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Abstract. In this work, we prove the existence of infinitely many solutions for a general form of an elliptic
system involving the (p1, · · · , pn)-biharmonic operators via variational methods.

1. Introduction

The investigation of existence of solutions for problems at resonance has drawn the attention of many
authors, (see for example [2–4, 13–16]) as well as the existence of infinity many solutions for elliptic systems
(see [1, 6–8, 10, 11, 17, 18] and the references therein). Here, we consider the following system with Navier
boundary conditions{

−∆2
pi

ui − θi(x)∆pi ui = µFui (x,u1, · · · ,un) in Ω,
∆ui = ui = 0 on ∂Ω, (1)

for 1 ≤ i ≤ n. Where Ω ⊂ RN,N ≥ 2 is a bounded domain with smooth boundary and µ > 0 is a real
parameter. For each 1 ≤ i ≤ n, pi > max{1, N

2 }, ∆pi u = div(|∇u|pi−2
∇u) and ∆2

pi
u = ∆(|∆u|pi−2∆u) denote

pi-Laplacian and pi-biharmonic operators, respectively, where u : Ω → R. Note that for p = 2, the linear
operator ∆2

2 = ∆
2 = ∆.∆ is the iterated Laplacian that multiplied with positive constant appears often in

Navier-Stokes equations as being a viscosity coefficient. F : Ω × Rn
→ R is a Carathéodory function, and

besides, Fui is the partial derivative of F with respect to ui, i = 1, · · · ,n. Plus that θi(x) hold the following
condition:

(Θ) θi ∈ L∞(Ω) such that ess inf
x∈Ω̄
θi(x) > 0, 1 ≤ i ≤ n.

We are going to prove the existence of infinitely many weak solutions for system (1) under suitable
assumptions on F, whenever the parameter µ belongs to appropriate interval. Here we recall the following
theorem [4, 19].
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Theorem 1.1. Let X be a reflexive real Banach space, Φ,Ψ : X → R be two Gâteaux differentiable functionals such
thatΦ is strongly continuous, sequentially weakly lower semi-continuous, and coercive, andΨ is sequentially weakly
upper-semi-continuous. For every r > infX Φ, let

φ(r) := inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r)Ψ(v)) −Ψ(u)

r −Φ(u)

κ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then

(a) If κ < +∞ then, for each µ ∈ (0,
1
κ

), the following alternative holds: either

(a1) Iµ := Φ − µΨ possesses a global minimum, or

(a2) there is a sequence {un} of critical points (local minima) of Iµ such that limn→+∞Φ(un) = +∞.

(b) If δ < +∞ then, for each µ ∈ (0,
1
δ

), the following alternative holds: either

(b1) there is a global minimum of Φ that is a local minimum of Iµ, or

(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iµ that weakly converges to a global
minimum of Φ with

lim
n→ +∞

Φ(un) = inf
X
Φ.

2. Preliminaries

In this section we prepare some definitions and notations. Throughout this paperΩ is an open bounded
subset of RN,N > 2 with smooth boundary. At first we define Carathéodory function on Ω ×Rn.

Definition 2.1. We say that f : Ω ×Rn
→ R is a Carathéodory function, if

• x→ f (x, τ1, · · · , τn) is measurable for every (τ1, · · · , τn) ∈ Rn.

• (τ1, · · · , τn)→ f (x, τ1, · · · , τn) is continuous for a.e. x ∈ Ω.

The Sobolev space W1,p(Ω) is defined by

W1,p(Ω) := {u ∈ Lp(Ω); |∇u| ∈ Lp(Ω)},

and norm in W1,p(Ω) is ∥u∥1,p := |u|p + | |∇u| |p, where |.|p denotes the norm on Lp(Ω) and the vector

∇u = (
∂u
∂x1

(x), · · · ,
∂u
∂xn

(x)) is the gradient of u at x = (x1, · · · , xn). Also, we set

W1,p
0 (Ω) := {u ∈W1,p(Ω); u|∂Ω = 0},

equipped with the norm ∥u∥∗ := | |∇u| |p. Similarly,

W2,p(Ω) := {u ∈ Lp(Ω); |∇u|, |∆u| ∈ Lp(Ω)},

equipped with the norm

∥u∥2,p := |u|p + | |∇u| |p + |∆u|p.
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And we set

W2,p
0 (Ω) := {u ∈W2,p(Ω); u|∂Ω = 0}

endowed with the norm ∥u∥∗∗ := |∆u|p. For 1 ≤ i ≤ n, we set

Xi :=W1,pi

0 (Ω)
⋂

W2,pi

0 (Ω),

where by Poincaré inequality:∫
Ω

upi dx ≤ ĉ
∫
Ω

|∇u|pi dx,

Xi can be endowed with the norm ∥u∥Xi = |∆u|pi , where ĉ > 0 is the best possible. Let us point out for the
given θi ∈ L∞(Ω) satisfied (Θ) condition, the following norm is a norm on Xi which is equivalent to ∥u∥Xi :

∥u∥pi =
( ∫
Ω

(|∆u(x)|pi + θi(x)|∇u(x)|pi )dx
) 1

pi .

More precisely, we have

∥u∥Xi ≤ ∥u∥pi ≤ ĉ∗∥u∥Xi , (2)

where ĉ∗ = (1 + ĉ|θi|∞). We let X be the Cartesian product of the n Sobolev spaces Xi for 1 ≤ i ≤ n, i.e.,

X =

n∏
i=1

Xi,

endowed with the norm

∥u∥X :=
n∑

i=1

∥ui∥pi , u = (u1, · · · ,un) ∈ X.

We set

C := max
1≤i≤n

sup
ui∈Xi\{0}

maxx∈Ω |ui(x)|pi

∥ui∥
pi
pi

,

that according to the Rellich Kondrachov theorem Xi ↪→ C(Ω̄), 1 ≤ i ≤ n, is compact and hence C < +∞
(see more details in [5, p.290] and [20, p.286]). Moreover, for any ui ∈ Xi, i = 1, · · · ,n, we have

sup
x∈Ω
|ui(x)|pi ≤ C∥ui∥

pi
pi
. (3)

We end up this section by the next definition which is the meaning of weak solution for the problem (1):

Definition 2.2. We say that u = (u1, · · · ,un) ∈ X is a weak solution of the system (1) if∫
Ω

n∑
i=1

(
|∆ui(x)|pi−2∆ui(x)∆vi(x) + θi(x)|∇ui(x)|pi−2

∇ui(x)∇vi(x)
)
dx

− µ

∫
Ω

n∑
i=1

Fui (x,u1(x), · · · ,un(x))vi(x)dx = 0,

for all v = (v1, · · · , vn) ∈ X.
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3. Weak solution

In this section, our principal result is presented. We assume that functional Iµ : X → R is given by

Iµu = Φ(u) − µΨ(u),

for all u = (u1, · · · ,un) ∈ X, where

Φ(u) =
∫
Ω

n∑
i=1

1
pi

(
|∆ui(x)|pi + θi(x)|∇ui(x)|pi

)
dx, (4)

and

Ψ(u) =
∫
Ω

F(x,u1(x), · · · ,un(x))dx. (5)

Since X is compactly embedded in C0(Ω̄) × · · · × C0(Ω̄), it is well known that Φ andΨ are well defined and
continuously Gâteaux differentiable functionals. Moreover, at the point u = (u1, · · · ,un) ∈ X one has

⟨Φ′(u), v⟩ =
∫
Ω

n∑
i=1

(
|∆ui(x)|pi−2∆ui(x)∆vi(x) + θi(x)|∇ui(x)|pi−2

∇ui(x)∇vi(x)
)
dx,

and

⟨Ψ′(u), v⟩ =
∫
Ω

n∑
i=1

Fui (x,u1(x), · · · ,un(x))vi(x)dx

for any v = (v1, · · · , vn) ∈ X. By the weakly lower semicontinuity of norm, clearly Φ is sequentially weakly
lower semicontinuous. SinceΨ has compact derivative, it follows thatΨ is sequentially weakly continuous.
From (3), one has

sup
x∈Ω

n∑
i=1

1
pi
|ui(x)|pi ≤ C

n∑
i=1

1
pi
∥ui∥

pi
pi
.

So, for each r > 0

Φ−1(] −∞, r[) : = {u = (u1, · · · ,un) ∈ X : Φ(u) < r}

= {u = (u1, · · · ,un) ∈ X :
n∑

i=1

1
pi
∥ui∥ < r}

⊆ {u = (u1, · · · ,un) ∈ X :
n∑

i=1

1
pi
|ui(x)|pi ≤ Cr, for all x ∈ Ω}.

(6)

Proposition 3.1. ([12]) The functional Φ : X→ R is convex and mapping Φ′ : X→ X∗ is a strictly monotone and
bounded homeomorphism.

Furthermore, Φ is coercive, since indeed for u = (u1, · · · ,un) we have

Φ(u) =
n∑

i=1

1
pi
∥ui∥

pi
pi

and when ∥u∥X → +∞, there exists at least one î such that 1 ≤ î ≤ n where ∥uî∥X → +∞ and so Φ(u)→ +∞
as ∥u∥X → +∞.
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For fixed x0 ∈ Ω, set R2 > R1 > 0 such that B(x0,R2) ⊂ Ω, where B(x0,R2) denotes the ball with center at
x0 and radius R2. Besides, let

p∗ = max
1≤i≤n

pi and p∗ = min
1≤i≤n

pi. (7)

Define

ηpi :=
Γ(1 + N

2 )(∑n
i=1(Cpi)

1
pi

)p∗
π

N
2

(R2
2 − R2

1

2N

)pi 1
RN

2 − RN
1

, (8)

where Γ denotes the Gamma function. Now we are ready to state the main result of the paper.

Theorem 3.2. Assume that

(i) F(x, τ1, · · · , τn) ≥ 0 for every (x, τ1, · · · , τn) ∈ Ω × [0,+∞)n;

(ii) There exist a point x0 ∈ Ω and R2 > R1 > 0 such that B(x0,R2) ⊂ Ω and set

A : = lim inf
σ→+∞

∫
Ω

sup∑n
i=1 |τi |≤σ

F(x, τ1, · · · , τn)dx

σp∗
,

B : = lim sup
τ1,··· ,τn→+∞

∫
B(x0,R1) F(x, τ1, · · · , τn)dx∑n

i=1
τ

pi
i

pi

. (9)

Then we have A < ηB, where η := min1≤i≤n ηpi . Then for each

µ ∈ M :=
1(∑n

i=1(Cpi)
1
pi

)p∗ ] 1
ηB
,

1
A

[, (10)

the problem (1) admits an unbounded sequence of weak solutions.

Proof. To use Theorem 1.1, let Φ andΨ be as in (4) and (5), respectively. And set

φ(r) := inf
w∈Φ−1(]−∞,r[)

(
supw∈Φ−1(]−∞,r[)Ψ(w)

)
−Ψ(w)

r −Φ(w)
,

where w = (w1, · · · ,wn). By our assumptions Φ(0, 0) = 0 and Ψ(0, 0) ≥ 0. Therefore, by (6) for every r > 0
and w = (w1, · · · ,wn) ∈ X one has

φ(r) ≤
supΦ−1(]−∞,r[)Ψ

r

=
1
r

sup
Φ(w)<r

∫
Ω

F(x,w1, · · · ,wn)dx

≤
1
r

sup
{w∈X:

∑n
i=1

1
pi
|wi(x)|pi<Cr,for all x∈Ω}

∫
Ω

F(x,w1, · · · ,wn)dx.

(11)

Let {σk} be a real sequence of positive numbers such that limk→+∞ σk = +∞ and

lim
k→+∞

∫
Ω

sup∑n
i=1 |τi |≤σk

F(x, τ1, · · · , τn)dx

σp∗
k

= A < +∞. (12)
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And define

rk :=
( σk∑n

i=1(Cpi)
1
pi

)p∗
.

Let w = (w1, · · · ,wn) ∈ Φ−1(] −∞, rk[), from (6), one has

n∑
i=1

1
pi
|wi(x)|pi < Crk, for all x ∈ Ω.

Then

|wi(x)| ≤ (Crkpi)
1
pi for i = 1, · · · ,n,

thus, for each k ∈N large enough (rk > 1),

n∑
i=1

|wi(x)| ≤ (Crkpi)
1
pi

≤

n∑
i=1

(Cpi)
1
pi rk

1
p∗ = σk.

φ(rk) ≤
sup

{u∈X:
∑n

i=1 |wi(x)|<σk , for all x∈Ω}

∫
Ω

F(x,w1, · · · ,wn)dx

(
σk

(
∑n

i=1(Cpi)
1
pi

)p∗

≤ (
n∑

i=1

(Cpi)
1
pi )p∗

∫
Ω

sup∑n
i=1 |τi |≤σk

F(x, τ1, · · · , τn)dx

σp∗
k

.

(13)

Define κ := lim infr→+∞ φ(r), so from (12) and (13), one has

κ ≤ lim inf
k→+∞

φ(rk)

≤ (
n∑

i=1

(Cpi)
1
pi )p∗

∫
Ω

sup∑n
i=1 |τi |≤σk

F(x, τ1, · · · , τn)dx

σp∗
k

= A(
n∑

i=1

(Cpi)
1
pi )p∗ < +∞.

On the other hand, we know that

κ ≤ (
n∑

i=1

(Cpi)
1
pi )p∗A <

1
µ
, (14)

then M ⊆]0,
1
κ

[. For µ ∈ M, since
1
µ
< (
∑n

i=1(Cpi)
1
pi )p∗ηB, the functional Iµ = Φ − µΨ is unbounded from

below. So, we can consider a sequence {αk} of positive numbers and δ > 0 such that αk → +∞ as k→∞ and

1
µ
<
δ
ĉ∗
< η (

n∑
i=1

(Cpi)
1
pi )p∗

∫
B(x0,R1) F(x, αk, · · · , αk)dx∑n

i=1
α

pi
k

pi

, (15)
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for k large enough, where ĉ∗ is as in (2). Let

wk(x) :=


0 x ∈ Ω̄ \ B(x0,R2),
αk

R2 − R1

(
R2 − {Σ

n
i=1(xi

− xi
0)2
}

1
2

)
x ∈ B(x0,R2) \ B(x0,R1),

αk x ∈ B(x0,R1).

(16)

Then (wk, · · · ,wk) ∈ X and for each 1 ≤ i ≤ n we have

∥wk∥
pi

Xi
=

π
N
2

Γ(1 + N
2 )

( 2Nαk

R2
2 − R2

1

)pi
(RN

2 − RN
1 ),

see more details in [13]. In accordance with (2) one has

∥wk∥Xi ≤ ∥wk∥pi ≤ ĉ∗∥wk∥Xi .

Bearing (8) and (4) in mind, we deduce

Φ(wk, · · · ,wk) =
∫
Ω

n∑
i=1

1
pi

(
|∆wk(x)|pi + µi(x)|∇wk(x)|pi

)
dx

=

n∑
i=1

1
pi
∥wk∥

pi
pi

≤
ĉ∗

(
∑n

i=1(Cpi)
1
pi )p∗

n∑
i=1

1
pi

αpi

k

ηpi

. (17)

On the other hand, according to our assumptions

Ψ(wk, · · · ,wk) =
∫
Ω

F(x,wk, · · · ,wk)dx ≥
∫

B(x0,R1)
F(x, αk, · · · , αk)dx. (18)

So, it follows from (15), (17) and (18) that

Iµ(wk, · · · ,wk) = Φ(wk, · · · ,wk) − µΨ(wk, · · · ,wk)

≤
ĉ∗

(
∑n

i=1(Cpi)
1
pi )p∗

∑n
i=1

1
pi

α
pi
k
ηpi
− µ
∫

B(x0,R1) F(x, αk, · · · , αk)dx

<
ĉ∗ − µδ

δ
(∑n

i=1(Cpi)
1
pi )p∗

(∑n
i=1

1
pi

α
pi
k
ηpi

)
,

(19)

for k large enough, so limk→+∞ Iµ(wk, · · · ,wk) = −∞, and hence the claim has been archived.
The alternative of Theorem 1.1 case (a) assures the existence of unbounded sequence {wk} of critical points
of the functional Iµ. This completes the proof in view of the relation between the critical points of Iµ and
the weak solutions of problem (1).
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