

Berezin Number Inequalities via Convex Functions

Mualla Birgül Huban ${ }^{\text {a }}$, Hamdullah Başaran ${ }^{\text {b }}$, Mehmet Gürdal ${ }^{\text {b }}$
${ }^{a}$ Isparta University of Applied Sciences, Isparta, Turkey
${ }^{b}$ Department of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey

Abstract

The Berezin symbol \widetilde{A} of an operator A on the reproducing kernel Hilbert space $\mathcal{H}(\Omega)$ over some set Ω with the reproducing kernel k_{ξ} is defined by $\tilde{A}(\xi)=\left\langle A \frac{k_{\xi}}{\left\|k_{\xi}\right\|}, \frac{k_{\xi}}{\left\|k_{\xi}\right\|}\right\rangle, \xi \in \Omega$. The Berezin number of an operator A is defined by $$
\operatorname{ber}(A):=\sup _{\xi \in \Omega}|\widetilde{A}(\xi)| .
$$

We study some problems of operator theory by using this bounded function \widetilde{A}, including treatments of inner product inequalities via convex functions for the Berezin numbers of some operators. We also establish some inequalities involving of the Berezin inequalities.

1. Introduction

Let Ω be a subset of a topological space X such that the boundary $\partial \Omega$ is nonempty. Let \mathcal{H} be an infinitedimensional Hilbert space complex-valued functions defined on Ω. We say that \mathcal{H} is a reproducing kernel Hilbert space if the following two conditions are satisfied :
(i) for any $\xi \in \Omega$, the evaluation functionals $f \rightarrow f(\xi)$ are continuous on \mathcal{H};
(ii) for any $\xi \in \Omega$, there exists $f_{\xi} \in \mathcal{H}$ such that $f_{\xi}(\xi) \neq 0$ (or equivalently, there is no $\xi_{0} \in \Omega$ such that $f\left(\xi_{0}\right)=0$ for every $\left.f \in \mathcal{H}\right)$.

According to the classical Riesz representation theorem, the assumption (i) implies that, for every $\xi \in \Omega$ there exists a unique function $k_{\xi} \in \mathcal{H}$ such that

$$
f(\xi)=\left\langle f, k_{\xi}\right\rangle_{\mathcal{H}}, f \in \mathcal{H}
$$

The function $k_{\xi}(z)$ is called the reproducing kernel of \mathcal{H} at point ξ. It is well known that every reproducing kernel Hilbert space is separable. So, if $\left\{e_{n}(z)\right\}_{n \geq 0}$ is any orthonormal basis of \mathcal{H}, then (see Aronzajn [3])

$$
k_{\xi}(z)=\sum_{n=0}^{\infty} \overline{e_{n}(\xi)} e_{n}(z)
$$

[^0]By virtue of assumption (ii), we surely have $k_{\xi} \neq 0$ and we denote by \widehat{k}_{ξ} the normalized reproducing kernel, that is $\widehat{k}_{\xi}:=\frac{k_{\xi}}{\left\|k_{\xi}\right\|_{\mathcal{H}}}$. Recall that if $\mathcal{B}(\mathcal{H})$ is the Banach algebra of all bounded linear operator on \mathcal{H}, then the Berezin symbol \widetilde{A} of any operator $A \in \mathcal{B}(\mathcal{H})$ is the complex-valued function defined on the Ω by the formula (see, Berezin [8, 9])

$$
\widetilde{A}(\xi):=\left\langle\widehat{A k_{\xi}}, \widehat{k}_{\xi}\right\rangle_{\mathcal{H}}, \xi \in \Omega
$$

The Berezin set of operator A is defined by

$$
\operatorname{Ber}(A)=\left\{\left\langle\widehat{A k}_{\xi}, \widehat{k}_{\xi}\right\rangle: \xi \in \Omega\right\}=\operatorname{Range}(\widehat{A})
$$

and Berezin number ber (A) of operator A is the following number (see [25,26])

$$
\operatorname{ber}(A):=\sup _{\xi \in \Omega}|\widetilde{A}(\xi)|
$$

Since, $|\widetilde{A}(\xi)| \leq\|A\|$, Berezin symbol is a bounded function on Ω. Also, it is trivial by Cauchy-Schwarz inequality that $\operatorname{ber}(A) \leq\|A\|$. If $A=c I$ with $c \neq 0$, then obviously ber $(A)=|c|>\frac{|c|}{2}=\frac{\|A\|}{2}$. But Karaev in [26] showed that in general

$$
\frac{1}{2}\|A\| \leq \operatorname{ber}(A)
$$

is not satisfied for every $A \in \mathcal{B}(\mathcal{H})$.
Berezin set and Berezin number of operators are new numerical characteristics of operators on the RKHS which are introduced by Karaev in [25]. For the basic properties and facts on these new concepts, see [5-7, 26, 32, 34].

It is well-known that

$$
\begin{equation*}
\operatorname{ber}(A) \leq w(A) \leq\|A\| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\|A\| \leq w(A) \leq\|A\| \tag{2}
\end{equation*}
$$

for any $A \in \mathcal{B}(\mathcal{H})$. The inequalities in (2) are sharp. The first inequality becomes an equality if $A^{2}=0$. The second inequality becomes an equality if A normal. For basic properties of the numerical radius, we refer to [20] and [21]. The inequalities in (2) have been improved considerably by the second author in [29] and [31]. It has been shown in [29] and [31], respectively, that if $A \in \mathcal{B}(\mathcal{H})$, then

$$
\begin{equation*}
w(A) \leq \frac{1}{2}\left\||A|+\left|A^{*} \|\right| \leq \frac{1}{2}\left(\|A\|+\left\|A^{2}\right\|^{1 / 2}\right)\right. \tag{3}
\end{equation*}
$$

where $|A|=\left(A^{*} A\right)^{1 / 2}$ is the absolute value of A, and

$$
\frac{1}{4}\left\|A^{*} A+A A^{*}\right\| \leq w^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\|
$$

The inequalities in (3), which refine the second inequality in (2), have been utilized in [29] to derive an estimate for the numerical radius of the Frobenius companion matrix (also see [1, 2, 12, 23]).

The purpose of this paper is to establish some inequalities involving of the Berezin number inequalities of operators by using convex function \tilde{A}. Usual operator norm inequalities and a related Berezin number inequality of operators are also presented. Related results are contained in [15-19, 22, 35-37].

2. Berezin Number Inequalities

2.1. Lemmas

In order to prove our results, we need the following sequence of lemmas.
Recall that an operator $A \in \mathcal{B}(\mathcal{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$. In this case we will write $A \geq 0$. The classical operator Jensen inequality for the positive operators $A \in \mathcal{B}(\mathcal{H})$ is

$$
\begin{equation*}
\langle A x, x\rangle^{r} \leq(\geq)\left\langle A^{r} x, x\right\rangle, r \geq 1 \quad(0 \leq r \leq 1) \tag{4}
\end{equation*}
$$

for any unit vector $x \in \mathcal{H}$.
Lemma 2.1. We have the Power-Mean inequality, that reads

$$
\begin{equation*}
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b \leq\left(\lambda a^{p}+(1-\lambda) b^{p}\right)^{\frac{1}{p}} \tag{5}
\end{equation*}
$$

for $a, b \geq 0,0 \leq \lambda \leq 1$, and $p \geq 1$.
The following inequality is the spectral theorem for positive operators and Jensen inequality (see [14]) which states that if f is a convex function on an interval containing the spectrum of A, then

$$
\begin{equation*}
f(\langle A x, x\rangle) \leq\langle f(A) x, x\rangle \tag{6}
\end{equation*}
$$

which A is a positive operators in $\mathcal{B}(\mathcal{H})$ and $x \in \mathcal{H}$ is an unit vector. If f is concave, then (6) holds in the reverse direction.

The mixed Schwarz inequality was introduced in [21], as follows:
Lemma 2.2. Let $A \in \mathcal{B}(\mathcal{H})$ and let $x \in H$ be a unit vector. Then

$$
\begin{equation*}
|\langle A x, x\rangle|^{2} \leq\langle | A|x, x\rangle\langle | A^{*}|x, x\rangle \tag{7}
\end{equation*}
$$

Another inequality, which can be found by Aujla and Silva [4], gives a norm inequality involving convex function of positive operator which assert

$$
\begin{equation*}
\left\|f\left(\frac{A+B}{2}\right)\right\| \leq\left\|\frac{f(A)+f(B)}{2}\right\| \tag{8}
\end{equation*}
$$

which f be a non-negative nondecreasing convex function on $[0, \infty)$ and $A, B \in \mathcal{B}(\mathcal{H})$ be positive operators.
In 2004, Kittaneh [30] has shown follow inequality and this follow inequality is considered as a refined triangle inequality for positive operators.
Lemma 2.3. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
\left\||A|^{2}+\left|A^{*}\right|^{2}\right\| \leq\left\|A^{2}\right\|+\|A\|^{2} . \tag{9}
\end{equation*}
$$

The following lemma contains a special case of a more general norm inequality that is equivalent to some Löwner-Heinz type inequalities (see [13, 27]).

Lemma 2.4. If $A, B \in \mathcal{B}(\mathcal{H})$ are positive operators, then

$$
\left\|A^{1 / 2} B^{1 / 2}\right\| \leq\|A B\|^{1 / 2}
$$

The last lemma contains a recent norm inequality for sums of positive operators that is sharper than the triangle inequality (see [28]).

Lemma 2.5. If $A, B \in \mathcal{B}(\mathcal{H})$ are positive operators, then

$$
\|A+B\| \leq \frac{1}{2}(\|A\|+\|B\|)+\sqrt{(\|A\|-\|B\|)^{2}+4\left\|A^{1 / 2} B^{1 / 2}\right\|^{2}}
$$

2.2. Main Results

Now, we are ready to state the main results of this section. Our first main result can be stated as follows.
Theorem 2.6. If $A, B \in \mathcal{B}(\mathcal{H}(\Omega))$ and $f:[0, \infty) \rightarrow \mathbb{R}$ is an increasing convex function, then

$$
\begin{equation*}
f\left(|\widetilde{A}(\xi) \widetilde{B}(\xi)|^{2}\right) \leq \frac{1}{2} f\left(|\widetilde{B A}(\xi)|^{2}\right)+\frac{1}{2}\left\langle\left(\lambda f\left(|A|^{\frac{2}{1}}\right)+(1-\lambda) f\left(\left|B^{*}\right| \frac{2^{2}-\lambda}{-1}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle \tag{10}
\end{equation*}
$$

for $0 \leq \lambda \leq 1$. Further,

$$
\begin{equation*}
f(|\widetilde{A}(\xi) \widetilde{B}(\xi)|) \leq \frac{1}{2} f(|\widetilde{B A}(\xi)|)+\frac{1}{4}\left\langle\left(f\left(|A|^{2}\right)+f\left(\left|B^{*}\right|^{2}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle \tag{11}
\end{equation*}
$$

Proof. Let \widehat{k}_{ξ} be normalized reproducing kernel. The following refinement of the Cauchy-Schwarz inequality proved by Buzano [11]:

$$
\begin{equation*}
\|x\|\|y\| \geq|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle|+|\langle x, e\rangle\langle e, y\rangle| \geq|\langle x, y\rangle| \tag{12}
\end{equation*}
$$

for all $x, y, e \in \mathcal{H}$ and $\|e\|=1$. From inequality (12), we conclude that

$$
\frac{1}{2}(\|x\|\|y\|+|\langle x, y\rangle|) \geq|\langle x, e\rangle\langle e, y\rangle|
$$

Putting $e=\widehat{k}_{\xi}, x=A \widehat{k}_{\xi}$ and $y=B^{*} \widehat{k}_{\xi}$ in the above, we have

Hence, by the function $t \rightarrow t^{2}$ is convex,
(by the inequality (4))

$$
\left.\left.\leq \frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left.\lambda\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.(1-\lambda)\langle | B^{*}\right|^{\frac{2}{1-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)
$$

(by the inequality (5)).
Hence,

$$
\begin{equation*}
\left.\left.\left|\left\langle A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\widehat{B k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2} \leq \frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left.\lambda\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.(1-\lambda)\langle | B^{*}\right|^{\frac{2}{1-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right) \tag{14}
\end{equation*}
$$

$$
\begin{aligned}
& \left|\left\langle A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\widehat{B \widehat{k}_{\xi}}, \widehat{k}_{\xi}\right\rangle\right|^{2} \leq\left(\frac{\left|\left\langle B A \widehat{k_{\xi}}, \widehat{k}_{\xi}\right\rangle\right|+\left\|A \widehat{k_{\xi}}\right\|\left\|B^{*} \widehat{k}_{\xi}\right\|}{2}\right)^{2} \\
& \leq \frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left\|A \widehat{k}_{\xi}\right\|^{2}\left\|B^{*} \widehat{k}_{\xi}\right\|^{2}\right) \\
& =\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left\langle\widehat{A k_{\xi}}, \widehat{A k_{\xi}}\right\rangle\left\langle B^{*} \widehat{k}_{\xi}, B^{\widehat{k}} \widehat{k}_{\xi}\right\rangle\right) \\
& \left.\left.=\left.\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\langle | B^{*}\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right) \\
& =\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left\langle\left(|A|^{\frac{2}{\lambda}}\right)^{\lambda} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\left(\left.\left|B^{*}\right|\right|^{\frac{2}{-\lambda}}\right)^{1-\lambda} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right) \\
& \left.\left.\leq\left.\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left.\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{\lambda}\langle | B^{*}\right|^{\frac{2}{-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{1-\lambda}\right)
\end{aligned}
$$

Now since f is increasing and convex, (14) implies

$$
\begin{aligned}
& f\left(\left|\left\langle A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\widehat{B k_{\xi}}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right) \\
& \left.\leq f\left(\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}+\left.\lambda\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+(1-\lambda)\langle | B^{*}\left|\frac{2}{1^{1-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)\right) \\
& \leq \frac{\left.\left.f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+f\left(\left.\lambda\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.(1-\lambda)\langle | B^{*}\right|^{\frac{2}{1-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)}{2} \\
& \leq \frac{\left.f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+\lambda f\left(\left.\langle | A\right|^{\frac{2}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)+(1-\lambda) f\left(\langle | B^{*}\left|\frac{2}{1-\lambda} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)}{2} \\
& \leq \frac{f\left(\left|\left\langle B A \widehat{k_{\xi}}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+\lambda\left\langle f\left(|A|^{\frac{2}{\lambda}}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+(1-\lambda)\left\langle f\left(\left|B^{*}\right|^{\frac{2}{1-\lambda}}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}
\end{aligned}
$$

(by inequality (6))

$$
\leq \frac{f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+\left\langle\left(\lambda f\left(|A|^{\frac{2}{\lambda}}\right)+(1-\lambda) f\left(\left|B^{*}\right|^{\frac{2}{1-\lambda}}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}
$$

which is equivalent to

$$
f\left(|\widetilde{A}(\xi) \widetilde{B}(\xi)|^{2}\right) \leq \frac{1}{2} f\left(|\widetilde{B A}(\xi)|^{2}\right)+\frac{1}{2}\left\langle\left(\lambda f\left(|A|^{\frac{2}{\lambda}}\right)+\frac{1}{2}(1-\lambda) f\left(\left|B^{*}\right|^{\frac{2}{1-\lambda}}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
$$

On the other hand, from (13), we get

$$
\begin{aligned}
\left|\left\langle A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\widehat{B k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right| & \leq \frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|+\left\langle\widehat{A k_{\xi}}, \widehat{A k_{\xi}}\right\rangle^{\frac{1}{2}}\left\langle B^{*} \widehat{k}_{\xi}, B^{*} \widehat{k}_{\xi}\right\rangle^{\frac{1}{2}}\right) \\
& \left.\left.=\left.\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|+\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{\frac{1}{2}}\langle | B^{*}\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{\frac{1}{2}}\right) \\
& \leq \frac{1}{2}\left(|\widehat{B A}(\xi)|+\frac{\left.\left.\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.\langle | B^{*}\right|^{*} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}\right)
\end{aligned}
$$

(by the AM-GM inequality).
Again, since f is increasing and convex, we obtain

$$
\begin{aligned}
& f\left(\left|\left\langle\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\widehat{B k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|\right) \\
& \leq f\left(\frac{1}{2}\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|+\frac{\left.\left.\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.\langle | B^{*}\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}\right)\right) \\
& \leq \frac{1}{2}\left(f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|\right)+f\left(\frac{\left.\left.\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.\langle | B^{*}\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}\right)\right) \\
& \leq \frac{1}{2}\left(f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|\right)+\frac{\left\langle f\left(|A|^{2}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left\langle f\left(\left|B^{*}\right|^{2}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2}\right) \\
& =\frac{1}{2} f\left(\left|\left\langle B A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|\right)+\frac{1}{4}\left\langle\left(f\left(|A|^{2}\right)+f\left(\left|B^{*}\right|^{2}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
\end{aligned}
$$

and

$$
f(|\widetilde{A}(\xi) \widetilde{B}(\xi)|) \leq \frac{1}{2} f(|\widetilde{B A}(\xi)|)+\frac{1}{4}\left\langle\left(f\left(|A|^{2}\right)+f\left(\left|B^{*}\right|^{2}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
$$

We obtain the desired inequality.
Noting that the function $f(t)=t^{p}, p \geq 1$ satisfes the conditions in Theorem 2.6, we obtain the following particular.
Corollary 2.7. Let $A, B \in \mathcal{B}(\mathcal{H}(\Omega))$. Then for any $p \geq 1$ and $0 \leq \lambda \leq 1$,

$$
|\widetilde{A}(\xi) \widetilde{B}(\xi)|^{2 p} \leq \frac{1}{2}|\widetilde{B A}(\xi)|^{2 p}+\frac{1}{2}\left\langle\left(\lambda|A|^{2 p}+(1-\lambda)\left|B^{2 p}\right| \frac{2 p}{1-\lambda}\right) \widehat{k_{\xi}}, \widehat{k_{\xi}}\right\rangle,
$$

and

$$
|\widetilde{A}(\xi) \widetilde{B}(\xi)|^{p} \leq \frac{1}{2}|\widetilde{B A}(\xi)|^{p}+\frac{1}{4}\left\langle\left(|A|^{2 p}+\left|B^{*}\right|^{2 p}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
$$

The first application of Theorem 2.6 and Corollary 2.7 is the following ber-norm and Berezin number inequality for the product of two operators.

Corollary 2.8. If $A, B \in \mathcal{B}(\mathcal{H}(\Omega))$ and $f:[0, \infty) \rightarrow \mathbb{R}$ is an increasing convex function, then

$$
f\left(\operatorname{ber}^{2}\left(B^{*} A\right)\right) \leq \frac{1}{2} f\left(\operatorname{ber}\left(|B|^{2}|A|^{2}\right)\right)+\frac{1}{4}\left\|f\left(|A|^{4}\right)+f\left(|B|^{4}\right)\right\|_{\text {ber }}
$$

In particular, if $p \geq 1$, then

$$
\begin{equation*}
\operatorname{ber}^{2 p}\left(B^{*} A\right) \leq \frac{1}{2} \operatorname{ber}^{p}\left(|B|^{2}|A|^{2}\right)+\frac{1}{4}\left\||A|^{4 p}+|B|^{4 p}\right\|_{\text {ber }} \tag{15}
\end{equation*}
$$

Proof. Replacing A and B by $|A|^{2}$ and $|B|^{2}$ respectively Theorem 2.6 , then the inequality (11) reduces to

$$
\begin{align*}
\left.\left.\left.f\left(|\langle | A|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\langle | B\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle \mid\right) & \left.\left.\leq \frac{1}{2} f\left(|\langle | B|^{2}|A|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle \right\rvert\,\right) \\
& +\frac{1}{4}\left\langle\left(f\left(|A|^{4}\right)+f\left(\left|B^{*}\right|^{4}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle . \tag{16}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\left|\left\langle B^{*} A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2} & =\left|\left\langle\widehat{A k_{\xi}}, \widehat{B k_{\xi}}\right\rangle\right|^{2} \\
& \leq\left\|A \widehat{k}_{\xi}\right\|^{2}\left\|\widehat{B \widehat{k}_{\xi}}\right\|^{2}
\end{aligned}
$$

(by the Cauchy-Schwarz inequality)

$$
\left.\left.=\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left.\langle | B\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
$$

Since f is increasing, we get

$$
\left.\left.f\left(\left|\left\langle B^{*} A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right) \leq\left. f\left(\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\langle | B\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right)
$$

and this together with (16) imply

$$
f\left(\left|\widetilde{B^{*} A}(\xi)\right|^{2}\right) \leq \frac{1}{2} f\left(| | \widetilde{\left.B\right|^{2}|A|^{2}}(\xi) \mid\right)+\frac{1}{4}\left\langle\left(f\left(|A|^{4}\right)+f\left(\left|B^{*}\right|^{4}\right)\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
$$

By taking supremum over $\xi \in \Omega$, we have

$$
f\left(\operatorname{ber}^{2}\left(B^{*} A\right)\right) \leq \frac{1}{2} f\left(\operatorname{ber}\left(|B|^{2}|A|^{2}\right)\right)+\frac{1}{4}\left\|f\left(|A|^{4}\right)+f\left(|B|^{4}\right)\right\|_{\text {ber }}
$$

Consider the function $f(t)=t^{p}, p \geq 1$, then we get the second inequality. This completes the proof.

Remark 2.9. Since for $p=1$ and $A=B$, we get on both sides of (15) the same quantity $\|A\|_{\text {ber }}^{4}$.
Corollary 2.10. If $A, B \in \mathcal{B}(\mathcal{H}(\Omega))$ then

$$
\operatorname{ber}\left(B^{*} A\right) \leq \frac{1}{2}\left\||A|^{2}+|B|^{2}\right\|
$$

and

$$
\begin{equation*}
\operatorname{ber}^{2 p}\left(B^{*} A\right) \leq \frac{1}{2}\left\||A|^{4 p}+|B|^{4 p}\right\|, p \geq 1 \tag{17}
\end{equation*}
$$

Proof. We recall the following arithmetic-geometric mean inequality obtained in [10]

$$
\begin{equation*}
\left\|B^{*} A\right\| \leq \frac{1}{4}\left\|(|A|+|B|)^{2}\right\| \tag{18}
\end{equation*}
$$

Hence, by the inequality (1),

$$
\begin{aligned}
\operatorname{ber}\left(B^{*} A\right) & \leq\left\|B^{*} A\right\| \leq \frac{1}{4}\left|\|A|+| B\| \|^{2}(\text { by }(18))\right. \\
& =\left\|\left(\frac{|A|+|B|}{2}\right)^{2}\right\| \\
& \leq \frac{1}{2}\left\||A|^{2}+|B|^{2}\right\|(\text { by the inequality }(8))
\end{aligned}
$$

Notice that

$$
\operatorname{ber}^{p}\left(|B|^{2}|A|^{2}\right) \leq \frac{1}{2}\left\||A|^{4 p}+|B|^{4 p}\right\| .
$$

Also Corollary 2.8 implies that

$$
\begin{aligned}
\operatorname{ber}^{2 p}\left(B^{*} A\right) & \leq \frac{1}{2} \operatorname{ber}^{p}\left(|A|^{2}|B|^{2}\right)+\frac{1}{4}\left\||A|^{4 p}+|B|^{4 p}\right\| \\
& \leq \frac{1}{2}\left\||A|^{4 p}+|B|^{4 p}\right\|
\end{aligned}
$$

explaining why Corollary 2.8 provide a refinement of the inequality (17). Further, the first inequality in Corollary 2.8 provides a generalization of (17).

Now Theorem 2.6 is utilized to obtain the following one-operator Berezin number inequality.
Corollary 2.11. If $E \in \mathcal{B}(\mathcal{H}(\Omega))$ and $f:[0, \infty) \rightarrow \mathbb{R}$ is an increasing convex function, then for $0 \leq \lambda \leq 1$,

$$
f\left(\operatorname{ber}^{4}(E)\right) \leq \frac{1}{2} f\left(\operatorname{ber}^{2}\left(|E|\left|E^{*}\right|\right)\right)+\frac{1}{2}\left\|(1-\lambda) f\left(|E|^{\frac{2}{1-\lambda}}\right)+\lambda f\left(\left|E^{*}\right|^{\frac{2}{\lambda}}\right)\right\|_{\mathrm{ber}}
$$

and

$$
f\left(\operatorname{ber}^{2}(E)\right) \leq \frac{1}{2}\left(f\left(\operatorname{ber}\left(|E|\left|E^{*}\right|\right)\right)+\frac{1}{2}\left\|f\left(|E|^{2}\right)+f\left(\left|E^{*}\right|^{2}\right)\right\|_{\text {ber }}\right)
$$

In particular, if $p \geq 1$, then

$$
\operatorname{ber}^{4 p}(E) \leq \frac{1}{2} \operatorname{ber}^{2 p}\left(|E|\left|E^{*}\right|\right)+\frac{1}{2}\left\|(1-\lambda)|E|^{\frac{2 p}{1-\lambda}}+\lambda\left|E^{*}\right|^{\frac{2 p}{\lambda}}\right\|_{\text {ber }}
$$

and

$$
\begin{equation*}
\operatorname{ber}^{2 p}(E) \leq \frac{1}{2} \operatorname{ber}^{p}\left(|E|\left|E^{*}\right|\right)+\frac{1}{4}\left\||E|^{2 p}+\left|E^{*}\right|^{2 p}\right\|_{\mathrm{ber}} \tag{19}
\end{equation*}
$$

Proof. Replacing $A=\left|E^{*}\right|$ and $B=|E|$ in the inequality (10), we get

$$
\begin{aligned}
& \left.\left.f\left(|\langle | E| \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\langle | E^{*}\left|\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right) \\
& \leq \frac{\left.\left.f\left(|\langle | E|\left|E^{*}\right| \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+\left\langle\left\{(1-\lambda) f\left(|E|^{\frac{2}{1-\lambda}}\right)+\lambda f\left(\left|E^{*}\right|^{\frac{2}{\lambda}}\right)\right\} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2} .
\end{aligned}
$$

Since f is increasing, it follows from inequality (7) that

$$
f\left(\left|\left\langle\widehat{E k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{4}\right) \leq \frac{\left.\left.f\left(|\langle | E|\left|E^{*}\right| \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right|^{2}\right)+\left\langle\left\{(1-\lambda) f\left(|E|^{\frac{2}{1-\lambda}}\right)+\lambda f\left(\left|E^{*}\right|^{\frac{2}{\lambda}}\right)\right\} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle}{2} .
$$

and

$$
\begin{aligned}
\sup _{\xi \in \Omega} f\left(|\widetilde{E}(\xi)|^{4}\right) & \leq \frac{1}{2} \sup _{\xi \in \Omega} f\left(\left|\overparen{E| | E^{*} \mid}(\xi)\right|^{2}\right) \\
& +\frac{1}{2} \sup _{\xi \in \Omega}\left\langle\left\{(1-\lambda) f\left(|E|^{\frac{2}{1-\lambda}}\right)+\lambda f\left(\left|E^{*}\right| \frac{2}{\lambda}\right)\right\} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
\end{aligned}
$$

which is equivalent to

$$
f\left(\operatorname{ber}^{4}(E)\right) \leq \frac{1}{2} f\left(\operatorname{ber}^{2}\left(|E|\left|E^{*}\right|\right)\right)+\frac{1}{2}\left\|(1-\lambda) f\left(|E|^{\frac{2}{1-\lambda}}\right)+\lambda f\left(\left|E^{*}\right|^{\frac{2}{x}}\right)\right\|_{b e r}
$$

and completes the proof of the first inequality of the theorem. By using (11) inequality, the second inequality follows similarly way. The other two inequalities follow by letting $f(t)=t^{p}, p \geq 1$.

The following result will be needed for further investigation.

Proposition 2.12. If $A \in \mathcal{B}(\mathcal{H}(\Omega))$, then for any $p \geq 1$ and $0 \leq \lambda \leq 1$,

$$
\operatorname{ber}^{2 p}\left(|A|\left|A^{*}\right|\right) \leq\left\|(1-\lambda)|A|^{\frac{2 p}{1-\lambda}}+\lambda\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right\|_{\text {ber }},
$$

and

$$
\begin{equation*}
\operatorname{ber}^{p}\left(|A|\left|A^{*}\right|\right) \leq \frac{1}{2}\left\||A|^{2 p}+\left|A^{*}\right|^{2 p}\right\|_{\text {ber }} \tag{20}
\end{equation*}
$$

Proof. Let $\widehat{k}_{\xi} \in \mathcal{H}$ be a normalized reproducing kernel. We have

$$
\begin{aligned}
\left.|\langle | A|\left|A^{*}\right| \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left.\right|^{2 p} & \left.=\left|\langle | A^{*}\right| \widehat{k}_{\xi},|A| \widehat{k}_{\xi}\right\rangle\left.\right|^{2 p} \\
& \leq\left\|\left|A^{*}\right| \widehat{k}_{\xi}\right\|^{2 p}\left\||A| \widehat{k}_{\xi}\right\|^{2 p}
\end{aligned}
$$

(by the Cauchy-Schwarz inequality)

$$
\begin{aligned}
& \leq\langle | A\left|\widehat{k}_{\xi},|A| \widehat{k}_{\xi}\right\rangle^{p}\langle | A^{*}\left|\widehat{k}_{\xi},\left|A^{*}\right| \widehat{k}_{\xi}\right\rangle^{p} \\
& \left.\left.\leq\left.\langle | A\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left.^{p}\langle | A^{*}\right|^{2} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{p} \\
& \left.\left.\leq\left.\langle | A\right|^{2 p} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left.\langle | A^{*}\right|^{2 p} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
\end{aligned}
$$

(by the inequality (6))

$$
\begin{aligned}
& \leq\left\langle\left(|A|^{\frac{2 p}{1-\lambda}}\right)^{1-\lambda} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\left\langle\left(\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right)^{\lambda} \widehat{k_{\xi}}, \widehat{k}_{\xi}\right\rangle \\
& \leq\left\langle\left(|A|^{\frac{2 p}{1-\lambda}}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{1-\lambda}\left\langle\left(\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right)^{-} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{\lambda}
\end{aligned}
$$

(by the inequality (4))

$$
\left.\left.\leq\left.(1-\lambda)\langle | A\right|^{\frac{2 p}{1-\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\left.\lambda\langle | A^{*}\right|^{\frac{2 p}{\lambda}} \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
$$

(by the inequality (5))

$$
\leq\left\langle\left((1-\lambda)|A|^{\frac{2 p}{1-\lambda}}+\lambda\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle .
$$

By taking the supremum over $\xi \in \Omega$ in the above inequality, we have

$$
\sup _{\xi \in \Omega}| | \overparen{A \| \mid A^{*}}|(\xi)|^{2 p} \leq \sup _{\xi \in \Omega}\left\langle\left((1-\lambda)|A|^{\frac{2 p}{1-\lambda}}+\lambda\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
$$

which clearly implies that

$$
\begin{equation*}
\operatorname{ber}^{2 p}\left(|A|\left|A^{*}\right|\right) \leq\left\|(1-\lambda)|A|^{\frac{2 p}{1-\lambda}}+\lambda\left|A^{*}\right|^{\frac{2 p}{\lambda}}\right\|_{\text {ber }} . \tag{21}
\end{equation*}
$$

Similar arguments implies

$$
\left.\left|\overparen{A\left|\mid A^{*}\right.}\right|(\xi)\right|^{p} \leq \frac{1}{2}\left\langle\left(|A|^{2 p}+\left|A^{*}\right|^{2 p}\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
$$

for any $\xi \in \Omega$. By taking supremum over $\lambda \in \Omega$, we have

$$
\operatorname{ber}^{p}\left(|A|\left|A^{*}\right|\right) \leq \frac{1}{2}\left\||A|^{2 p}+\left|A^{*}\right|^{2 p}\right\|_{\text {ber }}
$$

Hence, we get the desired inequality (20).
Remark 2.13. By combining inequalities (19) and (20), we infer that

$$
\begin{equation*}
\operatorname{ber}^{2 p}(A) \leq \frac{1}{2} \operatorname{ber}^{p}\left(|A|\left|A^{*}\right|\right)+\frac{1}{4}\left\||A|^{2 p}+\left|A^{*}\right|^{2 p}\right\|_{\mathrm{ber}} \leq \frac{1}{2}\left\||A|^{2 p}+\left|A^{*}\right|^{2 p}\right\|_{\mathrm{ber}} \tag{22}
\end{equation*}
$$

The inequalities (22) provide a refinement of the inequality (3) (also, [24, Theorem 1]). Now we are in a position to present our refined Berezin number inequality.

Theorem 2.14. If $A \in \mathcal{B}(\mathcal{H}(\Omega))$, then

$$
\begin{equation*}
\operatorname{ber}(A) \leq \frac{1}{2}\left(\left\|A^{2}\right\|_{\text {ber }}^{1 / 2}+\|A\|_{\text {ber }}\right) \tag{23}
\end{equation*}
$$

Proof. By the inequality (19) and by the AM-GM inequality, we have

$$
\begin{aligned}
\left|\left\langle A \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right| & \leq\langle | A\left|\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{1 / 2}\langle | A^{*}\left|\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle^{1 / 2} \\
& \leq \frac{1}{2}\left(\langle | A\left|\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle+\langle | A^{*}\left|\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right) \\
& \leq \frac{1}{2}\left\langle\left(|A|+\left|A^{*}\right|\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle
\end{aligned}
$$

for every $\xi \in \Omega$. Thus

$$
\begin{align*}
\operatorname{ber}(A) & =\sup _{\xi \in \Omega}|\widetilde{A}(\lambda)|=\sup _{\xi \in \Omega}\left|\left\langle\widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle\right| \tag{24}\\
& \leq \frac{1}{2} \sup _{\xi \in \Omega}\left\langle\left(|A|+\left|A^{*}\right|\right) \widehat{k}_{\xi}, \widehat{k}_{\xi}\right\rangle \\
& \leq \frac{1}{2}| ||A|+\left|A^{*}\right| \|_{\mathrm{ber}} .
\end{align*}
$$

Applying Lemmas 2.4 and 2.5 to the positive operators $|A|$ and $\left|A^{*}\right|$, and using the facts that $\left|\left|\left|A \|\left|=\left|\left|\left|A^{*}\right|\right|=\right.\right.\right.\right.\right.$ $\|A\|$ and $\left\||A| \mid A^{*}\right\|\|=\| A^{2} \|$, we have

$$
\begin{equation*}
\left\||A|+\mid A^{*}\right\|_{\text {ber }} \leq\left\|A^{2}\right\|^{1 / 2}+\|A\|_{\text {ber }} \tag{25}
\end{equation*}
$$

The desired inequality (23) now follows from (24) and (25).
The following result is a consequence of the inequality (23).
Lemma 2.15. If $A \in \mathcal{B}(\mathcal{H}(\Omega))$ is such that ber $(A)=\|A\|_{\text {ber }}$, then $\left\|A^{2}\right\|_{\text {ber }}=\|A\|_{\text {ber }}^{2}$.
Proof. It follows from the inequality (23) that

$$
2 \operatorname{ber}(A) \leq\left\|A^{2}\right\|_{\mathrm{ber}}^{1 / 2}+\|A\|_{\mathrm{ber}}
$$

for every $\xi \in \Omega$. Thus, if ber $(A)=\|A\|_{\text {ber }}$, then $\|A\|_{\text {ber }} \leq\left\|A^{2}\right\|_{\text {ber }}^{1 / 2}$, and hence $\|A\|_{\text {ber }}^{2} \leq\left\|A^{2}\right\|_{\text {ber }}$. Also the reverse inequality is always true. Thus $\|A\|_{\text {ber }}^{2}=\left\|A^{2}\right\|_{\text {ber }}$ as required.

The following another result shows that the inequality (19) provides an improvoment of the inequality (23).

Corollary 2.16. If $A \in \mathcal{B}(\mathcal{H}(\Omega))$, then

$$
\operatorname{ber}(A) \leq \frac{1}{2} \sqrt{2 \operatorname{ber}\left(|A|\left|A^{*}\right|\right)+\left\||A|^{2}+\left|A^{*}\right|^{2}\right\|_{\mathrm{ber}}} \leq \frac{1}{2}\left(\left\|A^{2}\right\|_{\mathrm{ber}}^{1 / 2}+\|A\|_{\mathrm{ber}}\right)
$$

Proof. Let $\widehat{k}_{\xi} \in \mathcal{H}$ be a normalized reproducing kernel. We get

$$
\operatorname{ber}(A) \leq \frac{1}{2} \sqrt{2 \operatorname{ber}\left(|A|\left|A^{*}\right|\right)+\left\||A|^{2}+\left|A^{*}\right|^{2}\right\|_{\text {ber }}}
$$

(by the inequality (19))
$\leq \frac{1}{2} \sqrt{2| ||A|\left|A^{*}\right|| |+\left|\left||A|^{2}+\left|A^{*}\right|^{2} \|_{\text {ber }}\right.\right.}$
(by the inequality in (1))

$$
\begin{aligned}
& \leq \frac{1}{2} \sqrt{2\left\|A^{2}\right\|+\left\||A|^{2}+\left|A^{*}\right|^{2}\right\|_{\mathrm{ber}}} \\
& \leq \frac{1}{2} \sqrt{2\left\|A^{2}\right\|_{\mathrm{ber}}+\left\|A^{2}\right\|_{\mathrm{ber}}+\|A\|_{\mathrm{ber}}^{2}}
\end{aligned}
$$

(by the inequality (9))

$$
\begin{aligned}
& \leq \frac{1}{2} \sqrt{2\|A\|_{\mathrm{ber}}\left\|A^{2}\right\|_{\mathrm{ber}}^{1 / 2}+\left\|A^{2}\right\|_{\mathrm{ber}}+\|A\|_{\mathrm{ber}}^{2}} \\
& \leq \frac{1}{2} \sqrt{\left(\left\|A^{2}\right\|_{\mathrm{ber}}^{1 / 2}+\|A\|_{\mathrm{ber}}\right)^{2}} \\
& \leq \frac{1}{2}\left(\left\|A^{2}\right\|_{\mathrm{ber}}^{1 / 2}+\|A\|_{\mathrm{ber}}\right) .
\end{aligned}
$$

This completes the proof.

We give the following example which show that $\operatorname{ber}(A)=\max _{1 \leq j \leq n}\left|a_{j j}\right|$ for any complex $n \times n$ matrix $A=\left(a_{j k}\right)_{j, k=1}^{n}$.

Example 2.17. Let us consider the finite dimensional setting. $A=\left(a_{j k}\right)_{j, k=1}^{n}$ be a $n \times n$ matrix. Let $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ and $X=\{1, \ldots, n\}$. We can consider \mathbb{C}^{n} as the set of all functions mapping $X \rightarrow \mathbb{C}$ by $v(j)=v_{j}$. Letting e_{j} be the j th standard basis vector for \mathbb{C}^{n} under the standard inner product, we can view \mathbb{C}^{n} as an RKHS with kernel

$$
k(i, j)=\left\langle e_{j}, e_{i}\right\rangle
$$

Note that $k_{j}=\widehat{k}_{j}$ for each $j=1, \ldots, n$. We have $a_{j j}=\left\langle A e_{j}, e_{j}\right\rangle$. Thus, the Berezin set of A is simply

$$
\operatorname{Ber}(A)=\left\{a_{j j}: j=1, \ldots, n\right\},
$$

which is just the collection of diagonal elements of A. Therefore ber $(A)=\max _{1 \leq j \leq n}\left|a_{j j}\right|$.
Acknowledgement. The authors are very grateful to the referee for his/her useful remarks.

References

[1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for $n \times n$ operator matrices, Linear Algebra Appl. 468 (2015) 18-26.
[2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45(4) (2015) 1055-1064.
[3] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404.
[4] J. Aujla, F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003) 217-233.
[5] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J. 68(4) (2018) 997-1009.
[6] M. Bakherad, M. T. Garayev, Berezin number inequalities for operators, Concr. Oper. 6(1) (2019) 33-43.
[7] H. Başaran, M. Gürdal, A. N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math. 43(1) (2019) 523-532.
[8] F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izvestiya 6 (1972) 1117-1151.
[9] F. A. Berezin, Quantization, Math. USSR-Izvestiya 8 (1974) 1109-1163.
[10] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000) 203-211.
[11] M. L. Buzano, Generalizzaione della disuguaglianza di Cauchy-Schwarz, Rend. Semin. Mat. Univ. Politech. Torino 31 (1971/73) (1974) 405-409.
[12] S. S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, Springer, Cham, Switzerland, $x+120,2013$.
[13] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1989) 135-137.
[14] T. Furuta, H. Mićić, J. Pečarić, Y. Seo, Mond-Pečarić, Method in Operator Inequalities, Zagreb, Element, 2005.
[15] M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangöz, Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math. 35(1) (2020) 1-20.
[16] M. T. Garayev, M. Gürdal, A. Okudan, Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl. 19(3) (2016) 883-891.
[17] M. T. Garayev, M. Gürdal, S. Saltan, Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems, Positivity 21(4) (2017) 1615-1623.
[18] M. T. Garayev, H. Guedri, M. Gürdal, G. M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra 69(11) (2021) 2059-2077.
[19] M. Garayev, S. Saltan, F. Bouzeffour, B. Aktan, Some inequalities involving Berezin symbols of operator means and related questions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(85) (2020) 1-17.
[20] K. E. Gustafson, D. K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
[21] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
[22] M. Hajmohamadi, R. Lashkaripour, M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra 68(6) (2020) 1218-1229.
[23] Z. Heydarbeygi, M. Sababheh, H. R. Moradi, A convex treatment of numerical radius inequalities, arXiv:2009.07257v1 [math.FA] 15 Sep 2020.
[24] M. B. Huban, H. Başaran, M. Gürdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021) 1-12.
[25] M. T. Karaev, Berezin set and Berezin number of operators and their applications, The 8th Workshop on Numerical Ranges and Numerical Radii (WONRA -06),University of Bremen, July 15-17, p.14, 2006.
[26] M. T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (2013) 983-1018.
[27] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143 (1997) 337-348.
[28] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory 48 (2002) 95-103.
[29] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158(1) (2003) 11-17.
[30] F. Kittaneh, Norm inequalities for sums and differences of positive operators, Linear Algebra and its Appl. 383 (2004) 85-91.
[31] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1) (2005) 73-80.
[32] S. S. Sahoo, N. Das, D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Advances in Oper. Theory 5 (2020) 714-727.
[33] S. Saitoh, Y. Sawano, Theory of reproducing kernels and applications, Developments in Mathematics, Springer, Singapore, 44, 2016.
[34] R. Tapdigoglu, New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices 15(3) (2021) 1031-1043.
[35] U. Yamancı, M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math. 23 (2017) 1531-1537.
[36] U. Yamancı, M. Gürdal, M. T. Garayev, Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat 31 (2017) 5711-5717.
[37] U. Yamancı, R. Tunç, M. Gürdal, Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc. 43 (2020) 2287-2296.

[^0]: 2020 Mathematics Subject Classification. Primary 47A30; Secondary 47A63
 Keywords. Berezin symbol, Berezin number, reproducing kernel Hilbert space, mixed Schwarz inequality
 Received: 18 June 2021; Revised: 12 October 2021; Accepted: 04 November 2021
 Communicated by Fuad Kittaneh
 Email addresses: muallahuban@isparta.edu.tr (Mualla Birgül Huban), 07hamdullahbasaran@gmail.com (Hamdullah Başaran), gurdalmehmet@sdu.edu.tr (Mehmet Gürdal)

