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Generalizations and Refinements of Niezgoda Inequality for Similarly
Separable Vectors with Applications

Asif R. Khan?, Sumayyah Saadi®

?Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan

Abstract. In this article we provide generalizations of Niezgoda inequality for similarly separable vectors
followed by refinements. We also highlight its importance by giving applications. Our results will be
generalizing many previously established results.

1. Introduction and Preliminaries

Jensen’s inequality for convex functions is amongst the most celebrated inequalities in mathematics
and statistics. It has a significant role in various branches of sciences. Various renowned inequalities are
a consequence of Jensen’s inequality: for example, the Arithmetic-Geometric inequality is a consequence
of Jensen’s Inequality for convex functions. Also, the general inequality between means of orders p and
g, such as Holder’s and Minkowski’s inequalities, are also consequences of Jensen’s inequality. There are
numerous variants, generalizations and refinements of Jensen’s inequalities (for reference see [2—4, 7-10, 14—
22,42, 43, 45, 46]). We also adduce to [6] and [38] for detailed discussion on Jensen’s inequality and for
some remarks on literature and history of the topic.

Throughout the article we assume that | is an interval in IR and for real weights wy, ..., w,, we define
the notation

i n
W; = Z wy, i €I, andclearly W, = 2 w,.
y=1 r=1
Also in our article, we denote I, = {1,2,...,m}.

Here we state some results from [38] (see also [30, 31, 41]). Let us start with Jensen’s inequality.

Proposition 1.1. Assume \V is a convex function on J. Take x to be an n-tuple such that x; € |, fori € I,,. Let w be a
nonnegative n-tuple such that W,, > 0. Then the following inequality holds

v [Win Z wixi) < Win ;I" wi\I’(xi). (1)

Steffensen in 1919 [38, p. 57] presented a more general form of Jensen’s inequality which we usually refer
to as Jensen-Steffensen inequality. This may be stated as:
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Proposition 1.2. Assume \V is a convex function on J. Take x to be a monotonic n-tuple such that x; € |, i € I,,. Let
w be a real n-tuple such that

0<W;<W, for iel,, W,>0. (2)
Then (1) holds.
In mathematical literature, the following inequality is referred to as Reverse-Jensen inequality [38, p. 83].

Proposition 1.3. If WV is a convex function on |. Take x to be an n-tuple such that x; € ] for i € I,. Let w be a real
n-tuple with WL,, YL wix; € ], where wy > 0, w; < 0 fori € {2,...,n} and W,, > 0. Then reverse inequality in (1)
holds.

Mercer [29] proved a variant of Jensen’s inequality as follows. We will refer to it as Jensen-Mercer inequality.

Proposition 1.4. Under the assumptions of Proposition 1.1, the following inequality holds

v [L +M - Win Z wz-x,-] <WY(L)+¥YM) - WL,, Z w;W(x;) ®)

i€l, i€l,

where

L =min{x;} and M = max{x;}.
x,E] x,-e]

By imposing different conditions on weights w; for i € I,,, as we observed in aforementioned propositions,
we get different variants of Proposition 1.4.
In [1] (see also [33]), we can find the following variant of Jensen-Mercer inequality.

Proposition 1.5. Assume WV is a convex function on |. Take x to be a monotonic nondecreasing n-tuple such that
x; € J,i € I,. Let w be a real n-tuple such that conditions on weights given in (2) be valid. Then inequality (3) holds.

The following result has been proved in [28]:
Proposition 1.6. Under the assumptions of Proposition 1.3, inequality (3) holds.

Now we state the definition of majorization from [25] as follows: Let two m-tuples x = (x1,...,x,) and
y = (y1,...,Ym) be such that xj1; > -+ > X[, Ypj =+ = Yy be their ordered components.

Definition 1.7. Forx, y € R",

Zx[,-] S Z Vi, K€L,

. i€l i€l

X < y l_f 1€l K
Y=Y

i€l,, i€l,

When x <y, we say “y majorizes x” or “x is majorized by y”.

This concept of majorization was first introduced by Hardy et al. in 1934. In their book “Inequalities” [13],
we can find the well-known majorization theorem. Using the defintion of majorization stated above, we
are ready to state an extension of inequality (3) presented by Niezgoda in [33]. We refer to it as Niezgoda’s
inequality (see [23, 34, 36] for recent extensions of inequality (3)).

Proposition 1.8. Assume \V is a continuous convex function on J. Suppose a = (ay, . .., a) is an m-tuple such that
a; € Jand X = (x,) = (xj) is an n X m matrix such that x;, € | forall i € I, and y € I,.
If a majorizes each row of X, i.e.,

X, = (Xi, ..., Xim) < (a1,...,ay,) = aforeachi€l,,
then the following inequality holds:

Z a, — Z Z wixiy] < Z W(a,) - Z Z w;iW(xiy), (4)

V€l V€ly-1 i€ly VEly Y€l i€l,

Y

where Y1 w; = 1 with w; > 0.
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2. Generalized Niezgoda inequality for similarly separable vectors

In current section we provide generalization of Niezgoda’s inequality (4). For this purpose, some
notations are required here. We also quote some relevant definitions from [33] (see also [35] and [37]).
Throughout the paper, we assume that p = (py, ..., pm) is a positive m-tuple.
Here we introduce inner product on R" for a = (ay,...,a,) and b = (by, ..., by,) by

(a,b) = Z pya,by. 5)
yely,

For A € I,,,, we denote
Pa=Ypn Pa=Ywm Pa=) v
vely vel Y€l

Unless specified elsewise, we take ¢ = {eq,...,en} as an ordered basis in R” and D = {dy,...,dm} as the
dual basis of ¢, that is, (e;, d,) = 6;, (Kronecker delta) for i, y € I,.

Definition 2.1. We define a vector v € IR™ to be e-positive if (ej,v) > 0 for all i € I,,. Let J; and ], be two sets of
indices such that ]y U J, = J. Given u € Rand v € R™, a vector z € R"™ is known as i, v-separable on |, and |, (with
respect to basis ¢€), if

(ej,z—uv)20 for i€]y and (ey,,z—uv)<0 for ye]. (6)
We say z is i, v-separable on |1 and ], with respect to the basis ¢ if and only if

e,z e,z
max—< Y >< <min< r:2)

ek (e, vy - SN (&), V)

(7)

where v is e-positive.

Definition 2.2. A vector z € R™ is v-separable on ], and [, (with respect to the basis ¢), if for some p € R, z is
u, v-separable on |, and |5.

Definition 2.3. A map ¢ : ] — R is said to preserve v-separability on |, and ], with respect to ¢, if Pp(z) =
(P(z1), ..., P(zm)) is v-separable on |1 and ], with respect to e, whenever z = (z1,...,2zu) € J™ is v-separable on J;
and ], with respect to ¢.

Remark 2.4. In case where v is e-positive, J1 = {Ao} and ] = J\{Ao}, the v-separability of z is implied by:

(er,z) _ (er, z)
<e/\/v> B (e/\(,/v)

for A € 1.

Definition 2.5. [41, pp. 32, 110] Given a real convex function W on |, dWV denotes the subdifferential of V. It is the
set of all functions ¢ : ] — [—o0, o] such that ¢(J°) C R and

W(x) > W)+ (x —a)p(a) foranyx,ac].
Using the notations defined until now, we now present our main result:

Theorem 2.6. Define V : | — R to be a convex function on an open interval | C R. Suppose a = (a1,...,a4y) € ™
and X = (x,) = (x;y) is an n X m matrix such that x;, € | and (x,) is a monotonic m-tuple for all i € I,,, y € I,,. Also

1
assume that the weight w; for i € I, satisfying the conditions as in (2) and W Z w;W(x;) < W(ay) for y € I,,. We
n i€l,

further let that (a — x;,v) = 0 for i € I,. Then the following inequality holds:
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k=1 m

1 1
v Z €PyUyay — A €Py 0y Z WiXiy — W Z €Py 0y Z WiXiy
n . n .
V€l y=1 iel, y=x+1 i€l,
1 x—1 m
s - Z pyVay) ~ Z Z wiW(xiy) = Py Z wiW(xy), (9)
yEI n y=1 i€l, y=x+1 iel,

where € = r% with vy # 0 for x € L.

Proof. First, we use the assumption that for each y € I,,
Z w;W(x;y) < W(ay)
rel,,

multiplying it by p, and taking sum over y € I,;, we get

1
o 2 Y ) € ) pWay). (10)
n i€l, yel, V€l
Since (a — x;, v) = 0 for all i € I, by (5) we have for eachi € I,.

[Z Pytyy = ZP)/UV’CW Z vayxly] = i (11)

Y€l y=x+1

Now, using Jensen-Steffensen inequality for weights w; and then using (11) and inequality (10) for weights
p, we obtain our required result as follows

1 k-1
PV Z €PyUVyay — W €PyUy Z WiXiy — W Z €PyUy 2 WiXiy
3 n y=1 i€l, y=x+1 i€l,
x—1 m
=pV Z Wi Z EpyUyly — Z EPyUyXiy = Z €PyVyXiy
iel, V€L y=1 y=x+1
x—1 m
< — Z wip ¥V Z EPyUyay — Z EPyUyXiy — Z EPy Uy Xiy
IEIn VEDn y=1 y=k+1
Z wip W (Xix)
zEI,l
Z w | Y py¥ay) - Zp),‘lf(xly Z P, ¥ (xi))
zel,, €L, =x+1
x—1

= Z p,¥(a,) - Z Py Z w;W(xjy) — W Z Py Z w;W(xiy).

V€L, y 1 i€l, y=r+1 i€l,
O

Remark 2.7. Here we observe that the proof of Theorem 2.6 is much more simpler than proof of Theorem 3.1 of [33].
It should be noted that in Theorem 3.1 of [33] the author has used positive weights while we have used real weights
satisfying assumptions as stated in (2) with monotonic m—tuples (x,). It is also worth mentioning that we did not use
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bifractional inequality [35] or concept of similarly separable vectors, we removed all these assumptions at the expense

1
of the assumption that A 2 w;W(x;y) < W(ay) for y € L.

n i€l,
Now we state a corollary and other special case of Theorem 2.6 as under:

Corollary 2.8. Define W : | — R to be a convex function on an open interval | € R. Let d¥ : | — R be the
subdifferential of W and ¢ € V. Suppose a = (a1, ...,a,) € ]™ and X = (x,) = (X)) is an n X m matrix such that
Xiy € ] foralli € I,, y € I,,. Further suppose that the weight w; are positive real weights for i € I,. Let u,v € R"
such that {u,v) > 0. Let there exist index sets |1 and J, with J1 U Jo = ] such that for each i € I, we have:

(i) x;, is v-separable on J1 and ], with respect to ¢,

(ii) a —x;, is 0, u-separable on |, and |, with respect to D,
(iii) {a—x;,v) =0,
(iv) ¢ preserves v-separability on |1 and ], with respect to ¢.

Then the following inequality holds:

1 e 1
v Z €PyUyly — Wn €PyUy WiXiy — Wn Z €PyUy Z WiXiy

V€L r=1 iel, y=k+1 iel,
< 1Zp\I’(a) L K_lp Zw‘l’x) ! Zpr‘I’(x) (12)
= yEY) T T Y ieAy) = o 4 i Ay
p V€L, pK W” y=1 i€l, W y=x+1 i€l,

where € = ﬁ with v, # 0 for x € L.

Remark 2.9. If we simply put « = m and W, = 1 in Corollary 2.8 we will get Theorem 3.1 of [33] (for further
remarks see [19]) and consequently we capture all its corollaries and special cases. Some similar results are stated as
under as well.

Corollary 2.10. Using the assumptions from Corollary 2.8, suppose v = d,, for some Ay € | = I,. Take |1 = {Ao}
and ], = J\{Ao}. Replace conditions (i) and (ii) in Corollary 2.8 by the following

(i) x; is v-separable on [, and |, with respect to €, i.e., v is e-positive and
(er, Xi) - (e, Xi.)
(e, v) — (ey, V)

for A €1,
(ii) a —x;. is 0, u-separable on |1 and ], with respect to D, i. e.,

(dy,a—x;) <(dy,,a—x;)
for A € I,
Then inequality (12) holds.

Proof. We get condition (ii) of Corollary 2.10 from (ii) of Corollary 2.8 (see inequality (8)). By (iii) we have
(dp,, a—x;) =(v,a—x;) = 0. Therefore (ii) gives

(dr,a—x;) <0=(dy,, a—x;)

for A € 1, implying a — x; is 0, u-separable on |, and ], with respect to D.
The assertion now follows from Corollary 2.8. O
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In the remaining part of this section, we interpret our result from Corollary 2.10 for various vectors u and
v. For this end we make use of [37, Corollaries 2.3, 2.6, 2.10 and 2.11]. In what follows we consider the
following two pairs of dual bases € = {ey,..., ey} and D = {dy, ..., d)}:

1
> (0,...,0,1,0,...,0) (13)
K S————
(k—1) times

e.=d, =

for « € I,,—1 (for Corollaries 2.11 and 2.14) and

1 1
e.=(0,...,0,—,—,0,...,0) forxel,1and (14)
——— Px P+l
(k—1) times

1
en=(0,...,0,—), (15)
p

m

d.=(@,...,1,0,...,0) forxel, (16)
————
K times
(for Corollaries 2.12 and 2.15). Inequality (13) gives an orthonormal basis in R” with respect to the inner
product defined in (5), whereas inequalities (14) — (16) corresponds to weak majorization ordering [27,
p- 10], whenever p; = --- = p,, = 1 [26, 14,p. 426].

Corollary 2.11. Using the assumptions from Corollary 2.8, let ¢ = D be the basis in R™ given by (13) and let
u=v=(1,...,1). Foreachi € I,, suppose there exist index sets J1 and ], with ]\ Jo = ] such that
(i) x;. is v-separable on |, and ], with respect to ¢, i.e.,
Xip S xip fory € rand A € |,
(ii) a—x; is 0, u-separable on |, and ], with respect to D = ¢, i.e.,
ay—xip <0<a, —x; fory€rand A € ],
(iii) ZKelm (aK - xiK)PK =0.
Then the following inequality holds:

x—1 m
k3 [Z pyay = Z Py Z WiXiy — Z Py Z w,'x,-y]
-1

V€l Y i€l, y=+1 i€l,
x—1 m

< Y 5Wa@) - Y By Y o) - Yy Y wiW(x), (17)

Y€l y=1 i€l, y=x+1 i€l,

where ﬁJ./ = :;—’:fOT'K € I '
For instance, if p, = 1 (i.e., p1 = -+ = pw), then (17) reduces to
x=1 m =1 m

v Z ay — Z Z WiXiy — Z Z wiXiy | < Z W(a,) - Z Z w;W(xiy) — Z Z w;W(xiy). (18)

V€L y=1 iel, y=x+1 i€l, v€ly y=1 i€l, y=x+1 i€l,

Proof. By (7) and (13), it can be seen that a vector z = (z1, ..., z,) is v-separable on J; and ], with respect to
¢ if and only if

zZ) <2y (19)

foryeJiand A € J,.
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Therefore (i) — (ii) of Corollary 2.11 imply (i) — (ii) of Theorem 2.8. Since ¢ is nondecreasing (see [11,
p-209]), from (19) we get ¢(z1) < ¢(z,) for y € J; and A € ], implying ¢(z) is v-separable on J; and ], with
respect to . Now, condition (iv) of Corollary 2.8 is fulfilled. Also, (a —x;,v) = Y.v—;(ax — Xix)px = 0 which
implies (iii) of Corollary 2.8.

To verify inequality (17), we use inequality (12) from Corollary 2.8. Also, inequality (17) can be reduced
to obtain inequality (18). O

Note that if x; and a — x; are both nondecreasing, i.e., xj; < --- < xj, and a1 — xj < --+ < 4, — Xi, then
conditions (i) and (ii) of Corollary 2.11 are satisfied for the index sets J; = {x +1,...,m} and ], = I, for some
K.

Corollary 2.12. Using the assumptions from Corollary 2.8, takew = v = (1,...,1). Let € and D be the bases in R™
defined by inequalities (14) — (16). For each i € I,,, suppose that there exist index sets |1 and [, with [; | J» = | such
that

(i) x; is v-separable on | and |, with respect to €, i.e., there exist u € R satisfying
Xip = Xia41 < 0 < x5 = Xipy1 for y € Jyand A € ], with convention X1 = U,
(ii) a —x; is 0, u-separable on |1 and ], with respect to D, i.e.,
Zkel,\(ak - xiK)pK <0< ZKEIV(aK - xiK)pKfor Y€ ]1 and A € ]2/
(iii) ZKEIM (ax — xix)px = 0.
Then inequalities (17) — (18) hold.

Proof. From inequality (6) and inequality (14) — (16), a vector z = (z, ..., z,) is v-separable on J; and J, with
respect to D if and only if there exist u € R such that

2y =241 S0z, —Zy11 (20)

for y € J1 and A € ], with the convention z,,41 = p.

Also it follows from (7) that a vector z = (z3,...,2,) is 0, u- separable on |; and J, with respect to D if
and only if }.cf, zepx <0 < Yo zipr fory € Jiand A € .
Therefore (i) — (ii) of Corollary 2.12 imply statements (i) — (ii) of Corollary 2.8.
Since ¢ is nondecreasing (see [11, p.209]), from (20) we get ¢(z1) — P(za+1) < 0 < P(z)) — P(z)11) for y € 1
and A € [5.
In consequence, ¢ preserves v-separability on J; and J, with respect to € and (iv) of Corollary 2.8 is satisfied.
From the assumption (iii) of Corollary 2.12 we get condition (iii) of Corollary 2.8. Lastly, in order to derive
inequalities (17) — (18), we use inequality (12) (Corollary 2.8). [

We note that under the assumption (iii) of Corollary 2.12, conditions (i) — (i7) of Corollary 2.12 are satisfied
for J1 = {m} and J, = I,,-1 provided x; is nondecreasing, i.e., x4 < xjp < --- < x;,, and a — x;, is nondecreasing
in P-mean [44, p.318], i.e.,

1 1
P_ Z(aK - xiK)PK < Z (ax — xiK)pK (21)
A KEly p/\+1 K€lj4
for A € I,,_1.

Definition 2.13. [44, p.318] An m-tuple z = (z1, . .., zy) € R™ is said to be star-shaped if

ZA ZA+1

~Z <

AT A+1 (22)
for A € Ly,_1.

x
A function ¢ : I — R, where I C R*, is said to be star-shaped, if the function x — @ is nondecreasing [30].
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Here we take ¢ : I — R to be a convex function which is differentiable positive nondecreasing and
convex function on a positive open interval I ¢ R*. We know [37, Lemma 2.8] that if ¢ is star-shaped, then
it preserves star-shapeness of m-tuples in the sense that (22) implies
P(z1) _ P(za+1)

< .
T S a1 forAel,
Corollary 2.14. Using the assumptions from Corollary 2.8 and let ¢ = D be the basis in R" given by (13) and
u=v=(1,2,...,m). Forallie I,, suppose there exist index sets |1 and J, with |, \J J» = ] such that

(i) x; is V—sepamble on |1 and [, with respect to ¢, i.e.,

x%<—forye]1andAe]2,

(ii) a—x; is 0, u-separable on |1 and ], with respect to D = ¢, i.e.,

— oy Ay — Xiy
ap xz/\SOS%foryehm’ldAE]Z/

(iii) ZKeIm (aK - xiK)PK =0,
(iv) ¢ preserves v-separability on [, and [, with respect to ¢, i.e., (i) of Corollary 2.14 implies

@ Px zy)f ry€Jiand A € Jp.

Then the following mequallty holds:

k=1
[Zpyvyay,_zp oY - 3 Zw]
V€D i€l, y=x+1 i€l
Z py\V(a,) - Z Py Z wiW(xy) — Z Z wiW(xiy), (23)

V€L, i€l, iel,
where p, = 2,5, =L forx el
Py = p’ Y T om me
For instance, if p, = 1 (i.e., p1 = -+ = pw), then (23) becomes:
k-1
V
Y WiXiy — WiXiy
yEIm y= iel, y= K+1 iel,

x—1 m
< Z W(a,) - 2 Z w W (xiy) — Z Z w¥(xy). (24)

Y€l y=1 iel, y=x+1 i€l,

If x;. and a — x;. are star-shaped tuples, and the map ¢ preserves star-shaped tuples, then (i) — (ii) of Corollary
2.14 are satisfied for the index set |1 = {x + 1,...,m} and ], = I, for some x.

Corollary 2.15. Using the assumptions from Corollary 2.8, suppose that € and D are the bases in R™ defined by

(14)-(16)andu=v =(1,2,...,m). Foreachi € {1,...,n}, suppose there exist index sets Jy and [ with 1 U], =]
such that

(i) x; is v-separable on |, and |, with respect to €, i.e., there exist u € R satisfying
Xij+l = Xi) 2 W 2 Xjpy1 = Xiy, for y€Jr and A€]p (25)

with convention X, = p(m + 1),
(ii) a—x; is 0, u-separable on |1 and ], with respect to D, i.e.,

Z(aK — Xi)p <0 < Z(aK —Xip)px Where y €], A€ (26)

Kxely rel,
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(iii) ZKeIm(aK - xiK)KPK =0,
(iv) ¢ preserves v-separability on |1 and ], with respect to ¢, i.e., (i) of Corollary 2.15 implies there exist v € R

satisfying
O(xiar1) = P(xi) 2 v = P(Xip41) — P(xiy) for y €1 and A€ (27)
with the convention ¢(x;m+1) = v(m + 1). Hence inequalities (23) and (24) hold.
Definition 2.16. An m-tuple z = (z4,...,2y) is said to be convex [44, p.318] if
Zy1+2z
2, < A-1 . A+1
forAef2,...,m—1}.
Remark 2.17. Say ¢ : I — R is a nonincreasing convex map such that ¢(0) = 0. Then conditions (25) — (27) are
satisfied for the index sets |1 = I, and |, = {x +1,...,m} for some x, whenever a — x;, in nondecreasing in P — mean,

(28)

ie.,
1 A A+1
=~ Z(aK - xiK)p1€ = Z({lk xlk)pk
p k=1 A+l

for A € L.

Also, x;, = (X1, ..., Xim) is a decreasing convex m-tuple such that xi < m(xp — xi1).

Remark 2.18. By putting special conditions, k = m and w; > 0 for all i with W,, = 1 we obtain Theorem 3.1 of [33].
Consequently all the corollaries of Theorem 3.1 of [33] become special cases of our article.

Theorem 2.19. If in Corollary 2.8, WV is a differential function with a = (a,a,...,a) € |", p = (p1,...,Pm) is a real
m-tuple satisfying the conditions given in (2) and (5), then inequality (12) can be written as:

a Z €PyVy — Z €Dy 0y Z WiXiy W) — — Z Py Z w;W(xiy), (29)

Y€l iel, y 1 iel,

¥

Proof. For an n x m matrix X = (x,) = (xj) such that x;, € | and (x,) is a monotonic m-tuple for all
i€l,, y€ly thenfora; =a e [, if Vis a differential function then, for m-tuple p = (p1, ..., pn) satisfying
conditions (2) and (5), [24, Theorem 2.1] can be written as

Wixy) = Y py W@ < memmrm

Y€l Y€l Y€l
which implies that
Y oy (W) = W@) < Y Wi ) (i - d)
€Ly, V€l
multiplying both sides by (-1)
Z py (¥ \I”(xly 2 Z py\yl(xi)/)(d = Xiy)

Y€l V€L,
that follows to inequality (12) in the following form:

m—1

pV|a Z €PyVy — WL €PyUy Z wixiy | < Pp\W(a) — Z Py Z w;W(xjy). (30)

yEIm " r=1 i€l i€l,
0

Remark 2.20. Similar results can be produced for concave functions by making use of the definition of concave
functions, i.e, W is concave if and only if =\ is convex.
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3. Index Set Functions and Refinements of Generalized Niezgoda’s Inequality For Similarly Separable
Vectors

In start of this section we give some construction which we will use throughout this section: Let I be
a finite nonempty set of positive integers. Let w = (w;), i € I be a real sequence and let (x,) = (x;) be a
sequence of vectors such that x;,, € ] foralli € I, y € I,,. Moreover we define Aj(x,, w) = wi, Yier w;x;, where
Wi = Y wi. For a convex function W : | — R. Also if assumptions of Theorem 2.6 are valid we define the
index set function F as

F() =W, ZPV (ay) - W ZZp),w WY(xjy) = = Z Zpyw, (xiy)

V€L, y=1 iel )/ x+1 i€l
Z EPyUy Ay — W Z Z EPy Uy WiXiy — W Z Z EPy Uy WiXiy (31)
V€L, y=1 iel y=x+1 i€l
where a = (ay,a,...,a,) is an m-tuple such thata, € | for y € I,, and f, = and K € L.

Now, by using techniques of article [28] we prove some results here.

Theorem 3.1. Let a = (a1, ay,...,ay) be an m-tuple such that a, € | for y € I,,, I and I be nonempty sets such
that TUI = I, and IN1 = (. Let (x,) = (xi,) be a sequence of vectors such that x;,, € | foralli € I, y € I,, and

= (w;), 1 € I, such that Wy, > 0. Let W be a convex function on | and As(x,,w) € | (S € {[,,LIUI}). f W; >0
and W; > 0, then

FIUT) > F(I) + E(). (32)

If Wi - Wi < 0, then inequality (32) is reversed.

Proof. Fix x € L,,. Since \V is continuous convex and composition with an affine function, we get convex function g
which we define as:

-1 m

g(ta) = ( Z EpyUylly = ff’yvyt(a Z epyorty’)

V€L, y=1 y=r+1

x

where t, = (t{,...,t5) € ™. We use the definition of convex function, for all t;, t, € J"™ and A1, A> > 0 to get

(/htl + /\ztz) - Ag(t) + Aag(ta)

A+ Ay A+ Ay (33)

which gives

x—1 o) (2) m (1) @
Aty + Aot Mb" + Aoty
A+/\\P§e,va, epyo, —L— 0 €pyvy ——
(1 2){ Pyvya, YT A, ZpVV A+ A,
Y€l y=1 y=r+1
k-1 m k-1 m

< )\1\}’( Z Ay, Epyy — Z t(yl) - Z epyuyty, ) + /\2‘1’( Z a, — epyv),t(;) - Z epyvyt )). (34)

Y€l y=1 y=K+1 Y€l y=1 y=k+1
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Now using Ay = Wi, Ay = WI, )/ = Af(x,, w) and t(z) Aj(x,, w) we have

K=1
WIAI(XJ// w) + WiAp(xy, w)
WitV [Z EPyUyay Epyvy Wit

V€L y=1

= WIAI(X)// w) + WTAT(Xy/ w)

y=r+1

Juny

K—

< WV [Z EpyUyay — epy 0y Ar(xy, W) — Z ep,/vyAI(xy,w)]

Y€l y= y=x+1

iy
—_

K—

m
Z EPyUyay — epy vy Ag(xy, W) — Z epyvyAl-(x},,w)].

V€L y=r+1

+ WiV

R
A

Now,

k=1 m
WitV Z EPyVy ), — Z epy vy Apur(xy, w) — Z epy 0y Apur(xy, W)
V€L, y=1 y=x+1

x—1 m
< WI‘I/( Z EPyUyay — epy 0y Ar(xy, W) — Z spyvyAI(xy,w))
V€L y=1 y=r+1
k=1 m
+WI\I/< Z EPyVyay — epyvyAg(xy, W) — Z ep),vij(x),,w)).
Y€l y=1 y=r+1

Multiplying both sides of the above inequality by (1), putting values of As and adding to both sides of the inequality
the term shown below

Y. 5@ - —ZZpywﬂwxw T Y Y pe)

VEly y=1 ielul y=x+1ielul

WIUI [

we get

Wior [Z py¥(a,) - W Z Z pywiW(xiy) — WIUI i pywiW(xiy)
+1 ielul

V€l '}/ 1 jelul

1 k=1 1 m
-y [Z ep),vyay W Z Z SP),U)/ZUZXW WIU[ Z epyvywixiy
(V)3

V€L, )/ 1 jelul y=x+1ie
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> Wi Z ﬁy\I’(a),) - — Z Zpywl\lf(xly - %1 Zm: Zﬁywi\l’(xi},)
y

V€L, y=1 iel

1 x—1 1 m
-y Z EPyvyay — W Z Z EPyUyWiXiy — Z Z EPyUyWiXiy
V€L, I y=1 iel I)/:K+1 i€l
1 m
+Wr Z py¥(a,) - W Z Z pywiW(xi,) — Z Z w;iW(xiy)
y€ly y=1 i€ )/:K+1 i€]
m
Z EPyUyay — W Z Z EPy Uy WiXiy — f Z Z EPyUyWikiy || -
yel, y=1 ie] Wi y=x+1i€]

In index set function notation we finally get
F(IUI) > F(I) + F(I).

In case when Wi.Wt < 0, for instance Wy > 0 and Wi < 0, we again let Ay = Wi, A, = Wi, tg/l) = Af(x,, w) and

tg,z) = Af(x,, w) and reversed inequality in (32) follows by using reverse Jensen’s inequality for two variable case. [

Corollary 3.2. Let a = (a1,az, ... ,ay) be an m-tuple such that a, € ] for y € L. Let I, t € I be finite nonempty
sets of positive integers such that I; N I; = ( for all s # t € I). We further suppose that (x,) = (xi,) is a real sequence

of vectors such that x;, € | for all i€ U?:l Ii, y € Iy and let w = (w;), i€ Ule I; such that Weu‘ ;>0 and
As(x,,wyeJ(Selh,.... I, Ui 1) (r € {2,..., A}). Tuke W to be a continuous convex function on J. Then:

(a) If Wy, > 0 for t € I, we have

A A
F[U It] > ZP(L). (35)

(b) If Wy, >0and Wy, <0 fort € {2,..., A}, then inequality (35) is reversed.
Proof. Proof follows directly from Theorem 3.1 by using induction. [

The following results give us refinements of Niezgoda'’s Inequality. For the remaining part of this section
we assume X;, € [a,b] C ] foralliand y.

Corollary 3.3. Leta = (a1,4az, . ..,a,) be an m-tuple such that a,, € | fory € I,,. We further suppose that (x,) = (x;))
is a real sequence of vectors such that x;,, € | forall i € I, y € I, and let \V be a continuous convex function on J. If
wy > 0and w; > 0 fori € {2,...,n}, then under the assumptions in Corollary 2.8 we have

F(,) > F(I,-1) = --- = F(I) = F(I;) = 0. (36)
Ifw; <0fori€(2,...,n}, Wy, > 0and Aj,(x,,w) € [a,b] C ], then
0 < F(I,) < F(I,—1) < --- < F(Iy) < F(Iy). (37)

Proof. Fix x € I,,. Suppose that w; > 0 for i € {2,...,n}. From generalized Niezgoda’s inequality (12) it

follows that
x—1 m
= v Z\P(an—Zwty)— Z OO DTS IS xty}

>0
VEly y=k+1 v€l, y=1 y=r+1
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for t € I,,. Now, by Theorem 3.1 we have
F(I;) = F(Ii-1 U {t}) = F(I;-1) + F({t}) = F(I;-1)

forallte€{2,...,n}.
For second part, we suppose that w; < 0 fori € {2,...,n} with W;, > 0 and Aj,(x,, w) € [a,b]. Now we
show that A;,_,(x,, w) € [a,b] as follows.
Given that
a<Ap(x,w)<b

multiplying both sides by Wj, > 0 and adding —w,,x,;,, we obtain
Wi,a — wyxy, < Z WiXiy = WyXny < Wi, b — wyxpy,
i€l,
or we may write
Wi,a — wyxy, < Z wixiy < Wb — wpxpy,.
i€l

1
Wi

Now multiplying both sides by > (0 we get

n-1

1 1
(Wr,a — wyxyy) < Ag,_, (X, W) <

n-1 n—1

(WI,, b- wnxm/)/

or we may write

0+ (= Xy) < Ap,, (%, W) < b+ (b = xyy),
1",1 In—l
clearly
Wy Wy
—x,,)>0 d b—- <0,
WI,H (a Xy ) an WI,H ( xny)

and hence we conclude that
a<Ap,(x,w) <b.

By iteration we obtain Aj(x,, w) € [a,b] for all t € {2,...,n}. Similarly as before we have F({t}) < 0 for all
t€{2,...,n}. Now by (32) reversed, we have

F(Iy) = F(Ii-1 U {t}) < F(Ii-) + F({#}) < F(Ii-1)
forallt € {2,...,n} and finally by Theorem 3.1: F(I,) > 0. O
For our main result of this section we can also state results analogous to Theorem 3.1 and its corollaries.

Theorem 3.4. Using the assumptions from Corollary 2.8, we have the following refinement:

1 k=1 1 m
eV Z PyOyay = W Z Z €py Oy Wikiy = Z Z €Py Uy WiXiy
V€L, n y=1 i€l, n y=x+1 i€l

k=1 m
<D(p,w, X, W;1) < Y p,W(a,) - Wi Y. Y pwiWy) - Wi Y Y pwiixy), (39)

YEly, y=1 iel, y=x+1 i€l,
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where Wy = Z wi, Wi = Z w;, I = I,\I and x € I, and

iel icl

D(p,w, X, ¥;]) =

-1 m
Wi 1 3% 1
Px W\I] Z €PyUyay — W Z €Py 0y Z WiXiy — 77 Z €PyUy Z WiXiy
n V€L, I y=1 iel I y=K+1 i€l
x—=1 n m
+ Pxc W v Z EPyUyay — W €PyVy Z WiXiy —

n €Ly I y=1 iel y K+1

Proof. Fixing x € I;, and suppose that w? =
function W we have

254 Z Epyvyay — W, Z Z EPyUyWiXiy — W Z Z €PyUyWikiy
V€L y=1 i€l, y=x+1 i€l
x—1 m
= p¥ Z €PyVylly — Z Z €PyVyW; Xiyy — Z Z €Dy V)W, Xjy
V€L, y=1 iel, y=x+1 i€l,
k-1 m
= p¥ Z w; Z EPyUyay — Z €PyUyXiy — Z EPyVyXiy
i€l, V€L, y=1 y=rx+1
x—=1 m
= pVY|W; W Zw Z EPyUyay — Zepyvyxiy - Z €PyUyXiy
I el V€ y=1 y=x+1

x—1 m

+ W W Z w; Z EPy Uy, — Z EPyVyXiy — Z €Py V) Xiy

I' el = y=1 y=K+1
m
* 1 *
< pWVY ZGPVUV”V A ZZEPVUVW Xiy = W Z Zepyvywixiy
Y€l I y=1 iel y x+1 i€l
m
+ pWVW Z EPyOyy = e Z Z‘epyvyw Xiy = W* Z ZGPVU)/wixiY
el I y=1 iel I y=«x+1 iel
k=1 m
< Wf\y 1 1
< pKW Zepyvyay - W Zepyvyw,-xiy W Z Zepyv},wley
" \yely W, y=1 iel W, y=x+1 i€l
Wf 1 k=1 1 m
+ pKW\I] 26}7)/0)/&)/ WY Zepyvyw,-x,-y - Wi Z ZEpry'wlxl)/
" \yela w, y=1 iel W, y=x+1 i€l
k=1 m
_ WI\P 1 1
= Py Zepyvyay W ZEP)/Uywz‘xiy w, Z ZEPJnywixiy
" \yely y=1 iel y=r+1 i€l
W; =
+ pKWn‘y Zepyvya), - W ZZep),vyw Xiy — W Z Zepyv),w Xiy
= =1 el Fy=i+1 e
= D(p,w,X,¥;I)

for any I, which proves the first inequality in (38).

_, Z GPJ’UVZZUIXW .

w; n . . _ *
w- where Yiogw: =1 Also W] = Y;q w!.

2370

(39)

il

By the convexity of
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By inequality (39) we have

D(p,w, X, \¥;])

= pKWn\If Zepyvq,a}, W Z‘Zqﬂyv),wlxly - W Z Zepyv},wixiy
V€L y=1 iel =x+1 i€l
W- K—1
I
+ pKWn\P Zepyvyay - W ZZepyvymxly - W Z Zepyvywlxl},
V€L Fy=1 e Fy=r+1jeg
W 1 k=1 m
I
= pKW‘If szi Zepyvyay— €EPyVyXiy — Z €Dy VyXiy
n I% — —
i€l Y€l r=1 y=k+1
W’ 1 x—1 m
I
+ pKW‘If W Zwi Z EPyUyay — €EPyVyXiy — Z €Dy VyXiy
n 17 - _—
iel V€ln r=1 y=r+l
w 1 k=1 m
I
< wo W ZwipK\I’ Z EPyUyAy — ) €EPYULXiy — Z EPyUyXiy
n I iel V€L y=1 y=x+1
k=1 m
+ % i ' — - .
W W WiPx €Py Uyl €Py Uy Xiy EPyUyXiy
U e Vel y=1 y=r+l
< Z w; Z py¥(a,) - Z pyW(xiy) — Z pyW(xi,)
zeI,, V€l y=1 y=x+1
= Z py¥(a,) - A Z Py Z w;iW(xpy,) — W Z py Z w;W(xjy).
YEly, y=1 i€l, y=x+1 i€l
In the last inequality we used the fact that
Wi
W [WI Z wlpk xzy ] [W Z szK xzy J = Z wsz\y (xnc)
i€l iel i€l,

This proves the second inequality in (38), for any I. O

Remark 3.5. It holds that

and

PV

Y€l y=1 i€l, y=x+1 i€l,

Z €PyVyly — W Z Z €Dy Uy WiXiy — W Z Z epyv),w,-x,-,/]

< mlin D(p,w, X, \¥;I)

max D(p,w, X, \¥;])
m
< Z p, V() - W Z Z pywiW(xi) — — Z Z pywiW(x;y).
Y€l y=1 iel, )/ x+1 i€l,

We will be needing the following definition for the corollary that follows.

2371
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Definition 3.6. [25, p. 10] An m x m matrix B = (bys) is known as doubly stochastic, if b,y > 0 and Z;”Zl by =

Yo byy = 1forall y, x € L.
Also, if B is an m X m doubly stochastic matrix, then [25, p. 31] :

bB < b for each real m-tuple b = (by, ..., by). (40)
By applying Theorem 3.4 and inequality (40), one gets:

Corollary 3.7. Assume \V to be a continuous convex function on J. Suppose that b = (by,...,by) € J" for y € I,
and By, ..., B, are m X m doubly stochastic matrices. Set

b B,
X= (xi)/) =
b B,

Then inequality (38) holds.

Remark 3.8. Analagous assertion can be formulated for concave functions using the fact that \V is concave iff —f is
convex.

4. Applications

H: For0#I1C1I,={1,...,n},let A, G, H; and My] be the arithmetic mean, geometric mean, harmonic
mean and power mean of order r € R, respectively for x;, € [a,b] C ] where y € I,,,i € [,and 0 <a < b,
formed with weights w;, i € I satisfies the conditions stated in (2). For I = I, we denote the arithmetic
mean, geometric mean, harmonic mean and power mean by A,, G,, H, and M,[f] respectively. For detailed
understanding of these means and their relations with each other, the reader can go through [6] and [22].

For example, it is well known that

Ay > G, > H,. (41)
AVI Wi Anfl W1 Al Wi
—_— > | > 2= > 1.
(G,,) _(Gn_l) = _(Gl) =1 (42)
Wn(An - Gn) 2 Wn—l(An—l - Gn—l) 22 Wl(Al - Gl) > 0. (43)

Also we have renowned Ky Fan Inequality [5, p. 5] given by

A G
A% = G-’

0<x, <= Vy. (44)

2
If we define

m

-1
A = Z EPy Uy, — %1 KZ: Z EPy Uy WiXiy — %1 Z Z EPy Uy WiXiy

v€l, y=1 iel y=k+1 i€l

k=1 m

Z EPyUYay — Z sp),v),AI(xy,w) - Z epyvyAI(xy,w)

V€L y=1 y=r+1
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1 )
~ vEly,
G = - -
k=1 = I m . T
X [T ITx."”
; iy Ly
y=1iel y=x+1 i€l
-1
1 m
Hp: = epyvya, " 2 Z EPyVyW; xly Z z EPyUy WX, 17/
V€l y 1 el Wi y=k+1 i€l
1
i = | Zevon - X Y st - ¥ Yo, | reo
I v€lLy y=1 iel y=x+1 i€l
Gi r=0.
Under the assumption made in Corollary 2.11 we deduce ¢p, v, = p,, where ), = and hence the arithmetic

mean, geometric mean, harmonic mean and power mean defined above can wrltten as:

A o= Zp),ay W ZZpyw Xy = W Z Zpyw Xiy

Y€l y=1 iel )/ x+1 iel
m
= ZPV”V ZPVAI(XV' - Z PyAI(x,, W)
)’Elm y=k+1
H aP:
Y

~ vel,
Gr: = - -

k=1 M m WM

wWipy wip,
X Py H HX. P
; iy ! iy
y=1 i€l y=x+1 i€l
-1

fie = [Dpe - 2 Do - X s

V€L y=1 iel y=x+1 i€l

1
i Y e~ e 3 Yt~ Y Y| o
c = W iy W zv
1 €l y=1 iel y=k+1 i€l
G] r=20.

Then under the assumptions given in H along with Corollary 2.11, the following results are valid:

Theorem 4.1.
A>G (45)
~A(x) > ~G(x) provided that 0 < x;, < 1 foralli,y. (46)
A1l-x)  G(1-x) 2

Proof. Using the convex function ¢(x) = —Inx in inequality (12), we obtain inequality (45).
Using the convex function ¢(x) = In (1%) O0<x< %) in inequality (12), we obtain inequality (46).
The reverse inequalities (45) and (46) hold when we take ¢ as a concave function. [
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Theorem 4.2.
A Wy A Wi-1 i \W1
(ﬁ) > (f‘”‘l) > > (ﬂ) > 1. (47)
Gn anl Gl
Wn(An - Gn) 2 Wn—l(An—l - Gn—l) 22 Wl(Al - Gl) 2 0. (48)
Proof. Using the convex function W(x) = —Inx in inequality (36), we obtain:
A Wiy e Wit e Wi
1n(ﬁ) > ln(f}”‘l) > ln(@) > 0. (49)
Gn Gn—l Gl

from which inequality (47) follows. Using the convex function W(x) = exp x and replacing a, and x;, with
In(a,) and In(x;,) respectively in inequality (36), we obtain:

Wi(A, = Gp) 2 Wi (A1 — Guo1) 2 -+ > Wi(A; = Gp) 20,

since in this case

k=1 m
E(Iy) = W [Z pyay = %1 Z Z pywixiy — %1 Z Z pywixiy

V€L y=1 iel y=x+1 i€l
k=1 m
- 1 _ 1 _ .
—exp [Z pyln(ay) - i Z Z pywiln(xiy,) — W Z Z pywiln(xiy)]] = Wi(A; = Gy).
V€L y=1 iel y=x+1 i€l

The reverse inequalities (48) and (47) hold when we take ¢ as a concave function. [J

Remark 4.3. Ifin Theorem 4.2 we simply put w; = 1 foralli € I,,, we get the following results which are of Popoviciu-
[39] and Rado- [40] types respectively (see also [32, p. 13]).

Corollary 4.4.

A\ = n-1 ~ \1
(ﬁ) z({‘”l) 2--2(@) > 1.
G, Gu1 Gy

(A, —Gp) = (n=1)(Au1 = Gu1) 2 -2 1-(A1 = G1) 2 0.

Corollary 4.5.
~ W, ~ Wi ~ Wi
(ﬂ) z((f’”) zz(&) > 1.
H, H,1 H;
LRV TS NI R
Hn Gn Hn—l Gn—l Hl Gl

Proof. Follows directly from Theorem 4.2 by the substitutions a,, — % and x;, — % O
Theorem 4.6. For r < 1, we have the following inequalities
WA = M) 2 Waa (A = ML) 2 -0 2 Wi (A - MY 2 0, (50)

For r > 1, the inequalities in (50) are reversed.
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Proof. For r < 1, using the convex function W(x) = x+ and replacing a, and x;, with a, and xlfy respectively
in inequality (36), we obtain inequality (50), since in this case

F(ly) =W, [Z pyay — — W ZZPVW’XW WI Z Zﬁywﬁﬁy

V€L, y=1 iel y=x+1 i€l
1 k-1 1 m 1r
| L P - g X L e = g X D e | | = Wild - M,
V€L, I y=1 iel I y=x+1 i€l

If > 1, then the function W (x) = x7 is concave, so the inequalities in (50) are reversed. [
By simply taking r = —1 we get the following corollary.
Corollary 4.7.
WAy = Hy) 2 W1 (Apoy = Hyt) 2 2 Wi(Ay = Hi) 2 0.
Remark 4.8. It is easy to see that inequality (48) is a direct consequence of Theorem 4.6.

Theorem 4.9. Letr,s € R, v <s. Ifs > 0, then

W () — () 2 s (1) 2,Y) 2 2 o () — (1) 20, 51

If s <0, then the inequalities in (51) are reversed.

Proof. For s > 0, using the convex function W(x) = x+ and replacing a, and x;, with a;, and X, respectively in
inequality (36), we obtain inequality (51), since in this case

F(I) = Wi [Z P~ i ZZpywl %, - o w Z Y P,

V€L, y=1 iel y=x+1 i€l

k=1 s/
- Z pal, - %1 Z{ Z;‘ X, = W Z Z pywix zy] = W; ((MES])S _ (Mgr])s).
-

€L, y=k+1 i€l

If s < 0, then the function W(x) = x+ is concave, so the inequalities in (51) are reversed. [

Theorem 4.10.
~ UL/ _ UL/
(i) G, < mlinAIW” ATW” and A, > mIaxAIW” ATW”. (52)
L W~ Wi . Wr ~  Wr.
(i) G, < mlm[W,I,GI + W,I,GI] and A, > m}a\x [WiGI + W,I,GI]' (53)
Proof. (i) Applying the convex function W(x) = — Inx in Theorem 3.4, we obtain
- Wy, . Wi oo .
~-InA, < —WilnAI - WimAf < -InG,. (54)

Now inequality (52) follows from Remark 3.5 and (54).
(i) Applying the convex function W(x) = exp x and replacing a, and x;, with Ina, and In x;, respectively
in Theorem 3.4 and using Remark 3.5, we obtain inequality (53). O
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The following particular case of Theorem 4.10 is of interest.

Corollary 4.11.
1 1 1 1
(l) — < min = and — > max =
H™ Hp™ H™ Hp™
1 Wi 1 W;
(ll) — < min WI,, + I~ and — > max WI., + I~ .
G 1| W,G WG =0 |WaG WG

Proof. Follows directly from Theorem 4.10 by the substitutions a, — ai and x;, — % O

Theorem 4.12. Forr <1 (r # 0), the following inequalities hold:

- Sl wy . W=

M < min [WLME’] + WIME]] (55)
7 Wi . Wi

A, > mIax [WnMI + WHMT . (56)

In case r > 1, the above inequalities (55) are reversed.

Proof. When r < 1, (r # 0) use Theorem 3.4 and then Remark 3.5 for the convex function W(x) = X
and replacing 4, and x;, with 4}, and xfy respectively [for r = 0 use Theorem 3.4 for the convex function

W(x) = exp x, replacing a, and x;, with Ina, and In x;, respectively, we obtain (53)].
In case r > 1, the inequalities in (55) are reversed since the function W(x) = x7 is concave. []

~I]’

~ WI ~ T ~
A, > mlax[WHHl + WHHI] .

Corollary 4.13.

I n

- W; ~
f, < min[WIHI +

s =

Remark 4.14. It is easy to see that Theorem (53) is also direct consequence of Theorem 4.12.

Theorem 4.15. Letr,s€e R, r <s.
(i) For s > 0, the following inequalities hold:

~ s W, ~ s W=, . s
r] : I [r] I [r]
(5 < | (1) -+ 0,
- Wi ~[]\® Wj ~[]\®
(ii) In case s < O, the above inequalities (57) are reversed.

Proof. Lets > 0. Using the convex function W(x) = x+ and replacing 4, and x;, with a, and X5, respectively

in Theorem 3.4 and making use of Remark 3.5, we obtain inequality (57).
In case s < 0, the inequalities in (57) are reversed since the function W(x) = x+ is concave. [J

Definition 4.16. Let ¢ be a strictly monotonic continuous function on J. Then for a given n-tuple x = (x1,...,%,) €
J" and real n-tuple w = (wn, ..., w,) with W, # 0, the value

MY = g7 (Wi y wiqs(xz-)]
i=1

is well defined and is called quasi — arithmetic mean of x with weight w (see for example [6, p. 215]).
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Under the assumptions of Corollary 2.8 and Corollary 2.11, we define:
1\712:] =¢7 [Z pyPlay) — —— Zpywz¢(xz)’ - W Z Zpyw,qb(xzy ] (58)
Y€l y 1 i=1 y=x+1 i=1
then the following results hold:

Theorem 4.17. Let ¢ and  be two strictly monotonic continuous functions on J. If Y o ¢t is convex on J, then

Wa (0 (9157) = (¥12)) 2 W (w0 (W) = (V1)) 2 e ( (E1) = (W12 2 0. (59)
If Y o ¢! is concave on |, then inequalities (59) are reversed.

Proof. Applying (36) to the convex function f = ¢ o ¢! and replacing 4, and x;, with ¢(a,) and ¢(x;,)
respectively we obtain (59), since in this case

F(I) = W, [Z pria,) - Z Y Pro(xg) - 7o Z Y i) ]

V€l }/—1 i€l} )/ x+1 i€l;
m
-1 - 5
_(lp ° (P ) Z pV¢(aV) ~ TAT. Z Z waz (xw - Z Z waz'(i)(xz'y)
V€l ' y=1 i€l f y=k+1 iel;

O

Remark 4.18. Theorem 4.2, 4.6 and 4.9 follow from Theorem 4.17, if we choose suitable functions ¢, { and make
substitutions accordingly.

Corollary 4.19. Let ¢, : | = R be strictly monotonic and continuous functions. If i o ¢~ is convex on |, then

G <MT)-¢(M&”))Z

k=1 m .
<s<t<n = = i Sarors] s ¢
k=1 . m .
wod) [Z ol T B ) g i) ii‘;@("”]ﬂ )
V€l r=1 s t y=x+1 § t
and
W, (QU (ME;]) — (]\7[{;'])) > max {wt 2 Y(ay) — Z Y(xpy) — Z Y(xy)
T = y=r+1
~o¢™) [2 $(a,) 2 () - Z qb(m]” NG
V€l y=Kk+1

If Y o ¢t is concave on |, then inequalities in (60) and (61) are reversed and maximum is replaced with minimum.
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Theorem 4.20. Let ¢ and  be two strictly monotonic continuous functions on J. If o ¢~ is convex on J, then

p (V) < m}n[%#’(mgl) ¥ %w(mgl)],

¢ (W) = max [%w (Mgl) + %1# (Mgl)] (62)

where Mgl is defined as

-1 U
WD =6 | Y poa) - 5 Y Y redl) = o Y, Y Pt

a3 y=1 iel y=x+1 i€l

Proof. Using the convex function f = ¢ o ¢! and replacing a, and x;, with ¢(a,) and ¢(x;,) respectively in
Theorem 3.4 and then using Remark 3.5, we obtain inequality (62). O

Remark 4.21. (a) Theorem 4.10, 4.12 and 4.15 follow from Theorem 4.20, by choosing adequate functions ¢, Y and
appropriate substitutions.

(b) In all the theorems, reverse inequalities hold for concave functions.

(c) By imposing different conditions on x and weights w;’s we can obtain many special cases of our results proved
in this section, in articles [19, 21, 28].

Remark 4.22. Similar results can be proved for concave functions given that \V is concave if and only if =\ is
convex.
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