγ −
κ−1∑
γ=1

pγvγxiγ −

m∑
γ=κ+1

pγvγxiγ

 = xiκ. (11)

Now, using Jensen-Steffensen inequality for weights wi and then using (11) and inequality (10) for weights
pγ we obtain our required result as follows

pκΨ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

ϵpγvγ
∑
i∈In

wixiγ −
1

Wn

m∑
γ=κ+1

ϵpγvγ
∑
i∈In

wixiγ


= pκΨ

 1
Wn

∑
i∈In

wi

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




≤
1

Wn

∑
i∈In

wipκΨ

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ


=

1
Wn

∑
i∈In

wipκΨ (xiκ)

≤
1

Wn

∑
i∈In

wi

∑
γ∈Im

pγΨ(aγ) −
κ−1∑
γ=1

pγΨ(xiγ) −
m∑

γ=κ+1

pγΨ(xiγ)


=

∑
γ∈Im

pγΨ(aγ) −
1

Wn

κ−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ) −
1

Wn

m∑
γ=κ+1

pγ
∑
i∈In

wiΨ(xiγ).

Remark 2.7. Here we observe that the proof of Theorem 2.6 is much more simpler than proof of Theorem 3.1 of [33].
It should be noted that in Theorem 3.1 of [33] the author has used positive weights while we have used real weights
satisfying assumptions as stated in (2) with monotonic m−tuples (xγ). It is also worth mentioning that we did not use
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bifractional inequality [35] or concept of similarly separable vectors, we removed all these assumptions at the expense

of the assumption that
1

Wn

∑
i∈In

wiΨ(xiγ) ≤ Ψ(aγ) for γ ∈ Im.

Now we state a corollary and other special case of Theorem 2.6 as under:

Corollary 2.8. Define Ψ : J → R to be a convex function on an open interval J ⊆ R. Let ∂Ψ : J → R be the
subdifferential of Ψ and ϕ ∈ ∂Ψ. Suppose a = (a1, . . . , am) ∈ Jm and X = (xγ) = (xiγ) is an n × m matrix such that
xiγ ∈ J for all i ∈ In, γ ∈ Im. Further suppose that the weight wi are positive real weights for i ∈ In. Let u,v ∈ Rm

such that ⟨u,v⟩ > 0. Let there exist index sets J1 and J2 with J1 ∪ J2 = J such that for each i ∈ In we have:

(i) xi. is v-separable on J1 and J2 with respect to ε,
(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D,

(iii) ⟨a − xi.,v⟩ = 0,
(iv) ϕ preserves v-separability on J1 and J2 with respect to ε.

Then the following inequality holds:

Ψ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

ϵpγvγ
∑
i∈In

wixiγ −
1

Wn

m∑
γ=κ+1

ϵpγvγ
∑
i∈In

wixiγ


≤

1
pκ

∑
γ∈Im

pγΨ(aγ) −
1
pκ

1
Wn

κ−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ) −
1
pκ

1
Wn

m∑
γ=κ+1

pγ
∑
i∈In

wiΨ(xiγ), (12)

where ϵ = 1
pκvκ

with vκ , 0 for κ ∈ Im.

Remark 2.9. If we simply put κ = m and Wn = 1 in Corollary 2.8 we will get Theorem 3.1 of [33] (for further
remarks see [19]) and consequently we capture all its corollaries and special cases. Some similar results are stated as
under as well.

Corollary 2.10. Using the assumptions from Corollary 2.8, suppose v = dλ0 for some λ0 ∈ J = Im. Take J1 = {λ0}

and J2 = J\{λ0}. Replace conditions (i) and (ii) in Corollary 2.8 by the following

(i) xi. is v-separable on J1 and J2 with respect to ε, i.e., v is ε-positive and

⟨eλ, xi.⟩

⟨eλ,v⟩
≤
⟨eλ0 , xi.⟩

⟨eλ0 ,v⟩

for λ ∈ Im,
(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D, i. e.,

⟨dλ, a − xi.⟩ ≤ ⟨dλ0 , a − xi.⟩

for λ ∈ Im.

Then inequality (12) holds.

Proof. We get condition (ii) of Corollary 2.10 from (ii) of Corollary 2.8 (see inequality (8)). By (iii) we have
⟨dλ0 , a − xi.⟩ = ⟨v, a − xi.⟩ = 0. Therefore (ii) gives

⟨dλ, a − xi.⟩ ≤ 0 = ⟨dλ0 , a − xi.⟩

for λ ∈ Im, implying a − xi. is 0,u-separable on J1 and J2 with respect to D.
The assertion now follows from Corollary 2.8.
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In the remaining part of this section, we interpret our result from Corollary 2.10 for various vectors u and
v. For this end we make use of [37, Corollaries 2.3, 2.6, 2.10 and 2.11]. In what follows we consider the
following two pairs of dual bases ε = {e1, . . . , em} and D = {d1, . . . ,dm}:

eκ = dκ =
1
√

pκ
( 0, . . . , 0︸  ︷︷  ︸
(κ−1) times

, 1, 0, . . . , 0) (13)

for κ ∈ Im−1 (for Corollaries 2.11 and 2.14) and

eκ = ( 0, . . . , 0︸  ︷︷  ︸
(κ−1) times

,
1
pκ
,−

1
pκ+1

, 0, . . . , 0) for κ ∈ Im−1 and (14)

em = (0, . . . , 0,
1

pm
), (15)

dκ = (1, . . . , 1︸  ︷︷  ︸
κ times

, 0, . . . , 0) for κ ∈ Im−1 (16)

(for Corollaries 2.12 and 2.15). Inequality (13) gives an orthonormal basis in Rm with respect to the inner
product defined in (5), whereas inequalities (14) − (16) corresponds to weak majorization ordering [27,
p. 10], whenever p1 = · · · = pm = 1 [26, 14,p. 426].

Corollary 2.11. Using the assumptions from Corollary 2.8, let ε = D be the basis in Rm given by (13) and let
u = v = (1, . . . , 1). For each i ∈ In, suppose there exist index sets J1 and J2 with J1

⋃
J2 = J such that

(i) xi. is v-separable on J1 and J2 with respect to ε, i.e.,
xiλ ≤ xiγ for γ ∈ J1 and λ ∈ J2,

(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D = ε, i.e.,
aλ − xiλ ≤ 0 ≤ aγ − xiγ for γ ∈ J1 and λ ∈ J2,

(iii)
∑
κ∈Im

(aκ − xiκ)pκ = 0.

Then the following inequality holds:

Ψ

∑
γ∈Im

p̃γaγ −
κ−1∑
γ=1

p̃γ
∑
i∈In

wixiγ −

m∑
γ=κ+1

p̃γ
∑
i∈In

wixiγ


≤

∑
γ∈Im

p̃γΨ(aγ) −
κ−1∑
γ=1

p̃γ
∑
i∈In

wiΨ(xiγ) −
m∑

γ=κ+1

p̃γ
∑
i∈In

wiΨ(xiγ), (17)

where p̃γ =
pγ
pκ

for κ ∈ Im.
For instance, if p̃γ = 1 (i.e., p1 = · · · = pm), then (17) reduces to

Ψ

∑
γ∈Im

aγ −
κ−1∑
γ=1

∑
i∈In

wixiγ −

m∑
γ=κ+1

∑
i∈In

wixiγ

 ≤∑
γ∈Im

Ψ(aγ) −
κ−1∑
γ=1

∑
i∈In

wiΨ(xiγ) −
m∑

γ=κ+1

∑
i∈In

wiΨ(xiγ). (18)

Proof. By (7) and (13), it can be seen that a vector z = (z1, . . . , zn) is v-separable on J1 and J2 with respect to
ε if and only if

zλ ≤ zγ (19)

for γ ∈ J1 and λ ∈ J2.
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Therefore (i) − (ii) of Corollary 2.11 imply (i) − (ii) of Theorem 2.8. Since ϕ is nondecreasing (see [11,
p.209]), from (19) we get ϕ(zλ) ≤ ϕ(zγ) for γ ∈ J1 and λ ∈ J2, implying ϕ(z) is v-separable on J1 and J2 with
respect to ε. Now, condition (iv) of Corollary 2.8 is fulfilled. Also, ⟨a − xi.,v⟩ =

∑m
κ=1(aκ − xiκ)pκ = 0 which

implies (iii) of Corollary 2.8.
To verify inequality (17), we use inequality (12) from Corollary 2.8. Also, inequality (17) can be reduced

to obtain inequality (18).

Note that if xi. and a − xi. are both nondecreasing, i.e., xi1 ≤ · · · ≤ xim and a1 − xi1 ≤ · · · ≤ am − xim, then
conditions (i) and (ii) of Corollary 2.11 are satisfied for the index sets J1 = {κ+ 1, . . . ,m} and J2 = Iκ for some
κ.

Corollary 2.12. Using the assumptions from Corollary 2.8, take u = v = (1, . . . , 1). Let ε and D be the bases in Rm

defined by inequalities (14) − (16). For each i ∈ In, suppose that there exist index sets J1 and J2 with J1
⋃

J2 = J such
that

(i) xi. is v-separable on J1 and J2 with respect to ε, i.e., there exist µ ∈ R satisfying
xi,λ − xi,λ+1 ≤ 0 ≤ xi,γ − xi,γ+1 for γ ∈ J1 and λ ∈ J2 with convention xi,m+1 = µ,

(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D, i.e.,∑
κ∈Iλ (aκ − xiκ)pκ ≤ 0 ≤

∑
κ∈Iγ (aκ − xiκ)pκ for γ ∈ J1 and λ ∈ J2,

(iii)
∑
κ∈Im

(aκ − xiκ)pκ = 0.

Then inequalities (17) − (18) hold.

Proof. From inequality (6) and inequality (14)− (16), a vector z = (z1, . . . , zn) is v-separable on J1 and J2 with
respect to D if and only if there exist µ ∈ R such that

zλ − zλ+1 ≤ 0 ≤ zγ − zγ+1 (20)

for γ ∈ J1 and λ ∈ J2 with the convention zm+1 = µ.
Also it follows from (7) that a vector z = (z1, . . . , zn) is 0,u- separable on J1 and J2 with respect to D if

and only if
∑
κ∈Iλ zκpκ ≤ 0 ≤

∑
κ∈Iγ zκpκ for γ ∈ J1 and λ ∈ J2.

Therefore (i) − (ii) of Corollary 2.12 imply statements (i) − (ii) of Corollary 2.8.
Since ϕ is nondecreasing (see [11, p.209]), from (20) we get ϕ(zλ) − ϕ(zλ+1) ≤ 0 ≤ ϕ(zγ) − ϕ(zγ+1) for γ ∈ J1
and λ ∈ J2.
In consequence, ϕ preserves v-separability on J1 and J2 with respect to ε and (iv) of Corollary 2.8 is satisfied.
From the assumption (iii) of Corollary 2.12 we get condition (iii) of Corollary 2.8. Lastly, in order to derive
inequalities (17) − (18), we use inequality (12) (Corollary 2.8).

We note that under the assumption (iii) of Corollary 2.12, conditions (i) − (ii) of Corollary 2.12 are satisfied
for J1 = {m} and J2 = Im−1 provided xi. is nondecreasing, i.e., xi1 ≤ xi2 ≤ · · · ≤ xim and a − xi. is nondecreasing
in P-mean [44, p.318] , i.e.,

1
Pλ

∑
κ∈Iλ

(aκ − xiκ)pκ ≤
1

pλ+1

∑
κ∈Iλ+1

(aκ − xiκ)pκ (21)

for λ ∈ Im−1.

Definition 2.13. [44, p.318] An m-tuple z = (z1, . . . , zm) ∈ Rm is said to be star-shaped if

zλ
λ
≤

zλ+1

λ + 1
(22)

for λ ∈ Im−1.

A function ϕ : I→ R, where I ⊂ R+, is said to be star-shaped, if the function x 7→
ϕ(x)

x
is nondecreasing [30].
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Here we take ϕ : I → R to be a convex function which is differentiable positive nondecreasing and
convex function on a positive open interval I ⊂ R+. We know [37, Lemma 2.8] that if ϕ is star-shaped, then
it preserves star-shapeness of m-tuples in the sense that (22) implies
ϕ(zλ)
λ
≤
ϕ(zλ+1)
λ + 1

for λ ∈ Im−1.

Corollary 2.14. Using the assumptions from Corollary 2.8 and let ε = D be the basis in Rm given by (13) and
u = v = (1, 2, . . . ,m). For all i ∈ In, suppose there exist index sets J1 and J2 with J1

⋃
J2 = J such that

(i) xi. is v-separable on J1 and J2 with respect to ε, i.e.,
xiλ

λ
≤

xiγ

γ
for γ ∈ J1 and λ ∈ J2,

(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D = ε, i.e.,
aλ − xiλ

λ
≤ 0 ≤

aγ − xiγ

γ
for γ ∈ J1 and λ ∈ J2,

(iii)
∑
κ∈Im

(aκ − xiκ)pκ = 0,
(iv) ϕ preserves v-separability on J1 and J2 with respect to ε, i.e., (i) of Corollary 2.14 implies

ϕ(xiλ)
λ
≤
ϕ(xiγ)
γ

for γ ∈ J1 and λ ∈ J2.

Then the following inequality holds:

Ψ

∑
γ∈Im

p̃γṽγaγ −
κ−1∑
γ=1

p̃γṽγ
∑
i∈In

wixiγ −

m∑
γ=κ+1

p̃γṽγ
∑
i∈In

wixiγ


≤

∑
γ∈Im

p̃γΨ(aγ) −
κ−1∑
γ=1

p̃γ
∑
i∈In

wiΨ(xiγ) −
m∑

γ=κ+1

p̃γ
∑
i∈In

wiΨ(xiγ), (23)

where p̃γ =
pγ
pκ

, ṽγ =
γ
m for κ ∈ Im.

For instance, if p̃γ = 1 (i.e., p1 = · · · = pm), then (23) becomes:

Ψ

∑
γ∈Im

γ

m
aγ −

κ−1∑
γ=1

γ

m

∑
i∈In

wixiγ −

m∑
γ=κ+1

γ

m

∑
i∈In

wixiγ


≤

∑
γ∈Im

Ψ(aγ) −
κ−1∑
γ=1

∑
i∈In

wiΨ(xiγ) −
m∑

γ=κ+1

∑
i∈In

wiΨ(xiγ). (24)

If xi. and a − xi. are star-shaped tuples, and the mapϕ preserves star-shaped tuples, then (i)−(ii) of Corollary
2.14 are satisfied for the index set J1 = {κ + 1, . . . ,m} and J2 = Iκ for some κ.

Corollary 2.15. Using the assumptions from Corollary 2.8, suppose that ε and D are the bases in Rm defined by
(14)− (16) and u = v = (1, 2, . . . ,m). For each i ∈ {1, . . . ,n}, suppose there exist index sets J1 and J2 with J1

⋃
J2 = J

such that

(i) xi. is v-separable on J1 and J2 with respect to ε, i.e., there exist µ ∈ R satisfying

xi,λ+1 − xi,λ ≥ µ ≥ xi,γ+1 − xiγ, f or γ ∈ J1 and λ ∈ J2 (25)

with convention xi,m+1 = µ(m + 1),
(ii) a − xi. is 0,u-separable on J1 and J2 with respect to D, i.e.,∑

κ∈Iλ

(aκ − xiκ)pκ ≤ 0 ≤
∑
κ∈Iγ

(aκ − xiκ)pκ where γ ∈ J1, λ ∈ J2 (26)
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(iii)
∑
κ∈Im

(aκ − xiκ)κpκ = 0,
(iv) ϕ preserves v-separability on J1 and J2 with respect to ε, i.e., (i) of Corollary 2.15 implies there exist ν ∈ R

satisfying

ϕ(xi,λ+1) − ϕ(xiλ) ≥ ν ≥ ϕ(xi,γ+1) − ϕ(xiγ) f or γ ∈ J1 and λ ∈ J2 (27)

with the convention ϕ(xi,m+1) = ν(m + 1). Hence inequalities (23) and (24) hold.

Definition 2.16. An m-tuple z = (z1, . . . , zm) is said to be convex [44, p.318] if

zλ ≤
zλ−1 + zλ+1

2
(28)

for λ ∈ {2, . . . ,m − 1}.

Remark 2.17. Say ϕ : I → R is a nonincreasing convex map such that ϕ(0) = 0. Then conditions (25) − (27) are
satisfied for the index sets J1 = Iκ and J2 = {κ+ 1, . . . ,m} for some κ, whenever a − xi. in nondecreasing in P̂−mean,
i.e.,

1
P̂

λ∑
κ=1

(aκ − xiκ)pκ ≥
1

P̂λ+1

λ+1∑
κ=1

(aκ − xiκ)pκ

for λ ∈ Im−1.
Also, xi. = (xi1, . . . , xim) is a decreasing convex m-tuple such that xi1 ≤ m(xi2 − xi1).

Remark 2.18. By putting special conditions, κ = m and wi > 0 for all i with Wn = 1 we obtain Theorem 3.1 of [33].
Consequently all the corollaries of Theorem 3.1 of [33] become special cases of our article.

Theorem 2.19. If in Corollary 2.8, Ψ is a differential function with a = (a, a, . . . , a) ∈ Jm, p = (p1, . . . , pm) is a real
m-tuple satisfying the conditions given in (2) and (5), then inequality (12) can be written as:

pκΨ

a
∑
γ∈Im

ϵpγvγ −
1

Wn

m−1∑
γ=1

ϵpγvγ
∑
i∈In

wixiγ

 ≤ PmΨ(a) −
1

Wn

m−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ), (29)

Proof. For an n × m matrix X = (xγ) = (xiγ) such that xiγ ∈ J and (xγ) is a monotonic m-tuple for all
i ∈ In, γ ∈ Im, then for ai ≡ a ∈ J , if Ψ is a differential function then, for m-tuple p = (p1, . . . , pm) satisfying
conditions (2) and (5), [24, Theorem 2.1] can be written as

1
Pm

∑
γ∈Im

pγΨ(xiγ) −
∑
γ∈Im

pγΨ(d)

 ≤ 1
Pm

∑
γ∈Im

pγΨ′(xiγ)(xiγ − d)

which implies that∑
γ∈Im

pγ
(
Ψ(xiγ) −Ψ(d)

)
≤

∑
γ∈Im

pγΨ′(xiγ)(xiγ − d)

multiplying both sides by (−1)

∑
γ∈Im

pγ
(
Ψ(d) −Ψ(xiγ)

)
≥

∑
γ∈Im

pγΨ′(xiγ)(d − xiγ)

that follows to inequality (12) in the following form:

pκΨ

a
∑
γ∈Im

ϵpγvγ −
1

Wn

m−1∑
γ=1

ϵpγvγ
∑
i∈In

wixiγ

 ≤ PmΨ(a) −
1

Wn

m−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ). (30)

Remark 2.20. Similar results can be produced for concave functions by making use of the definition of concave
functions, i.e,Ψ is concave if and only if −Ψ is convex.
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3. Index Set Functions and Refinements of Generalized Niezgoda’s Inequality For Similarly Separable
Vectors

In start of this section we give some construction which we will use throughout this section: Let I be
a finite nonempty set of positive integers. Let w = (wi), i ∈ I be a real sequence and let (xγ) = (xiγ) be a
sequence of vectors such that xiγ ∈ J for all i ∈ I, γ ∈ Im. Moreover we define AI(xγ,w) = 1

WI

∑
i∈I wixiγ where

WI =
∑

i∈I wi. For a convex functionΨ : J → R. Also if assumptions of Theorem 2.6 are valid we define the
index set function F as

F(I) =WI

∑
γ∈Im

p̃γΨ(aγ) −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwiΨ(xiγ) −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwiΨ(xiγ)

−Ψ

∑
γ∈Im

εpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

εpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

εpγvγwixiγ


 (31)

where a = (a1, a2, . . . , am) is an m-tuple such that aγ ∈ J for γ ∈ Im and p̃γ =
pγ
pκ

and κ ∈ Im.
Now, by using techniques of article [28] we prove some results here.

Theorem 3.1. Let a = (a1, a2, . . . , am) be an m-tuple such that aγ ∈ J for γ ∈ Im, I and Ī be nonempty sets such
that I ∪ Ī = In and I ∩ Ī = ∅. Let (xγ) = (xiγ) be a sequence of vectors such that xiγ ∈ J for all i ∈ I, γ ∈ Im and
w = (wi), i ∈ In such that WIn > 0. Let Ψ be a convex function on J and AS(xγ,w) ∈ J (S ∈ {I, Ī, I ∪ Ī}). If WI > 0
and WĪ > 0, then

F(I ∪ Ī) ≥ F(I) + F(Ī). (32)

If WI ·WĪ < 0, then inequality (32) is reversed.

Proof. Fix κ ∈ Im. Since Ψ is continuous convex and composition with an affine function, we get convex function 1
which we define as:

1(tα) = Ψ
( ∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγt(α)
γ −

m∑
γ=κ+1

εpγvγt(α)
γ

)
where tα = (tα1 , . . . , t

α
m) ∈ Jm. We use the definition of convex function, for all t1, t2 ∈ Jm and λ1, λ2 > 0 to get

1

(
λ1t1 + λ2t2

λ1 + λ2

)
≤
λ11(t1) + λ21(t2)

λ1 + λ2
, (33)

which gives

(λ1 + λ2)Ψ

∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγ
λ1t(1)

γ + λ2t(2)
γ

λ1 + λ2
−

m∑
γ=κ+1

εpγvγ
λ1t(1)

γ + λ2t(2)
γ

λ1 + λ2


≤ λ1Ψ

( ∑
γ∈Im

aγεpγvγ −
κ−1∑
γ=1

t(1)
γ −

m∑
γ=κ+1

εpγvγt(1)
γ

)
+ λ2Ψ

( ∑
γ∈Im

aγ −
κ−1∑
γ=1

εpγvγt(2)
γ −

m∑
γ=κ+1

εpγvγt(2)
γ

)
. (34)



A. R. Khanm, S. Saadi / Filomat 36:7 (2022), 2357–2379 2367

Now using λ1 =WI, λ2 =WĪ, t(1)
γ = AI(xγ,w) and t(2)

γ = AĪ(xγ,w) we have

WI∪ĪΨ

∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγ
WIAI(xγ,w) +WĪAĪ(xγ,w)

WI∪Ī

−

m∑
γ=κ+1

εpγvγ
WIAI(xγ,w) +WĪAĪ(xγ,w)

WI∪Ī


≤WIΨ

∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAI(xγ,w) −
m∑

γ=κ+1

εpγvγAI(xγ,w)


+WĪΨ

∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAĪ(xγ,w) −
m∑

γ=κ+1

εpγvγAĪ(xγ,w)

 .

Now,

WI∪ĪΨ

∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAI∪Ī(xγ,w) −
m∑

γ=κ+1

εpγvγAI∪Ī(xγ,w)


≤WIΨ

( ∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAI(xγ,w) −
m∑

γ=κ+1

εpγvγAI(xγ,w)
)

+WĪΨ
( ∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAĪ(xγ,w) −
m∑

γ=κ+1

εpγvγAĪ(xγ,w)
)
.

Multiplying both sides of the above inequality by (−1), putting values of AS and adding to both sides of the inequality
the term shown below

WI∪Ī

∑
γ∈Im

p̃γΨ(aγ) −
1

WI∪Ī

κ−1∑
γ=1

∑
i∈I∪Ī

p̃γwiΨ(xiγ) −
1

WI∪Ī

m∑
γ=κ+1

∑
i∈I∪Ī

p̃γwiΨ(xiγ)


we get

WI∪Ī

∑
γ∈Im

p̃γΨ(aγ) −
1

WI∪Ī

κ−1∑
γ=1

∑
i∈I∪Ī

p̃γwiΨ(xiγ) −
1

WI∪Ī

m∑
γ=κ+1

∑
i∈I∪Ī

p̃γwiΨ(xiγ)

−Ψ

∑
γ∈Im

εpγvγaγ −
1

WI∪Ī

κ−1∑
γ=1

∑
i∈I∪Ī

εpγvγwixiγ −
1

WI∪Ī

m∑
γ=κ+1

∑
i∈I∪Ī

εpγvγwixiγ
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≥WI

∑
γ∈Im

p̃γΨ(aγ) −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwiΨ(xiγ) −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwiΨ(xiγ)

−Ψ

∑
γ∈Im

εpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

εpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

εpγvγwixiγ




+WĪ

∑
γ∈Im

p̃γΨ(aγ) −
1

WĪ

κ−1∑
γ=1

∑
i∈J

p̃γwiΨ(xiγ) −
1

WĪ

m∑
γ=κ+1

∑
i∈J

p̃γwiΨ(xiγ)

−Ψ

∑
γ∈Im

εpγvγaγ −
1

WĪ

κ−1∑
γ=1

∑
i∈J

εpγvγwixiγ −
1

WĪ

m∑
γ=κ+1

∑
i∈J

εpγvγwixiγ


 .

In index set function notation we finally get

F(I ∪ Ī) ≥ F(I) + F(Ī).

In case when WI.WĪ < 0, for instance WI > 0 and WĪ < 0, we again let λ1 = WI, λ2 = WĪ, t(1)
γ = AI(xγ,w) and

t(2)
γ = AĪ(xγ,w) and reversed inequality in (32) follows by using reverse Jensen’s inequality for two variable case.

Corollary 3.2. Let a = (a1, a2, . . . , am) be an m-tuple such that aγ ∈ J for γ ∈ Im. Let It, t ∈ Iλ be finite nonempty
sets of positive integers such that Is ∩ It = ∅ for all s , t ∈ Iλ. We further suppose that (xγ) = (xiγ) is a real sequence
of vectors such that xiγ ∈ J for all i ∈

⋃λ
t=1 It, γ ∈ Im and let w = (wi), i ∈

⋃λ
t=1 It such that Wi∈

⋃λ
t=1 It

> 0 and
AS(xγ,w) ∈ J (S ∈ {I1, . . . , It,

⋃r
t=1 It}) (r ∈ {2, . . . , λ}). TakeΨ to be a continuous convex function on J. Then:

(a) If WIt > 0 for t ∈ Iλ, we have

F

 λ⋃
t=1

It

 ≥ λ∑
t=1

F(It). (35)

(b) If WI1 > 0 and WIt < 0 for t ∈ {2, . . . , λ}, then inequality (35) is reversed.

Proof. Proof follows directly from Theorem 3.1 by using induction.

The following results give us refinements of Niezgoda’s Inequality. For the remaining part of this section
we assume xiγ ∈ [a, b] ⊆ J for all i and γ.

Corollary 3.3. Let a = (a1, a2, . . . , am) be an m-tuple such that aγ ∈ J for γ ∈ Im. We further suppose that (xγ) = (xiγ)
is a real sequence of vectors such that xiγ ∈ J for all i ∈ In, γ ∈ Im and letΨ be a continuous convex function on J. If
w1 > 0 and wi ≥ 0 for i ∈ {2, . . . ,n}, then under the assumptions in Corollary 2.8 we have

F(In) ≥ F(In−1) ≥ · · · ≥ F(I2) ≥ F(I1) ≥ 0. (36)

If wi ≤ 0 for i ∈ {2, . . . ,n}, WIn > 0 and AIn (xγ,w) ∈ [a, b] ⊆ J, then

0 ≤ F(In) ≤ F(In−1) ≤ · · · ≤ F(I2) ≤ F(I1). (37)

Proof. Fix κ ∈ Im. Suppose that wi ≥ 0 for i ∈ {2, . . . ,n}. From generalized Niezgoda’s inequality (12) it
follows that

F({t}) = wt

∑
γ∈Im

Ψ(aγ) −
κ−1∑
γ=1

Ψ(xtγ) −
m∑

γ=κ+1

Ψ(xtγ) −Ψ

∑
γ∈Im

aγ −
κ−1∑
γ=1

xtγ −

m∑
γ=κ+1

xtγ


 ≥ 0
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for t ∈ In. Now, by Theorem 3.1 we have

F(It) = F(It−1 ∪ {t}) ≥ F(It−1) + F({t}) ≥ F(It−1)

for all t ∈ {2, . . . ,n}.
For second part, we suppose that wi ≤ 0 for i ∈ {2, . . . ,n} with WIn > 0 and AIn (xγ,w) ∈ [a, b]. Now we

show that AIn−1 (xγ,w) ∈ [a, b] as follows.
Given that

a ≤ AIn (xγ,w) ≤ b

multiplying both sides by WIn > 0 and adding −wnxnγ we obtain

WIn a − wnxnγ ≤
∑
i∈In

wixiγ − wnxnγ ≤WIn b − wnxnγ

or we may write

WIn a − wnxnγ ≤
∑
i∈In−1

wixiγ ≤WIn b − wnxnγ.

Now multiplying both sides by 1
WIn−1

> 0 we get

1
WIn−1

(WIn a − wnxnγ) ≤ AIn−1 (xγ,w) ≤
1

WIn−1

(WIn b − wnxnγ),

or we may write

a +
wn

WIn−1

(a − xnγ) ≤ AIn−1 (xγ,w) ≤ b +
wn

WIn−1

(b − xnγ),

clearly
wn

WIn−1

(a − xnγ) ≥ 0 and
wn

WIn−1

(b − xnγ) ≤ 0,

and hence we conclude that
a ≤ AIn−1 (xγ,w) ≤ b.

By iteration we obtain AIt (xγ,w) ∈ [a, b] for all t ∈ {2, . . . ,n}. Similarly as before we have F({t}) ≤ 0 for all
t ∈ {2, . . . ,n}. Now by (32) reversed, we have

F(It) = F(It−1 ∪ {t}) ≤ F(It−1) + F({t}) ≤ F(It−1)

for all t ∈ {2, . . . ,n} and finally by Theorem 3.1: F(In) ≥ 0.

For our main result of this section we can also state results analogous to Theorem 3.1 and its corollaries.

Theorem 3.4. Using the assumptions from Corollary 2.8, we have the following refinement:

pκΨ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

∑
i∈In

ϵpγvγwixiγ −
1

Wn

m∑
γ=κ+1

∑
i∈In

ϵpγvγwixiγ


≤ D̃(p,w,X,Ψ; I) ≤

∑
γ∈Im

pγΨ(aγ) −
1

Wn

κ−1∑
γ=1

∑
i∈In

pγwiΨ(xiγ) −
1

Wn

m∑
γ=κ+1

∑
i∈In

pγwiΨ(xiγ), (38)
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where WI =
∑
i∈I

wi, WI =
∑
i∈I

wi, I = In\I and κ ∈ Im and

D̃(p,w,X,Ψ; I) =

pκ
WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

ϵpγvγ
∑
i∈I

wixiγ −
1

WI

m∑
γ=κ+1

ϵpγvγ
∑
i∈I

wixiγ


+ pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

ϵpγvγ
n∑

i∈I

wixiγ −
1

WI

m∑
γ=κ+1

ϵpγvγ
∑
i∈I

wixiγ

 . (39)

Proof. Fixing κ ∈ Im, and suppose that w∗i =
wi
Wn

where
∑n

i=1 w∗i = 1. Also W∗

I =
∑

i∈I w∗i . By the convexity of
functionΨwe have

pκΨ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

∑
i∈In

ϵpγvγwixiγ −
1

Wn

m∑
γ=κ+1

∑
i∈In

ϵpγvγwixiγ


= pκΨ

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

∑
i∈In

ϵpγvγw∗i xiγ −

m∑
γ=κ+1

∑
i∈In

ϵpγvγw∗i xiγ


= pκΨ

∑
i∈In

w∗i

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




= pκΨ

W∗

I

 1
W∗

I

∑
i∈I

w∗i

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




+ W∗

Ī

 1
W∗

Ī

∑
i∈Ī

w∗i

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ





≤ pκW∗

IΨ

∑
γ∈Im

ϵpγvγaγ −
1

W∗

I

κ−1∑
γ=1

∑
i∈I

ϵpγvγw∗i xiγ −
1

W∗

I

m∑
γ=κ+1

∑
i∈I

ϵpγvγw∗i xiγ


+ pκW∗

I
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

W∗

I

κ−1∑
γ=1

∑
i∈I

ϵpγvγw∗i xiγ −
1

W∗

I

m∑
γ=κ+1

∑
i∈I

ϵpγvγw∗i xiγ


≤ pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI
Wn

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI
Wn

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


+ pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI
Wn

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI
Wn

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


= pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


+ pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


= D(p,w,X,Ψ; I)

for any I, which proves the first inequality in (38).
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By inequality (39) we have

D(p,w,X,Ψ; I)

= pκ
WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


+ pκ

WI

Wn
Ψ

∑
γ∈Im

ϵpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

ϵpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

ϵpγvγwixiγ


= pκ

WI

Wn
Ψ

 1
WI

∑
i∈I

wi

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




+ pκ
WI

Wn
Ψ

 1
WI

∑
i∈I

wi

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




≤
WI

Wn

 1
WI

∑
i∈I

wipκΨ

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




+
WI

Wn

 1
WI

∑
i∈I

wipκΨ

∑
γ∈Im

ϵpγvγaγ −
κ−1∑
γ=1

ϵpγvγxiγ −

m∑
γ=κ+1

ϵpγvγxiγ




≤
1

Wn

∑
i∈In

wi

∑
γ∈Im

pγΨ(aγ) −
κ−1∑
γ=1

pγΨ(xiγ) −
m∑

γ=κ+1

pγΨ(xiγ)


=

∑
γ∈Im

pγΨ(aγ) −
1

Wn

κ−1∑
γ=1

pγ
∑
i∈In

wiΨ(xiγ) −
1

Wn

m∑
γ=κ+1

pγ
∑
i∈In

wiΨ(xiγ).

In the last inequality we used the fact that

WI

Wn

 1
WI

∑
i∈I

wipκΨ
(
xiγ

) + WI

Wn

 1
WI

∑
i∈I

wipκΨ
(
xiγ

) = 1
Wn

∑
i∈In

wipκΨ (xiκ) .

This proves the second inequality in (38), for any I.

Remark 3.5. It holds that

pκΨ

∑
γ∈Im

ϵpγvγaγ −
1

Wn

κ−1∑
γ=1

∑
i∈In

ϵpγvγwixiγ −
1

Wn

m∑
γ=κ+1

∑
i∈In

ϵpγvγwixiγ


≤ min

I
D(p,w,X,Ψ; I)

and

max
I

D(p,w,X,Ψ; I)

≤

∑
γ∈Im

pγΨ(aγ) −
1

Wn

κ−1∑
γ=1

∑
i∈In

pγwiΨ(xiγ) −
1

Wn

m∑
γ=κ+1

∑
i∈In

pγwiΨ(xiγ).

We will be needing the following definition for the corollary that follows.
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Definition 3.6. [25, p. 10] An m × m matrix B = (bγλ) is known as doubly stochastic, if bγλ ≥ 0 and
∑m
γ=1 bγλ =∑m

κ=1 bγλ = 1 for all γ, κ ∈ Im.
Also, if B is an m ×m doubly stochastic matrix, then [25, p. 31] :

bB ≺ b for each real m-tuple b = (b1, . . . , bm). (40)

By applying Theorem 3.4 and inequality (40), one gets:

Corollary 3.7. Assume Ψ to be a continuous convex function on J. Suppose that b = (b1, . . . , bm) ∈ Jm for γ ∈ Im
and B1, . . . ,Bn are m ×m doubly stochastic matrices. Set

X = (xiγ) =


b B1
...

b Bn

 .
Then inequality (38) holds.

Remark 3.8. Analagous assertion can be formulated for concave functions using the fact thatΨ is concave iff − f is
convex.

4. Applications

H: For ∅ , I ⊆ In = {1, . . . ,n}, let AI,GI,HI and M[r]
I be the arithmetic mean, geometric mean, harmonic

mean and power mean of order r ∈ R, respectively for xiγ ∈ [a, b] ⊆ J where γ ∈ Im, i ∈ I, and 0 < a < b,
formed with weights wi, i ∈ I satisfies the conditions stated in (2). For I = In we denote the arithmetic
mean, geometric mean, harmonic mean and power mean by An,Gn,Hn and M[r]

n respectively. For detailed
understanding of these means and their relations with each other, the reader can go through [6] and [22].
For example, it is well known that

An ≥ Gn ≥ Hn. (41)(An

Gn

)Wn

≥

(An−1

Gn−1

)Wn−1

≥ · · · ≥

(A1

G1

)W1

≥ 1. (42)

Wn(An − Gn) ≥Wn−1(An−1 − Gn−1) ≥ · · · ≥W1(A1 − G1) ≥ 0. (43)

Also we have renowned Ky Fan Inequality [5, p. 5] given by

An(x)
An(1 − x)

≥
Gn(x)

Gn(1 − x)
, 0 < xγ ≤

1
2
∀ γ. (44)

If we define

ÃI : =
∑
γ∈Im

εpγvγaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

εpγvγwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

εpγvγwixiγ

=
∑
γ∈Im

εpγvγaγ −
κ−1∑
γ=1

εpγvγAI(xγ,w) −
m∑

γ=κ+1

εpγvγAI(xγ,w)
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G̃I : =

∏
γ∈Im

ap̃γ
γκ−1∏

γ=1

∏
i∈I

xwip̃γ
iγ


1

WI
 m∏
γ=κ+1

∏
i∈I

xwip̃γ
iγ


1

WI

H̃I : =

∑
γ∈Im

εpγvγaγ−1
−

1
WI

κ−1∑
γ=1

∑
i∈I

εpγvγwix−1
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

εpγvγwix−1
iγ


−1

M̃[r]
I : =


∑
γ∈Im

εpγvγaγr
−

1
WI

κ−1∑
γ=1

∑
i∈I

εpγvγwixr
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

εpγvγwixr
iγ


1
r

r , 0,

G̃I r = 0.

Under the assumption made in Corollary 2.11 we deduce εpγvγ = p̃γ, where p̃γ =
pγ
pκ

and hence the arithmetic
mean, geometric mean, harmonic mean and power mean defined above can written as:

ÃI : =
∑
γ∈Im

p̃γaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwixiγ

=
∑
γ∈Im

p̃γaγ −
κ−1∑
γ=1

p̃γAI(xγ,w) −
m∑

γ=κ+1

p̃γAI(xγ,w)

G̃I : =

∏
γ∈Im

ap̃γ
γκ−1∏

γ=1

∏
i∈I

xwip̃γ
iγ


1

WI
 m∏
γ=κ+1

∏
i∈I

xwip̃γ
iγ


1

WI

H̃I : =

∑
γ∈Im

p̃γaγ−1
−

1
WI

κ−1∑
γ=1

∑
i∈I

p̃γwix−1
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

p̃γwix−1
iγ


−1

M̃[r]
I : =


∑
γ∈Im

p̃γaγr
−

1
WI

κ−1∑
γ=1

∑
i∈I

p̃γwixr
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

p̃γwixr
iγ


1
r

r , 0,

G̃I r = 0.

Then under the assumptions given in H along with Corollary 2.11, the following results are valid:

Theorem 4.1.

Ã ≥ G̃ (45)

Ã(x)
Ã(1 − x)

≥
G̃(x)

G̃(1 − x)
provided that 0 < xiγ ≤

1
2

for all i, γ. (46)

Proof. Using the convex function ϕ(x) = − ln x in inequality (12), we obtain inequality (45).

Using the convex function ϕ(x) = ln
(1 − x

x

)
(0 < x ≤ 1

2 ) in inequality (12), we obtain inequality (46).

The reverse inequalities (45) and (46) hold when we take ϕ as a concave function.
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Theorem 4.2.(
Ãn

G̃n

)Wn

≥

(
Ãn−1

G̃n−1

)Wn−1

≥ · · · ≥

(
Ã1

G̃1

)W1

≥ 1. (47)

Wn(Ãn − G̃n) ≥Wn−1(Ãn−1 − G̃n−1) ≥ · · · ≥W1(Ã1 − G̃1) ≥ 0. (48)

Proof. Using the convex functionΨ(x) = − ln x in inequality (36), we obtain:

ln
(

Ãn

G̃n

)Wn

≥ ln
(

Ãn−1

G̃n−1

)Wn−1

≥ · · · ≥ ln
(

Ã1

G̃1

)W1

≥ 0. (49)

from which inequality (47) follows. Using the convex function Ψ(x) = exp x and replacing aγ and xiγ with
ln(aγ) and ln(xiγ) respectively in inequality (36), we obtain:

Wn(Ãn − G̃n) ≥Wn−1(Ãn−1 − G̃n−1) ≥ · · · ≥W1(Ã1 − G̃1) ≥ 0,

since in this case

F(It) =Wt

∑
γ∈Im

p̃γaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwixiγ

− exp

∑
γ∈Im

p̃γln(aγ) −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwiln(xiγ) −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwiln(xiγ)


 = Wt(Ãt − G̃t).

The reverse inequalities (48) and (47) hold when we take ϕ as a concave function.

Remark 4.3. If in Theorem 4.2 we simply put wi = 1 for all i ∈ In, we get the following results which are of Popoviciu-
[39] and Rado- [40] types respectively (see also [32, p. 13]).

Corollary 4.4.(
Ãn

G̃n

)n

≥

(
Ãn−1

G̃n−1

)n−1

≥ · · · ≥

(
Ã1

G̃1

)1

≥ 1.

n(Ãn − G̃n) ≥ (n − 1)(Ãn−1 − G̃n−1) ≥ · · · ≥ 1 · (Ã1 − G̃1) ≥ 0.

Corollary 4.5.(
G̃n

H̃n

)Wn

≥

(
G̃n−1

H̃n−1

)Wn−1

≥ · · · ≥

(
G̃1

H̃1

)W1

≥ 1.

Wn

(
1

H̃n
−

1
G̃n

)
≥Wn−1

(
1

H̃n−1
−

1
G̃n−1

)
≥ · · · ≥W1

(
1

H̃1
−

1
G̃1

)
≥ 0.

Proof. Follows directly from Theorem 4.2 by the substitutions aγ → 1
aγ

and xiγ →
1

xiγ
.

Theorem 4.6. For r ≤ 1, we have the following inequalities

Wn(Ãn − M̃[r]
n ) ≥Wn−1(Ãn−1 − M̃[r]

n−1) ≥ · · · ≥W1(Ã1 − M̃[r]
1 ) ≥ 0. (50)

For r ≥ 1, the inequalities in (50) are reversed.
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Proof. For r ≤ 1, using the convex function Ψ(x) = x
1
r and replacing aγ and xiγ with ar

γ and xr
iγ respectively

in inequality (36), we obtain inequality (50), since in this case

F(It) =Wt

∑
γ∈Im

p̃γaγ −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwixiγ −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwixiγ

−

∑
γ∈Im

p̃γar
γ −

1
WI

κ−1∑
γ=1

∑
i∈I

p̃γwixr
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

p̃γwixr
iγ


1/r = Wt(Ãt − M̃[r]

t ).

If r ≥ 1, then the functionΨ(x) = x
1
r is concave, so the inequalities in (50) are reversed.

By simply taking r = −1 we get the following corollary.

Corollary 4.7.

Wn(Ãn − H̃n) ≥Wn−1(Ãn−1 − H̃n−1) ≥ · · · ≥W1(Ã1 − H̃1) ≥ 0.

Remark 4.8. It is easy to see that inequality (48) is a direct consequence of Theorem 4.6.

Theorem 4.9. Let r, s ∈ R, r ≤ s. If s > 0, then

Wn

((
M̃[s]

n

)s
−

(
M̃[r]

n

)s)
≥ Wn−1

((
M̃[s]

n−1

)s
−

(
M̃[r]

n−1

)s)
≥ · · · ≥ W1

((
M̃[s]

1

)s
−

(
M̃[r]

1

)s)
≥ 0. (51)

If s < 0, then the inequalities in (51) are reversed.

Proof. For s > 0, using the convex function Ψ(x) = x
s
r and replacing aγ and xiγ with ar

γ and xr
iγ respectively in

inequality (36), we obtain inequality (51), since in this case

F(It) =Wt

∑
γ∈Im

p̃γas
γ −

1
WI

κ−1∑
γ=1

∑
i∈I

p̃γwixs
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

p̃γwixs
iγ

−

∑
γ∈Im

p̃γar
γ −

1
WI

κ−1∑
γ=1

∑
i∈I

p̃γwixr
iγ −

1
WI

m∑
γ=κ+1

∑
i∈I

p̃γwixr
iγ


s/r = Wt

((
M̃[s]

t

)s
−

(
M̃[r]

t

)s)
.

If s < 0, then the functionΨ(x) = x
s
r is concave, so the inequalities in (51) are reversed.

Theorem 4.10.

(i) G̃n ≤ min
I

Ã
WI
Wn
I Ã

W
I

Wn

I
and Ãn ≥ max

I
Ã

WI
Wn
I Ã

W
I

Wn

I
. (52)

(ii) G̃n ≤ min
I

[
WI

Wn
G̃I +

WI

Wn
G̃I

]
and Ãn ≥ max

I

[
WI

Wn
G̃I +

WI

Wn
G̃I

]
. (53)

Proof. (i) Applying the convex functionΨ(x) = − ln x in Theorem 3.4, we obtain

− ln Ãn ≤ −
WI

Wn
ln ÃI −

WI

Wn
ln ÃI ≤ − ln G̃n. (54)

Now inequality (52) follows from Remark 3.5 and (54).
(ii) Applying the convex functionΨ(x) = exp x and replacing aγ and xiγ with ln aγ and ln xiγ respectively

in Theorem 3.4 and using Remark 3.5, we obtain inequality (53).
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The following particular case of Theorem 4.10 is of interest.

Corollary 4.11.

(i)
1

G̃n
≤ min

I

1

H̃
WI
Wn
I H̃I

W
I

Wn

and
1

H̃n
≥ max

I

1

H̃
WI
Wn
I H̃I

W
I

Wn

.

(ii)
1

G̃n
≤ min

I

 WI

WnG̃I
+

WI

WnG̃I

 and
1

H̃n
≥ max

I

 WI

WnG̃I
+

WI

WnG̃I

 .
Proof. Follows directly from Theorem 4.10 by the substitutions aγ → 1

aγ
and xiγ →

1
xiγ

.

Theorem 4.12. For r ≤ 1 (r , 0), the following inequalities hold:

M̃[r]
n ≤ min

I

[
WI

Wn
M̃[r]

I +
WI

Wn
M̃[r]

I

]
, (55)

Ãn ≥ max
I

[
WI

Wn
M̃[r]

I +
WI

Wn
M̃[r]

I

]
. (56)

In case r ≥ 1, the above inequalities (55) are reversed.

Proof. When r ≤ 1, (r , 0) use Theorem 3.4 and then Remark 3.5 for the convex function Ψ(x) = x
1
r

and replacing aγ and xiγ with ar
γ and xr

iγ respectively [for r = 0 use Theorem 3.4 for the convex function
Ψ(x) = exp x, replacing aγ and xiγ with ln aγ and ln xiγ respectively, we obtain (53)].

In case r ≥ 1, the inequalities in (55) are reversed since the functionΨ(x) = x
1
r is concave.

Corollary 4.13.

H̃n ≤ min
I

[
WI

Wn
H̃I +

WI

Wn
H̃I

]
,

Ãn ≥ max
I

[
WI

Wn
H̃I +

WI

Wn
H̃I

]
.

Remark 4.14. It is easy to see that Theorem (53) is also direct consequence of Theorem 4.12.

Theorem 4.15. Let r, s ∈ R , r ≤ s.
(i) For s ≥ 0, the following inequalities hold:(

M̃[r]
n

)s
≤ min

I

[
WI

Wn

(
M̃[r]

I

)s
+

WI

Wn

(
M̃[r]

I

)s
]
,

Ãn ≥ max
I

[
WI

Wn

(
M̃[r]

I

)s
+

WI

Wn

(
M̃[r]

I

)s
]
. (57)

(ii) In case s < 0, the above inequalities (57) are reversed.

Proof. Let s ≥ 0. Using the convex function Ψ(x) = x
s
r and replacing aγ and xiγ with ar

γ and xr
iγ respectively

in Theorem 3.4 and making use of Remark 3.5, we obtain inequality (57).
In case s < 0, the inequalities in (57) are reversed since the functionΨ(x) = x

s
r is concave.

Definition 4.16. Let ϕ be a strictly monotonic continuous function on J. Then for a given n-tuple x = (x1, . . . , xn) ∈
Jn and real n-tuple w = (w1, . . . ,wn) with Wn , 0, the value

M[n]
ϕ = ϕ

−1

 1
Wn

n∑
i=1

wiϕ(xi)


is well defined and is called quasi − arithmetic mean of x with weight w (see for example [6, p. 215]).
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Under the assumptions of Corollary 2.8 and Corollary 2.11, we define:

M̃[n]
ϕ = ϕ

−1

∑
γ∈Im

p̃γϕ(aγ) −
1

Wn

κ−1∑
γ=1

n∑
i=1

p̃γwiϕ(xiγ) −
1

Wn

m∑
γ=κ+1

n∑
i=1

p̃γwiϕ(xiγ)

 . (58)

then the following results hold:

Theorem 4.17. Let ϕ and ψ be two strictly monotonic continuous functions on J. If ψ ◦ ϕ−1 is convex on J, then

Wn

(
ψ

(
M̃[n]
ψ

)
− ψ

(
M̃[n]
ϕ

))
≥Wn−1

(
ψ

(
M̃[n−1]
ψ

)
− ψ

(
M̃[n−1]
ϕ

))
≥ · · · ≥W1

(
ψ

(
M̃[1]
ψ

)
− ψ

(
M̃[1]
ϕ

))
≥ 0. (59)

If ψ ◦ ϕ−1 is concave on J, then inequalities (59) are reversed.

Proof. Applying (36) to the convex function f = ψ ◦ ϕ−1 and replacing aγ and xiγ with ϕ(aγ) and ϕ(xiγ)
respectively we obtain (59), since in this case

F(It) =Wt

∑
γ∈Im

p̃γψ(aγ) −
1

WIt

κ−1∑
γ=1

∑
i∈It

p̃γwiψ(xiγ) −
1

WIt

m∑
γ=κ+1

∑
i∈It

p̃γwiψ(xiγ)


−(ψ ◦ ϕ−1)

∑
γ∈Im

p̃γϕ(aγ) −
1

WIt

κ−1∑
γ=1

∑
i∈It

p̃γwiϕ(xiγ) −
1

WIt

m∑
γ=κ+1

∑
i∈It

p̃γwiϕ(xiγ)


= Wt

(
ψ

(
M̃[t]
ψ

)
− ψ

(
M̃[t]
ϕ

))
.

Remark 4.18. Theorem 4.2, 4.6 and 4.9 follow from Theorem 4.17, if we choose suitable functions ϕ, ψ and make
substitutions accordingly.

Corollary 4.19. Let ϕ,ψ : J→ R be strictly monotonic and continuous functions. If ψ ◦ ϕ−1 is convex on J, then

Wn

(
ψ

(
M̃[n]
ψ

)
− ψ

(
M̃[n]
ϕ

))
≥

max
1≤s≤t≤n

(ws + wt)

∑
γ∈Im

ψ(aγ) −
κ−1∑
γ=1

wsψ(xsj) + wtψ(xtγ)
ws + wt

−

m∑
γ=κ+1

wsψ(xsj) + wtψ(xtγ)
ws + wt

−(ψ ◦ ϕ−1)

∑
γ∈Im

ϕ(aγ) −
κ−1∑
γ=1

wsϕ(xsj) + wtϕ(xtγ)
ws + wt

−

m∑
γ=κ+1

wsϕ(xsj) + wtϕ(xtγ)
ws + wt



 (60)

and

Wn

(
ψ

(
M̃[n]
ψ

)
− ψ

(
M̃[n]
ϕ

))
≥ max

1≤t≤n

wt

∑
γ∈Im

ψ(aγ) −
κ−1∑
γ=1

ψ(xtγ) −
m∑

γ=κ+1

ψ(xtγ)

−(ψ ◦ ϕ−1)

∑
γ∈Im

ϕ(aγ) −
κ−1∑
γ=1

ϕ(xtγ) −
m∑

γ=κ+1

ϕ(xtγ)



 . (61)

If ψ ◦ ϕ−1 is concave on J, then inequalities in (60) and (61) are reversed and maximum is replaced with minimum.
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Theorem 4.20. Let ϕ and ψ be two strictly monotonic continuous functions on J. If ψ ◦ ϕ−1 is convex on J, then

ψ
(
M̃[n]
ϕ

)
≤ min

I

[
WI

Wn
ψ

(
M̃[I]
ϕ

)
+

WI

Wn
ψ

(
M̃[I]
ϕ

)]
,

ψ
(
M̃[n]
ψ

)
≥ max

I

[
WI

Wn
ψ

(
M̃[I]
ϕ

)
+

WI

Wn
ψ

(
M̃[I]
ϕ

)]
, (62)

where M̃[I]
ϕ is defined as

M̃[I]
ϕ = ϕ

−1

∑
γ∈Im

p̃γϕ(aγ) −
1

WI

κ−1∑
γ=1

∑
i∈I

p̃γwiϕ(xiγ) −
1

WI

m∑
γ=κ+1

∑
i∈I

p̃γwiϕ(xiγ)

 .
Proof. Using the convex function f = ψ ◦ ϕ−1 and replacing aγ and xiγ with ϕ(aγ) and ϕ(xiγ) respectively in
Theorem 3.4 and then using Remark 3.5, we obtain inequality (62).

Remark 4.21. (a) Theorem 4.10, 4.12 and 4.15 follow from Theorem 4.20, by choosing adequate functions ϕ, ψ and
appropriate substitutions.

(b) In all the theorems, reverse inequalities hold for concave functions.
(c) By imposing different conditions on κ and weights wi’s we can obtain many special cases of our results proved

in this section, in articles [19, 21, 28].

Remark 4.22. Similar results can be proved for concave functions given that Ψ is concave if and only if −Ψ is
convex.
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