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Abstract. In this work, we prove the existence of infinitely many solutions for a general form of an elliptic
system involving the (p1,- - - , p,)-biharmonic operators via variational methods.

1. Introduction

The investigation of existence of solutions for problems at resonance has drawn the attention of many
authors, (see for example [2—4, 13-16]) as well as the existence of infinity many solutions for elliptic systems

(see[1,6-8,10, 11, 17, 18] and the references therein). Here, we consider the following system with Navier
boundary conditions

—Agiu,- — 0;(x)Apu; = uFy,(x,u1,- -+ ,uy) inQ, )
AM,‘ =U;= 0 on 8Q,

for 1 <i < n. Where Q ¢ RV,N > 2 is a bounded domain with smooth boundary and p > 0 is a real
parameter. For each 1 < i < n,p; > max{1, %}, Ayu = dio(|VulP™>Vu) and ASu = A(|Aul?Au) denote
pi-Laplacian and p;-biharmonic operators, respectively, where 1 : Q — R. Note that for p = 2, the linear
operator A7 = A? = AA is the iterated Laplacian that multiplied with positive constant appears often in
Navier-Stokes equations as being a viscosity coefficient. F : Q) X R" — R is a Carathéodory function, and

besides, F,, is the partial derivative of F with respect to u;,i = 1,--- ,n. Plus that 0;(x) hold the following
condition:

(®) 0; € L*(Q) such that ess inf 6;(x) > 0,1 <i < n.
xeQ)

We are going to prove the existence of infinitely many weak solutions for system (1) under suitable

assumptions on F, whenever the parameter i belongs to appropriate interval. Here we recall the following
theorem [4, 19].
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Theorem 1.1. Let X be a reflexive real Banach space, ®, ¥ : X — R be two Giteaux differentiable functionals such
that @ is strongly continuous, sequentially weakly lower semi-continuous, and coercive, and \V is sequentially weakly
upper-semi-continuous. For every r > infx ®, let

"= inf (SUPyep-1 (oo, F(©)) — W)
4 7’) . uefb}lrz—oo,r) r—= <D(u)

©=Hminfor), 6= liminf o(r).

Then
(a) If x < +oo then, for each i € (0, %), the following alternative holds: either

(al) I, := ® — uWV possesses a global minimum, or

(a2) there is a sequence {u,} of critical points (local minima) of I, such that lim,,_, co ®(u,) = +o0.

(b) If 6 < +oo then, for each u € (0, %), the following alternative holds: either

(b1) there is a global minimum of ® that is a local minimum of I,,, or

(b2) there is a sequence {u,} of pairwise distinct critical points (local minima) of 1, that weakly converges to a global
minimum of @ with

lim ®(u,) = igf O,

n— 400

2. Preliminaries

In this section we prepare some definitions and notations. Throughout this paper Q is an open bounded
subset of RN, N > 2 with smooth boundary. At first we define Carathéodory function on Q x R".

Definition 2.1. We say that f : Q X IR" — R is a Carathéodory function, if
o x — f(x, 71, ,Ty) is measurable for every (t1,--- ,T,) € R".
o (11, ,Tn) = f(x, 71, , Tn) is continuous for a.e. x € Q.

The Sobolev space W'#(Q) is defined by

W' (Q) = {u € L'(Q); [Vul € L (Q)),

and norm in W(Q) is fullip := |ul, + | [Vul |,, where ||, denotes the norm on LP((2) and the vector
0 0

Vu = (—u(x), e, —u(x)) is the gradient of u at x = (x1,--- ,x,). Also, we set
ox1 ox,

Wo? () = (u € WP(Q); uloo = 0),
equipped with the norm [[u]|. := | [Vu] |,. Similarly,
W2P(Q) := {u € LP(Q);[Vul, |Aul € LP(Q)),
equipped with the norm

lullop = fuly + | [Vul |, + |Aul,.
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And we set
WP (Q) = {u € W2P(Q); ulyg = 0)
endowed with the norm |[ul.. := |Aul,. For 1 <i <n, we set
1pi 2,pi
X; = Wo" (@) [ | We" (@),

where by Poincaré inequality:

fu”'dx <é | |Vulidx,
Q Q

X; can be endowed with the norm ||ullx, = |Aul,, where ¢ > 0 is the best possible. Let us point out for the
given 0; € L*(Q) satisfied (®) condition, the following norm is a norm on X; which is equivalent to [|ul|x;:

Il = ( f (AU + 0:()Vu)P)dx)"
Q
More precisely, we have

llullx; < llully, < Edlullx, ()

where ¢, = (1 + ¢0i]e). We let X be the Cartesian product of the n Sobolev spaces X; for 1 <i <n,ie,

i=1

endowed with the norm
n
lall = Y lllly, 1w = Gur,o ) € X.
i=1

We set

max u;(x)|Pi
Ci= max sup %
1si<n . ex\(0) llusilly,

7

that according to the Rellich Kondrachov theorem X; < C(Q), 1 < i < n, is compact and hence C < +oo
(see more details in [5, p.290] and [20, p.286]). Moreover, for any u; € X;,i =1,--- ,n, we have

sup |u;(0)I"" < Clluilly;. 3)
xeQ)

We end up this section by the next definition which is the meaning of weak solution for the problem (1):

Definition 2.2. We say that u = (uy,--- ,u,) € X is a weak solution of the system (1) if
n
| X (2080, + 0,01V Vi)V )
Q%53

— Fu‘ , Ly, Up i d :0,
u fg D a0,

forallv = (vy, -+ ,v,) € X.
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3. Weak solution
In this section, our principal result is presented. We assume that functional I, : X — R is given by
Lt = D) — W (),

forallu = (uq,--- ,u,) € X, where

n

0w = [ Y (e + 6P o, @
i=1 Pt
and
0 = [ Flx ), () 6)
Q

Since X is compactly embedded in C%(Q) X - - - x C%(Q), it is well known that ® and W are well defined and
continuously Gateaux differentiable functionals. Moreover, at the point u = (uy,--- ,u,) € X one has

(D' (u),v) = f Z(|Aui(x)|p’_2Auz‘(x)AUi(x)+Gi(x)|Vui(x)|p i_zvui(x)vvi(x))dx/
Q51
and
\II, ’ = Fu' ’ s Un i d
(W (u),v) fQ D Pl o

forany v = (vy,--- ,v,) € X. By the weakly lower semicontinuity of norm, clearly @ is sequentially weakly
lower semicontinuous. Since W has compact derivative, it follows that WV is sequentially weakly continuous.
From (3), one has

n

1
wpY L
xeQ) i=1 i

n
, 1,
(P < C ), Sl
i=1 7

So, foreachr > 0

O Y=o, r[):={u=(ui, - ,u,) € X: D) <r

n
1
:{uz(ul,u-,un)EX:z ;Iluill<r}
i=1 I

n
1
Clu=(uy, ) €X: Z —[u;(x)P" < Cr,forall x € Q).

i=1

Proposition 3.1. ([12]) The functional ® : X — R is convex and mapping @’ : X — X* is a strictly monotone and
bounded homeomorphism.

Furthermore, @ is coercive, since indeed for u = (uq,--- , u,) we have

n

1 .
D) =) ol

i=1

and when |[u]lx — +o, there exists at least one 7 such that 1 < 7 < n where llu;llx — +o0 and so D(u) — +oo
as ||u|lx — +oo.
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For fixed xg € Q, set R, > Ry > 0 such that B(xg, R;) C QQ, where B(xy, R) denotes the ball with center at
xo and radius R,. Besides, let

VoS mppendp = L )
Define
Ny, = ra+%) (Rg - R? )pi 1 )
" (st Rt N RY-RY

where I' denotes the Gamma function. Now we are ready to state the main result of the paper.
Theorem 3.2. Assume that
(i) F(x, 71, -+ ,Ty) = 0 for every (x, 71, ,T,) € QX [0, +c0)";

(ii) There exist a point xy € QQ and Ry > Ry > 0 such that B(xo, Ry) € Q and set

fQ SUPyr 1< F(x, 71, -+, Tp)dx

A :=liminf

7

0—+00 oP~
L J];(XO,RQ F(X, T1,0 00y Tl’l)dx
B:= limsup m . 9)
Ty, Ty—>+00 21‘1 T
i=1 pi

Then we have A < 1B, where 1 := mini<i<, 1. Then for each

1 11
n 1 \Ps -
(Zricpyn) B A

the problem (1) admits an unbounded sequence of weak solutions.

he M= [ (10)

Proof. To use Theorem 1.1, let ® and W be as in (4) and (5), respectively. And set

(supweq)_l(]_mlr[) \I’(w)) - W(w)

r) = inf ,
() wed1(]—o0,1]) r — O(w)

where w = (wy,--- ,wy). By our assumptions ®(0,0) = 0 and W(0,0) > 0. Therefore, by (6) for every r > 0
and w = (wy, -+ ,w,) € X one has

SUPG-1 (o) ¥
p(r) < ———
p

! sup fF(x w wy,)dx

= - s W1,y
T o@w)<r JaQ ! (11)
1

< - sup F(x,wy, -, wy,)dx.
T \weX: T, Lol <Cr for all xeQ) YO

i=1 p;
Let {0k} be a real sequence of positive numbers such that limy_, ;. 0x = +00 and

fQ Supﬂ'ﬂ [Til<oy Fx,t1,--- a)dx

s
k

lim

k—+00 o

=A < +oo0. (12)
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And define
o 2
o= (—2— )"
Y1 (Cpi)ri

Letw = (wy,- -+ ,w,) € ®Y(] — oo, ¢[), from (6), one has

n

1
Y~ < Cry, forall x € Q.

i=1

Then
wi(x)| < (Crip))7 fori=1,---,n,

thus, for each k € IN large enough (r; > 1),
- 1
Y lwi()l < (Crip)”
i=1

< Y @i = o
i=1

Sup{ueX:Ej‘zl [wi(x)|<ay, for all xeQ} ﬁ) Fx,wy, -+ wy)dx
()
k )P*

—
(Ci (Cpi)
j&") Supzxf':l |Ti|<ox F(x/ T, Tﬂ)dx

<) cpyry -
i=1 k

Define x := liminf,_,,« ¢(7), so from (12) and (13), one has

(1) <

K < liminf @(ry)
k—+00
F(x/ T,y Tﬂ)dx

- 1 JoSUPEY s
<Y (cpyiy R
i=1 k

=AY (Cpii - < 4.
i=1
On the other hand, we know that

s (A<
i=1

2308

(13)

(14)

1 1 1
then M C]0, E[' For u € M, since — < (Z?zl(Cp,-)ﬂli )"1nB, the functional I, = ® — u\W is unbounded from

below. So, we can consider a sequence {ay} of positive numbers and 6 > 0 such that ay — +oo ask — oo and

L(XO,Rl) F(x/ ak/ e 7 ak)dx

<n (Y (Cp)iy" i
i=1 E

* i=1

7

| >

<

X

=]

(15)
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for k large enough, where ¢, is as in (2). Let

0 X € Q \ B(XO/ RZ)/
(84 . ,
i) = { oo (Re = (LG = %P1E) € Blxo, R) \ Bxo, Ra), (16)
O x € B(xo, Ry).

Then (wy, - -+ ,wx) € X and for each 1 < i < n we have

N
2

pi Tt 2Nay \pi N N
w, = Ry — RY),
ey, r(1%)(12%_12%) (RY —RY)

see more details in [13]. In accordance with (2) one has
llwllx; < llwkllp, < Eallwrllx, -

Bearing (8) and (4) in mind, we deduce

Oy 00 = [ YA + VP Yo
i=1 It

A n i
Cx 1 a;

L— ) ——. (17)
(X, (Cpi)p - =3 Pi Ty
On the other hand, according to our assumptions
W(wy, -, wi) = f F(x,wy, -+ ,wr)dx > f F(x, o, -, ax)dx. (18)
Q B(xo,R1)
So, it follows from (15), (17) and (18) that
Iy(wk/"' /wk) = q)(wk/”' /wk) —H\IJ(ZU](,”' /wk)
6* n 1 LY;:i
S 1 Z‘414:1 _,__tujl; R F(X,O(k,"',ak)dx
(Z?:l(gpi)}’i )p* Pi p; p (xx0,R1) (19)
C.— U no 19
< B L ( Yic1 #)’
5( L1y (Cpi)

for k large enough, so limy_, 40 [y (wy, - - -, wx) = —o0, and hence the claim has been archived.

The alternative of Theorem 1.1 case (a) assures the existence of unbounded sequence {wy} of critical points
of the functional I;;. This completes the proof in view of the relation between the critical points of I, and
the weak solutions of problem (1). [
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