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aIsparta University of Applied Sciences, Isparta, Turkey
bDepartment of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey

Abstract. The Berezin symbol Ã of an operator A on the reproducing kernel Hilbert space H (Ω) over
some set Ωwith the reproducing kernel kξ is defined by

Ã(ξ) =
〈
A

kξ∥∥∥kξ
∥∥∥ , kξ∥∥∥kξ

∥∥∥
〉
, ξ ∈ Ω.

The Berezin number of an operator A is defined by

ber(A) := sup
ξ∈Ω

∣∣∣∣Ã(ξ)
∣∣∣∣ .

We study some problems of operator theory by using this bounded function Ã, including treatments of inner
product inequalities via convex functions for the Berezin numbers of some operators. We also establish
some inequalities involving of the Berezin inequalities.

1. Introduction

LetΩ be a subset of a topological space X such that the boundary ∂Ω is nonempty. LetH be an infinite-
dimensional Hilbert space complex-valued functions defined on Ω.We say thatH is a reproducing kernel
Hilbert space if the following two conditions are satisfied :

(i) for any ξ ∈ Ω, the evaluation functionals f → f (ξ) are continuous onH ;
(ii) for any ξ ∈ Ω, there exists fξ ∈ H such that fξ (ξ) , 0 (or equivalently, there is no ξ0 ∈ Ω such that

f (ξ0) = 0 for every f ∈ H).
According to the classical Riesz representation theorem, the assumption (i) implies that, for every ξ ∈ Ω

there exists a unique function kξ ∈ H such that

f (ξ) =
〈

f , kξ
〉
H
, f ∈ H .

The function kξ (z) is called the reproducing kernel ofH at pointξ. It is well known that every reproducing
kernel Hilbert space is separable. So, if {en (z)}n≥0 is any orthonormal basis ofH , then (see Aronzajn [3])

kξ (z) =
∞∑

n=0

en (ξ)en (z) .
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By virtue of assumption (ii), we surely have kξ , 0 and we denote by k̂ξ the normalized reproducing kernel,
that is k̂ξ := kξ

∥kξ∥H
. Recall that if B (H) is the Banach algebra of all bounded linear operator on H , then

the Berezin symbol Ã of any operator A ∈ B (H) is the complex-valued function defined on the Ω by the
formula (see, Berezin [8, 9])

Ã(ξ) :=
〈
Âkξ, k̂ξ

〉
H
, ξ ∈ Ω.

The Berezin set of operator A is defined by

Ber (A) =
{〈

Âkξ, k̂ξ
〉

: ξ ∈ Ω
}
= Range

(
Ã
)
,

and Berezin number ber (A) of operator A is the following number (see [25, 26])

ber (A) := sup
ξ∈Ω

∣∣∣∣Ã(ξ)
∣∣∣∣ .

Since,
∣∣∣∣Ã (ξ)

∣∣∣∣ ≤ ∥A∥ , Berezin symbol is a bounded function on Ω. Also, it is trivial by Cauchy-Schwarz

inequality that ber (A) ≤ ∥A∥ . If A = cI with c , 0, then obviously ber (A) = |c| > |c|2 =
∥A∥

2 . But Karaev in [26]
showed that in general

1
2
∥A∥ ≤ ber (A)

is not satisfied for every A ∈ B (H) .
Berezin set and Berezin number of operators are new numerical characteristics of operators on the

RKHS which are introduced by Karaev in [25]. For the basic properties and facts on these new concepts,
see [5–7, 26, 32, 34].

It is well-known that

ber (A) ≤ w (A) ≤ ∥A∥ (1)

and

1
2
∥A∥ ≤ w (A) ≤ ∥A∥ (2)

for any A ∈ B (H) . The inequalities in (2) are sharp. The first inequality becomes an equality if A2 = 0. The
second inequality becomes an equality if A normal. For basic properties of the numerical radius, we refer
to [20] and [21]. The inequalities in (2) have been improved considerably by the second author in [29] and
[31]. It has been shown in [29] and [31], respectively, that if A ∈ B (H), then

w (A) ≤
1
2
∥|A| + |A∗|∥ ≤

1
2

(
∥A∥ +

∥∥∥A2
∥∥∥1/2

)
, (3)

where |A| = (A∗A)1/2 is the absolute value of A, and

1
4
∥A∗A + AA∗∥ ≤ w2 (A) ≤

1
2
∥A∗A + AA∗∥ .

The inequalities in (3), which refine the second inequality in (2), have been utilized in [29] to derive an
estimate for the numerical radius of the Frobenius companion matrix (also see [1, 2, 12, 23]).

The purpose of this paper is to establish some inequalities involving of the Berezin number inequalities
of operators by using convex function Ã. Usual operator norm inequalities and a related Berezin number
inequality of operators are also presented. Related results are contained in [15–19, 22, 35–37].
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2. Berezin Number Inequalities

2.1. Lemmas
In order to prove our results, we need the following sequence of lemmas.
Recall that an operator A ∈ B (H) is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H . In this case we will write

A ≥ 0. The classical operator Jensen inequality for the positive operators A ∈ B (H) is

⟨Ax, x⟩r ≤ (≥) ⟨Arx, x⟩ , r ≥ 1 (0 ≤ r ≤ 1) (4)

for any unit vector x ∈ H .

Lemma 2.1. We have the Power-Mean inequality, that reads

aλb1−λ
≤ λa + (1 − λ) b ≤ (λap + (1 − λ) bp)

1
p , (5)

for a, b ≥ 0, 0 ≤ λ ≤ 1, and p ≥ 1.

The following inequality is the spectral theorem for positive operators and Jensen inequality (see [14])
which states that if f is a convex function on an interval containing the spectrum of A, then

f (⟨Ax, x⟩) ≤
〈

f (A) x, x
〉

(6)

which A is a positive operators in B (H) and x ∈ H is an unit vector. If f is concave, then (6) holds in the
reverse direction.

The mixed Schwarz inequality was introduced in [21], as follows:

Lemma 2.2. Let A ∈ B (H) and let x ∈ H be a unit vector. Then

|⟨Ax, x⟩|2 ≤ ⟨|A| x, x⟩ ⟨|A∗| x, x⟩ . (7)

Another inequality, which can be found by Aujla and Silva [4], gives a norm inequality involving convex
function of positive operator which assert∥∥∥∥∥ f

(A + B
2

)∥∥∥∥∥ ≤ ∥∥∥∥∥ f (A) + f (B)
2

∥∥∥∥∥ (8)

which f be a non-negative nondecreasing convex function on [0,∞) and A,B ∈ B (H) be positive operators.
In 2004, Kittaneh [30] has shown follow inequality and this follow inequality is considered as a refined

triangle inequality for positive operators.

Lemma 2.3. Let A ∈ B (H) . Then∥∥∥|A|2 + |A∗|2∥∥∥ ≤ ∥∥∥A2
∥∥∥ + ∥A∥2 . (9)

The following lemma contains a special case of a more general norm inequality that is equivalent to
some Löwner–Heinz type inequalities (see [13, 27]).

Lemma 2.4. If A,B ∈ B (H) are positive operators, then∥∥∥A1/2B1/2
∥∥∥ ≤ ∥AB∥1/2 .

The last lemma contains a recent norm inequality for sums of positive operators that is sharper than the
triangle inequality (see [28]).

Lemma 2.5. If A,B ∈ B (H) are positive operators, then

∥A + B∥ ≤
1
2

(∥A∥ + ∥B∥) +
√

(∥A∥ − ∥B∥)2 + 4
∥∥∥A1/2B1/2

∥∥∥2
.
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2.2. Main Results

Now, we are ready to state the main results of this section. Our first main result can be stated as follows.

Theorem 2.6. If A,B ∈ B (H (Ω)) and f : [0,∞)→ R is an increasing convex function, then

f
(∣∣∣∣Ã (ξ) B̃ (ξ)

∣∣∣∣2) ≤ 1
2

f
(∣∣∣∣B̃A (ξ)

∣∣∣∣2) + 1
2

〈(
λ f

(
|A|

2
λ

)
+ (1 − λ) f

(
|B∗|

2
1−λ

))
k̂ξ, k̂ξ

〉
(10)

for 0 ≤ λ ≤ 1. Further,

f
(∣∣∣∣Ã (ξ) B̃ (ξ)

∣∣∣∣) ≤ 1
2

f
(∣∣∣∣B̃A (ξ)

∣∣∣∣) + 1
4

〈(
f
(
|A|2

)
+ f

(
|B∗|2

))
k̂ξ, k̂ξ

〉
. (11)

Proof. Let k̂ξ be normalized reproducing kernel. The following refinement of the Cauchy-Schwarz inequality
proved by Buzano [11]:

∥x∥
∥∥∥y

∥∥∥ ≥ ∣∣∣〈x, y
〉
− ⟨x, e⟩

〈
e, y

〉∣∣∣ + ∣∣∣⟨x, e⟩ 〈e, y
〉∣∣∣ ≥ ∣∣∣〈x, y

〉∣∣∣ , (12)

for all x, y, e ∈ H and ∥e∥ = 1. From inequality (12), we conclude that

1
2

(
∥x∥

∥∥∥y
∥∥∥ + ∣∣∣〈x, y

〉∣∣∣) ≥ ∣∣∣⟨x, e⟩ 〈e, y
〉∣∣∣ .

Putting e = k̂ξ, x = Âkξ and y = B∗̂kξ in the above, we have

1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣ + ∥∥∥∥Âkξ

∥∥∥∥ ∥∥∥∥B∗̂kξ
∥∥∥∥) ≥ ∣∣∣∣〈Âkξ, k̂ξ

〉 〈
B̂kξ, k̂ξ

〉∣∣∣∣ . (13)

Hence, by the function t→ t2 is convex,

∣∣∣∣〈Âkξ, k̂ξ
〉 〈

B̂kξ, k̂ξ
〉∣∣∣∣2 ≤


∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣ + ∥∥∥∥Âkξ
∥∥∥∥ ∥∥∥∥B∗̂kξ

∥∥∥∥
2


2

≤
1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + ∥∥∥∥Âkξ

∥∥∥∥2 ∥∥∥∥B∗̂kξ
∥∥∥∥2)

=
1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + 〈

Âkξ, Âkξ
〉 〈

B∗̂kξ,B∗̂kξ
〉)

=
1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + 〈

|A|2 k̂ξ, k̂ξ
〉 〈
|B∗|2 k̂ξ, k̂ξ

〉)
=

1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + 〈(

|A|
2
λ

)λ
k̂ξ, k̂ξ

〉 〈(
|B∗|

2
1−λ

)1−λ
k̂ξ, k̂ξ

〉)
≤

1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + 〈

|A|
2
λ k̂ξ, k̂ξ

〉λ 〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉1−λ)
(by the inequality (4))

≤
1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + λ 〈

|A|
2
λ k̂ξ, k̂ξ

〉
+ (1 − λ)

〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉)
(by the inequality (5)).

Hence,∣∣∣∣〈Âkξ, k̂ξ
〉 〈

B̂kξ, k̂ξ
〉∣∣∣∣2 ≤ 1

2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + λ 〈

|A|
2
λ k̂ξ, k̂ξ

〉
+ (1 − λ)

〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉)
(14)
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Now since f is increasing and convex, (14) implies

f
(∣∣∣∣〈Âkξ, k̂ξ

〉 〈
B̂kξ, k̂ξ

〉∣∣∣∣2)
≤ f

(1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣2 + λ 〈

|A|
2
λ k̂ξ, k̂ξ

〉
+ (1 − λ)

〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉))

≤

f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣2) + f
(
λ
〈
|A|

2
λ k̂ξ, k̂ξ

〉
+ (1 − λ)

〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉)
2

≤

f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣2) + λ f
(〈
|A|

2
λ k̂ξ, k̂ξ

〉)
+ (1 − λ) f

(〈
|B∗|

2
1−λ k̂ξ, k̂ξ

〉)
2

≤

f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣2) + λ 〈
f
(
|A|

2
λ

)
k̂ξ, k̂ξ

〉
+ (1 − λ)

〈
f
(
|B∗|

2
1−λ

)
k̂ξ, k̂ξ

〉
2

(by inequality (6))

≤

f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣2) + 〈(
λ f

(
|A|

2
λ

)
+ (1 − λ) f

(
|B∗|

2
1−λ

))
k̂ξ, k̂ξ

〉
2

which is equivalent to

f
(∣∣∣∣Ã (ξ) B̃ (ξ)

∣∣∣∣2) ≤ 1
2

f
(∣∣∣∣B̃A (ξ)

∣∣∣∣2) + 1
2

〈(
λ f

(
|A|

2
λ

)
+

1
2

(1 − λ) f
(
|B∗|

2
1−λ

))
k̂ξ, k̂ξ

〉
.

On the other hand, from (13), we get∣∣∣∣〈Âkξ, k̂ξ
〉 〈

B̂kξ, k̂ξ
〉∣∣∣∣ ≤ 1

2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣ + 〈

Âkξ, Âkξ
〉 1

2
〈
B∗̂kξ,B∗̂kξ

〉 1
2

)
=

1
2

(∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣ + 〈

|A|2 k̂ξ, k̂ξ
〉 1

2
〈
|B∗|2 k̂ξ, k̂ξ

〉 1
2

)

≤
1
2

∣∣∣∣B̃A (ξ)
∣∣∣∣ +

〈
|A|2 k̂ξ, k̂ξ

〉
+

〈
|B∗|2 k̂ξ, k̂ξ

〉
2


(by the AM-GM inequality).

Again, since f is increasing and convex, we obtain

f
(∣∣∣∣〈Âkξ, k̂ξ

〉 〈
B̂kξ, k̂ξ

〉∣∣∣∣)
≤ f

1
2

∣∣∣∣〈BÂkξ, k̂ξ
〉∣∣∣∣ +

〈
|A|2 k̂ξ, k̂ξ

〉
+

〈
|B∗|2 k̂ξ, k̂ξ

〉
2




≤
1
2

 f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣) + f


〈
|A|2 k̂ξ, k̂ξ

〉
+

〈
|B∗|2 k̂ξ, k̂ξ

〉
2




≤
1
2

 f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣) +
〈

f
(
|A|2

)
k̂ξ, k̂ξ

〉
+

〈
f
(
|B∗|2

)
k̂ξ, k̂ξ

〉
2


=

1
2

f
(∣∣∣∣〈BÂkξ, k̂ξ

〉∣∣∣∣) + 1
4

〈(
f
(
|A|2

)
+ f

(
|B∗|2

))
k̂ξ, k̂ξ

〉
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and

f
(∣∣∣∣Ã (ξ) B̃ (ξ)

∣∣∣∣) ≤ 1
2

f
(∣∣∣∣B̃A (ξ)

∣∣∣∣) + 1
4

〈(
f
(
|A|2

)
+ f

(
|B∗|2

))
k̂ξ, k̂ξ

〉
.

We obtain the desired inequality.

Noting that the function f (t) = tp, p ≥ 1 satisfes the conditions in Theorem 2.6, we obtain the following
particular.

Corollary 2.7. Let A,B ∈ B (H (Ω)) . Then for any p ≥ 1 and 0 ≤ λ ≤ 1,∣∣∣∣Ã (ξ) B̃ (ξ)
∣∣∣∣2p
≤

1
2

∣∣∣∣B̃A (ξ)
∣∣∣∣2p
+

1
2

〈(
λ |A|

2p
λ + (1 − λ) |B∗|

2p
1−λ

)
k̂ξ, k̂ξ

〉
,

and ∣∣∣∣Ã (ξ) B̃ (ξ)
∣∣∣∣p ≤ 1

2

∣∣∣∣B̃A (ξ)
∣∣∣∣p + 1

4

〈(
|A|2p + |B∗|2p

)
k̂ξ, k̂ξ

〉
.

The first application of Theorem 2.6 and Corollary 2.7 is the following ber-norm and Berezin number
inequality for the product of two operators.

Corollary 2.8. If A,B ∈ B (H (Ω)) and f : [0,∞)→ R is an increasing convex function, then

f
(
ber2 (B∗A)

)
≤

1
2

f
(
ber

(
|B|2 |A|2

))
+

1
4

∥∥∥∥ f
(
|A|4

)
+ f

(
|B|4

)∥∥∥∥
ber

.

In particular, if p ≥ 1, then

ber2p (B∗A) ≤
1
2

berp
(
|B|2 |A|2

)
+

1
4

∥∥∥|A|4p + |B|4p
∥∥∥

ber
. (15)

Proof. Replacing A and B by |A|2 and |B|2 respectively Theorem 2.6, then the inequality (11) reduces to

f
(∣∣∣∣〈|A|2 k̂ξ, k̂ξ

〉 〈
|B|2 k̂ξ, k̂ξ

〉∣∣∣∣) ≤ 1
2

f
(∣∣∣∣〈|B|2 |A|2 k̂ξ, k̂ξ

〉∣∣∣∣)
+

1
4

〈(
f
(
|A|4

)
+ f

(
|B∗|4

))
k̂ξ, k̂ξ

〉
. (16)

On the other hand,∣∣∣∣〈B∗Âkξ, k̂ξ
〉∣∣∣∣2 = ∣∣∣∣〈Âkξ, B̂kξ

〉∣∣∣∣2
≤

∥∥∥∥Âkξ
∥∥∥∥2 ∥∥∥∥B̂kξ

∥∥∥∥2

(by the Cauchy-Schwarz inequality)

=
〈
|A|2 k̂ξ, k̂ξ

〉 〈
|B|2 k̂ξ, k̂ξ

〉
.

Since f is increasing, we get

f
(∣∣∣∣〈B∗Âkξ, k̂ξ

〉∣∣∣∣2) ≤ f
(〈
|A|2 k̂ξ, k̂ξ

〉 〈
|B|2 k̂ξ, k̂ξ

〉)
and this together with (16) imply

f
(∣∣∣∣B̃∗A (ξ)

∣∣∣∣2) ≤ 1
2

f
(∣∣∣∣ ˜|B|2 |A|2 (ξ)

∣∣∣∣) + 1
4

〈(
f
(
|A|4

)
+ f

(
|B∗|4

))
k̂ξ, k̂ξ

〉
.

By taking supremum over ξ ∈ Ω, we have

f
(
ber2 (B∗A)

)
≤

1
2

f
(
ber

(
|B|2 |A|2

))
+

1
4

∥∥∥∥ f
(
|A|4

)
+ f

(
|B|4

)∥∥∥∥
ber
.

Consider the function f (t) = tp, p ≥ 1, then we get the second inequality. This completes the proof.
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Remark 2.9. Since for p = 1 and A = B, we get on both sides of (15) the same quantity ∥A∥4ber.

Corollary 2.10. If A,B ∈ B (H (Ω)) then

ber (B∗A) ≤
1
2

∥∥∥|A|2 + |B|2∥∥∥
and

ber2p (B∗A) ≤
1
2

∥∥∥|A|4p + |B|4p
∥∥∥ , p ≥ 1. (17)

Proof. We recall the following arithmetic-geometric mean inequality obtained in [10]

∥B∗A∥ ≤
1
4

∥∥∥(|A| + |B|)2
∥∥∥ . (18)

Hence, by the inequality (1),

ber (B∗A) ≤ ∥B∗A∥ ≤
1
4
∥|A| + |B|∥2 (by (18))

=

∥∥∥∥∥∥( |A| + |B|2

)2
∥∥∥∥∥∥

≤
1
2

∥∥∥|A|2 + |B|2∥∥∥ (by the inequality (8)).

Notice that

berp
(
|B|2 |A|2

)
≤

1
2

∥∥∥|A|4p + |B|4p
∥∥∥ .

Also Corollary 2.8 implies that

ber2p (B∗A) ≤
1
2

berp
(
|A|2 |B|2

)
+

1
4

∥∥∥|A|4p + |B|4p
∥∥∥

≤
1
2

∥∥∥|A|4p + |B|4p
∥∥∥ ,

explaining why Corollary 2.8 provide a refinement of the inequality (17). Further, the first inequality in
Corollary 2.8 provides a generalization of (17).

Now Theorem 2.6 is utilized to obtain the following one-operator Berezin number inequality.

Corollary 2.11. If E ∈ B (H (Ω)) and f : [0,∞)→ R is an increasing convex function, then for 0 ≤ λ ≤ 1,

f
(
ber4 (E)

)
≤

1
2

f
(
ber2 (|E| |E∗|)

)
+

1
2

∥∥∥∥(1 − λ) f
(
|E|

2
1−λ

)
+ λ f

(
|E∗|

2
λ

)∥∥∥∥
ber

,

and

f
(
ber2 (E)

)
≤

1
2

(
f (ber (|E| |E∗|)) +

1
2

∥∥∥∥ f
(
|E|2

)
+ f

(
|E∗|2

)∥∥∥∥
ber

)
.

In particular, if p ≥ 1, then

ber4p (E) ≤
1
2

ber2p (|E| |E∗|) +
1
2

∥∥∥∥(1 − λ) |E|
2p

1−λ + λ |E∗|
2p
λ

∥∥∥∥
ber

,

and

ber2p (E) ≤
1
2

berp (|E| |E∗|) +
1
4

∥∥∥|E|2p + |E∗|2p
∥∥∥

ber
. (19)
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Proof. Replacing A = |E∗| and B = |E| in the inequality (10), we get

f
(∣∣∣∣〈|E| k̂ξ, k̂ξ〉 〈

|E∗| k̂ξ, k̂ξ
〉∣∣∣∣2)

≤

f
(∣∣∣∣〈|E| |E∗| k̂ξ, k̂ξ〉∣∣∣∣2) + 〈{

(1 − λ) f
(
|E|

2
1−λ

)
+ λ f

(
|E∗|

2
λ

)}
k̂ξ, k̂ξ

〉
2

.

Since f is increasing, it follows from inequality (7) that

f
(∣∣∣∣〈Êkξ, k̂ξ

〉∣∣∣∣4) ≤ f
(∣∣∣∣〈|E| |E∗| k̂ξ, k̂ξ〉∣∣∣∣2) + 〈{

(1 − λ) f
(
|E|

2
1−λ

)
+ λ f

(
|E∗|

2
λ

)}
k̂ξ, k̂ξ

〉
2

.

and

sup
ξ∈Ω

f
(∣∣∣Ẽ (ξ)

∣∣∣4) ≤ 1
2

sup
ξ∈Ω

f
(∣∣∣˜|E| |E∗| (ξ)∣∣∣2)

+
1
2

sup
ξ∈Ω

〈{
(1 − λ) f

(
|E|

2
1−λ

)
+ λ f

(
|E∗|

2
λ

)}
k̂ξ, k̂ξ

〉
.

which is equivalent to

f
(
ber4 (E)

)
≤

1
2

f
(
ber2 (|E| |E∗|)

)
+

1
2

∥∥∥∥(1 − λ) f
(
|E|

2
1−λ

)
+ λ f

(
|E∗|

2
λ

)∥∥∥∥
ber
,

and completes the proof of the first inequality of the theorem. By using (11) inequality, the second inequality
follows similarly way. The other two inequalities follow by letting f (t) = tp, p ≥ 1.

The following result will be needed for further investigation.

Proposition 2.12. If A ∈ B (H (Ω)), then for any p ≥ 1 and 0 ≤ λ ≤ 1,

ber2p (|A| |A∗|) ≤
∥∥∥∥(1 − λ) |A|

2p
1−λ + λ |A∗|

2p
λ

∥∥∥∥
ber
,

and

berp (|A| |A∗|) ≤
1
2

∥∥∥|A|2p + |A∗|2p
∥∥∥

ber
. (20)

Proof. Let k̂ξ ∈ H be a normalized reproducing kernel. We have

∣∣∣∣〈|A| |A∗| k̂ξ, k̂ξ〉∣∣∣∣2p
=

∣∣∣∣〈|A∗| k̂ξ, |A| k̂ξ〉∣∣∣∣2p

≤

∥∥∥∥|A∗| k̂ξ∥∥∥∥2p ∥∥∥∥|A| k̂ξ∥∥∥∥2p

(by the Cauchy-Schwarz inequality)
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≤

〈
|A| k̂ξ, |A| k̂ξ

〉p 〈
|A∗| k̂ξ, |A∗| k̂ξ

〉p

≤

〈
|A|2 k̂ξ, k̂ξ

〉p 〈
|A∗|2 k̂ξ, k̂ξ

〉p

≤

〈
|A|2p k̂ξ, k̂ξ

〉 〈
|A∗|2p k̂ξ, k̂ξ

〉
(by the inequality (6))

≤

〈(
|A|

2p
1−λ

)1−λ
k̂ξ, k̂ξ

〉 〈(
|A∗|

2p
λ

)λ
k̂ξ, k̂ξ

〉
≤

〈(
|A|

2p
1−λ

)
k̂ξ, k̂ξ

〉1−λ 〈(
|A∗|

2p
λ

)
k̂ξ, k̂ξ

〉λ
(by the inequality (4))

≤ (1 − λ)
〈
|A|

2p
1−λ k̂ξ, k̂ξ

〉
+ λ

〈
|A∗|

2p
λ k̂ξ, k̂ξ

〉
(by the inequality (5))

≤

〈(
(1 − λ) |A|

2p
1−λ + λ |A∗|

2p
λ

)
k̂ξ, k̂ξ

〉
.

By taking the supremum over ξ ∈ Ω in the above inequality, we have

sup
ξ∈Ω

∣∣∣ ˜|A| |A∗| (ξ)∣∣∣2p
≤ sup
ξ∈Ω

〈(
(1 − λ) |A|

2p
1−λ + λ |A∗|

2p
λ

)
k̂ξ, k̂ξ

〉
which clearly implies that

ber2p (|A| |A∗|) ≤
∥∥∥∥(1 − λ) |A|

2p
1−λ + λ |A∗|

2p
λ

∥∥∥∥
ber
. (21)

Similar arguments implies∣∣∣ ˜|A| |A∗| (ξ)∣∣∣p ≤ 1
2

〈(
|A|2p + |A∗|2p

)
k̂ξ, k̂ξ

〉
,

for any ξ ∈ Ω. By taking supremum over λ ∈ Ω, we have

berp (|A| |A∗|) ≤
1
2

∥∥∥|A|2p + |A∗|2p
∥∥∥

ber
.

Hence, we get the desired inequality (20).

Remark 2.13. By combining inequalities (19) and (20), we infer that

ber2p (A) ≤
1
2

berp (|A| |A∗|) +
1
4

∥∥∥|A|2p + |A∗|2p
∥∥∥

ber
≤

1
2

∥∥∥|A|2p + |A∗|2p
∥∥∥

ber
. (22)

The inequalities (22) provide a refinement of the inequality (3) (also, [24, Theorem 1]).
Now we are in a position to present our refined Berezin number inequality.

Theorem 2.14. If A ∈ B (H (Ω)), then

ber (A) ≤
1
2

(∥∥∥A2
∥∥∥1/2

ber
+ ∥A∥ber

)
. (23)

Proof. By the inequality (19) and by the AM-GM inequality, we have∣∣∣∣〈Âkξ, k̂ξ
〉∣∣∣∣ ≤ 〈

|A| k̂ξ, k̂ξ
〉1/2 〈

|A∗| k̂ξ, k̂ξ
〉1/2

≤
1
2

(〈
|A| k̂ξ, k̂ξ

〉
+

〈
|A∗| k̂ξ, k̂ξ

〉)
≤

1
2

〈
(|A| + |A∗|) k̂ξ, k̂ξ

〉
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for every ξ ∈ Ω. Thus

ber (A) = sup
ξ∈Ω

∣∣∣∣Ã(λ)
∣∣∣∣ = sup

ξ∈Ω

∣∣∣∣〈Âkξ, k̂ξ
〉∣∣∣∣ (24)

≤
1
2

sup
ξ∈Ω

〈
(|A| + |A∗|) k̂ξ, k̂ξ

〉
≤

1
2
∥|A| + |A∗|∥ber .

Applying Lemmas 2.4 and 2.5 to the positive operators |A| and |A∗| ,and using the facts that ∥|A|∥ = ∥|A∗|∥ =
∥A∥ and ∥|A| |A∗|∥ =

∥∥∥A2
∥∥∥ ,we have

∥|A| + |A∗|∥ber ≤
∥∥∥A2

∥∥∥1/2
+ ∥A∥ber . (25)

The desired inequality (23) now follows from (24) and (25).

The following result is a consequence of the inequality (23).

Lemma 2.15. If A ∈ B (H (Ω)) is such that ber (A) = ∥A∥ber , then
∥∥∥A2

∥∥∥
ber
= ∥A∥2ber.

Proof. It follows from the inequality (23) that

2ber (A) ≤
∥∥∥A2

∥∥∥1/2

ber
+ ∥A∥ber

for every ξ ∈ Ω. Thus, if ber (A) = ∥A∥ber , then ∥A∥ber ≤
∥∥∥A2

∥∥∥1/2

ber
, and hence ∥A∥2ber ≤

∥∥∥A2
∥∥∥

ber
. Also the

reverse inequality is always true. Thus ∥A∥2ber =
∥∥∥A2

∥∥∥
ber

as required.

The following another result shows that the inequality (19) provides an improvoment of the inequality
(23).

Corollary 2.16. If A ∈ B (H (Ω)), then

ber (A) ≤
1
2

√
2ber (|A| |A∗|) +

∥∥∥|A|2 + |A∗|2∥∥∥
ber
≤

1
2

(∥∥∥A2
∥∥∥1/2

ber
+ ∥A∥ber

)
.

Proof. Let k̂ξ ∈ H be a normalized reproducing kernel. We get

ber (A) ≤
1
2

√
2ber (|A| |A∗|) +

∥∥∥|A|2 + |A∗|2∥∥∥
ber

(by the inequality (19))

≤
1
2

√
2 ∥|A| |A∗|∥ +

∥∥∥|A|2 + |A∗|2∥∥∥
ber

(by the inequality in (1))

≤
1
2

√
2
∥∥∥A2

∥∥∥ + ∥∥∥|A|2 + |A∗|2∥∥∥
ber

≤
1
2

√
2
∥∥∥A2

∥∥∥
ber
+

∥∥∥A2
∥∥∥

ber
+ ∥A∥2ber

(by the inequality (9))

≤
1
2

√
2 ∥A∥ber

∥∥∥A2
∥∥∥1/2

ber
+

∥∥∥A2
∥∥∥

ber
+ ∥A∥2ber

≤
1
2

√(∥∥∥A2
∥∥∥1/2

ber
+ ∥A∥ber

)2

≤
1
2

(∥∥∥A2
∥∥∥1/2

ber
+ ∥A∥ber

)
.

This completes the proof.
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We give the following example which show that ber (A) = max1≤ j≤n

∣∣∣a j j

∣∣∣ for any complex n × n matrix

A =
(
a jk

)n

j,k=1
.

Example 2.17. Let us consider the finite dimensional setting. A =
(
a jk

)n

j,k=1
be a n×n matrix. Letυ = (υ1, ..., υn) ∈ Cn

and X = {1, ...,n} .We can consider Cn as the set of all functions mapping X→ C by υ
(
j
)
= υ j. Letting e j be the jth

standard basis vector for Cn under the standard inner product, we can view Cn as an RKHS with kernel

k
(
i, j

)
=

〈
e j, ei

〉
.

Note that k j = k̂ j for each j = 1, ...,n. We have a j j =
〈
Ae j, e j

〉
. Thus, the Berezin set of A is simply

Ber (A) =
{
a j j : j = 1, ...,n

}
,

which is just the collection of diagonal elements of A. Therefore ber (A) = max1≤ j≤n

∣∣∣a j j

∣∣∣ .
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[24] M. B. Huban, H. Başaran, M. Gürdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct.,

12(3) (2021) 1–12.
[25] M. T. Karaev, Berezin set and Berezin number of operators and their applications, The 8th Workshop on Numerical Ranges and

Numerical Radii (WONRA -06),University of Bremen, July 15-17, p.14, 2006.
[26] M. T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper.

Theory 7 (2013) 983–1018.



M. B. Huban et al. / Filomat 36:7 (2022), 2333–2344 2344

[27] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143 (1997) 337–348.
[28] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory 48 (2002) 95–103.
[29] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia

Math. 158(1) (2003) 11–17.
[30] F. Kittaneh, Norm inequalities for sums and differences of positive operators, Linear Algebra and its Appl. 383 (2004) 85–91.
[31] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1) (2005) 73–80.
[32] S. S. Sahoo, N. Das, D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Advances in

Oper. Theory 5 (2020) 714–727.
[33] S. Saitoh, Y. Sawano, Theory of reproducing kernels and applications, Developments in Mathematics, Springer, Singapore, 44,

2016.
[34] R. Tapdigoglu, New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices 15(3)

(2021) 1031–1043.
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