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Abstract. In this paper we establish the existence of solutions for a class of generalized quasilinear
Schrödinger equations with p-Laplacian. Our results cover some typical physics models. The main tech-
nique we use is the methods of change of variables and G-link theorem in critical point theory.

1. Introduction

In this paper we study the following generalized quasilinear elliptic equation{
∆pu + uh′(u2)[∆ph(u2)] + f (x,u) = 0 in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a smooth bounded domain, ∆pu = div(|∇u|p−2
∇u) is the p-Laplacian with 1 < p < N and f

is a Caratheodory function on Ω ×R. Moreover, h is a uncertain real function, which corresponds to some
mathematical models of physical phenomena, e.g. h(s) = s

σ
2 with σ ≥ 1.

Obviously, problem (1) is a classical p-Laplacian equation when h is a constant. Meanwhile, problem
(1) is also viewed as a generalized quasilinear Schrödinger equation with p-Laplacian. Indeed, solutions
of problem (1) are related to the existence of solutions for the following quasilinear Schrödinger equations
with p-Laplacian

i
∂ψ

∂t
= −∆pψ +W(x)ψ − f (x, |ψ|2)ψ − κ[∆ph(|ψ|2)]h′(|ψ|2)ψ, (2)

where ψ : R × RN
→ C is a wave function, W : RN

→ R is a given potential and κ > 0. Let h(s) = s and
ψ(t, x) = exp(−iEt)u(x), where E ∈ R and u is a positive real function. Then ψ satisfies (2) if and only if the
function u(x) solves the following elliptic type equation

−∆pu + (W(x) − E)u − κ[∆p(u2)]u = f (x,u), (3)

where f is a new nonlinearity. Apparently, if W(x) = E and κ = 1, then (3) is just the equation in (1). It is
learned that problem (1) was used for a superfluid film equation in plasma physics when p = 2 and h(s) = s,
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see [1]. Moreover, when p = 2 and h(s) =
√

1 + s, problem (1) models the phenomena of the self-channeling
of a high-power ultrashort laser in matter [2, 3] as well as the theory of Heidelberg ferromagnetism and
magnus, dissipative quantum mechanics, condensed matter theory and fluid mechanics, see [4–7] and the
references therein.

In recent years, problem (1) were studied primarily in the context p = 2 and h(s) = s. In this connection,
we refer the readers to [8–16]. Recently, there appeared some works dealing with problem (1) when p , 2
and h(s) = s. Such as Liu [17], Liu and Zhao [18], Liu and Liu [19] proved that the existence and multiplicity
of solutions by using the Morse theory when problem (1) is resonant or almost resonant near infinity at λ1
(the first eigenvalue of p-Laplacian) from left or right side, but they did not obtain a similar result at higher
variational eigenvalues of p-Laplacian. In addition, to our best knowledge, so far there is no any result on
the existence of solutions for problem (1) when p , 2 and h(s) , s.

We were motivated by the above results, we devote this paper to proving the existence of weak solutions
when problem (1) is resonant or almost resonant near infinity atλk+1 from left side, whereλk+1 is a variational
eigenvalue of p-Laplacian (see Section 2). In this paper, there are mainly two aspects of difficulties which
need to be overcome. On one hand, h is a general uncertain function, which lead to the fact that there may
be two different scales in the equation and hence the minimization argument in [9] can be not applied. On
the other hand, there is no natural functions spaces for the associated energy functional to be well defined.
To overcome these difficulties, we reformulate equation (1) into the standard p-Laplacian equation by using
a generalized change of variables and make a slight different definition of weak solutions. The main tool
we use is the G-link theorem in critical point theory.

2. Main results

In this section, we will state our existence results. Firstly, from a direct, but a bit of complex computation
(we omit the details here), we observe that formally (1) is the Euler-Lagrange equation associated to the
natural energy functional

J0(u) =
1
p

∫
Ω

(
1 + 2p−1

|uh′(u2)|p
)
|∇u|pdx −

∫
Ω

F(x,u)dx. (4)

where F(x,u) =
∫ u

0 f (x, s)ds is the primitive function of f . But and in general, this functional J0 may be not

well defined in the usual Sobolev spaces W1,p
0 (Ω) equipped with the norm

∥u∥p =
∫
Ω

|∇u|pdx, ∀u ∈W1,p
0 (Ω),

and hence it is difficult to apply variational methods directly. To overcome this difficulty, several ideas and
techniques were developed, including the constrained minimization argument [9, 20], the Nehari manifold
[15, 21], the method of a change of variables [6, 8] and the perturbation method [22]. Here, we will use the
method of a generalized change of variables to overcome that difficulty. To be more precise, we consider a
new change of unknown v = 1−1(u), where 1 is defined by

1′(t) =
[
1 + 2p−1

|1(t)h′(12(t))|p
]− 1

p , ∀t ∈ [0,+∞), (5)

1(t) = −1(−t), ∀t ∈ (−∞, 0]. (6)

Obviously, it follows from (5) and (6) that 1 is a nondecreasing function and 1(0) = 0. Also, after the change
of variables, from I(u) we obtain the following functional

J(v) = J0(1(v)) =
1
p

∫
Ω

|∇v|pdx −
∫
Ω

F(x, 1(v))dx. (7)

In addition, since h is a general uncertain function, we have to add an assumption on 1, that is,
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(10) there exist α ≥ 1 and β > 0 such that

1(t) ≤ αt1′(t) ≤ α1(t), ∀t ∈ R+, (8)

lim
t→+∞

1pα(t)
tp = β. (9)

It is clear to see that there are many function 1 satisfying the above conditions (8) and (9), for example,
when h(s) = s

σ
2 with σ ≥ 1, the function 1 defined by (5) and (6) satisfies the condition (10), see the proof of

Corollary 2.3 in Section 3. On the other hand, from the above conditions on 1, we easily get

|1(t)| ≤ β
1

pα |t|
1
α , ∀t ∈ R. (10)

In fact, let l(t) = 1pα(t)
tp . By (8), one has l′(t) ≥ 0 and hence from (9), we know that (10) is true for any

t ∈ (0,+∞), which together with (6), we conclude that (10) holds for any t ∈ R.
Now, if we assume that f satisfies the following growth condition:
( f0) there exist c0 > 0 and q ∈ (1, p∗) such that for all (x, s) ∈ Ω ×R,

| f (x, s)| ≤ c0

(
1 + |s|α(q−1)

)
, (11)

where α is as in (10) and p∗ = Np
N−p . We note that (11) is exactly the usual subcritical growth condition when

α = 1. Also, it is interesting to note that α can be greater than one. In other words, the nonlinearity term f
is allowed for supercritical growth in the usual Sobolev space W1,p

0 (Ω) and hence J0 is not well defined in
W1,p

0 (Ω) in the general case. However, thanks to (10), it is very easy to see that J is well defined on W1,p
0 (Ω)

and J ∈ C1(W1,p
0 (Ω),R) under the condition ( f0). Moreover, the critical points of J are just weak solutions of

the equation{
−∆pv = f (x, 1(v))1′(v) in Ω,
v = 0 on ∂Ω. (12)

That is to say, for any ψ ∈ C∞0 (Ω),∫
Ω

|∇v|p−2
∇v∇ψdx =

∫
Ω

f (x, 1(v))1′(v)ψdx. (13)

Let v = 1−1(u), a direct calculation shows that problem (12) is equivalent to problem (1), which takes u = 1(v)
as its solution.

Motivated by the above, we will give a slight different definition of weak solutions for problem (1), as
described next.

Definition 2.1. We say u is a weak solution of problem (1) if and only if v = 1−1(u) ∈ W1,p
0 (Ω) is a critical point of

the functional J.

As far as we know, that definition of weak solutions was used by Liu in [17], also see [18]. Next, to state
our main theorems, we recall the following p-Laplacian eigenvalue problem{

−∆pv = λ|v|p−2v in Ω,
v = 0 on ∂Ω. (14)

Define

Σ =

{
v ∈W1,p

0 (Ω) :
∫
Ω

|v|pdx = 1
}
.

Then problem (14) has a sequence of eigenvalues with the variational characterization

λk = inf
Λ∈Σk

sup
v∈Λ

∫
Ω

|∇v|pdx, (15)
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where Σk = {Λ ⊂ Σ : there is a odd, continuous and surjective γ : Sk−1
→ Λ} and Sk−1 is the unit sphere

in Rk (see [23]). Here, we will refer to {λk}k∈N as the variational eigenvalues of −∆p. So far, we do not
know whether this represents a complete list of eigenvalues. Fortunately, even without this knowledge,
this portion of the spectrum provides enough structure for the G-Linking arguments of the next section.
Now we ready to state our main theorems.

Theorem 2.2. Let λk < λk+1 be two consecutive eigenvalues defined by (15). Assume that the function 1 satisfies
the condition (10). In addition, if f satisfies ( f0) and the following assumptions:

λk

β
< lim inf

|t|→∞

pF(x, t)
|t|αp ≤ lim sup

|t|→∞

pF(x, t)
|t|αp ≤

λk+1

β
(16)

uniformly in x ∈ Ω, and

lim
|t|→∞

( f (x, t)t − αpF(x, t)) = +∞ (17)

uniformly in x ∈ Ω, where α and β are as in (10). Then problem (1) has at least a weak solution.

There are many functions satisfying the conditions ( f0), (16) and (17). For example, let

f (x, t) =
α(λk + λk+1)

2β
|t|αp−2t − (αp − 1)|t|αp−3t,

where α, β and p are as in Theorem 4. It follows the definition of F(x, t) that

F(x, t) =
λk + λk+1

2βp
|t|αp
− |t|αp−1.

Obviously, F(x, t) satisfies the condition (16) and

lim
|t|→∞

( f (x, t)t − αpF(x, t)) = lim
|t|→∞

|t|αp−1 = +∞.

In addition, it is also easy to check that f satisfies ( f0) for some α, p and q. This means that f satisfies the
assumptions ( f0), (16) and (17).

Next, let h(s) = s
σ
2 in (1) with σ ≥ 1. Then problem (1) becomes{

−∆pu − σ
2 [∆p(|u|σ)]|u|σ−2u = f (x,u) in Ω,

u = 0 on ∂Ω.
(18)

Due to the quasilinear and non-convex term σ
2 [∆p(|u|σ)]|u|σ−2u, problem (18) is usually called the Modified

Nonlinear Schrödinger Equation by scholars. Meanwhile, as we said in the introduction, problem (18) is
related to some important mathematical physical models. Here, by Theorem 2.2, we will conclude the
existence of weak solutions for (18). That is,

Corollary 2.3. Let λk < λk+1 be two consecutive eigenvalues defined by (15). Assume that f satisfies the conditions
(11), (16) and (17) with α = σ and β = 2. Then problem (18) has at least a weak solution when σ ≥ 1.

Remark 2.4. The condition (17) was firstly introduced by Costa and Magalháes in [24], where α = 1, p = 2 and the
existence of solutions was obtained for an elliptic system. We remark that (16) and (17) imply that problem (1) may be
resonant or almost resonant near infinity at λk+1 from left side. Meanwhile, we do not assume that there are no other
eigenvalues defined by any other way in the interval (λk, λk+1), and hence problem (1) may be also resonant at some
eigenvalues. Moreover, just like we said in the introduction, D. Liu and P. Zhao [18], and J. Liu and D. Liu [19] did
not obtain the existence of solutions for problem (18) when k , 1 and σ , 2. Hence, Corollary 2.3 is a generalization
and complement of the results of [18] and [19].
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3. Proof of main results

Let ∥ · ∥s denote the norm in Ls(Ω). It is well known that the embedding W1,p
0 (Ω) ↪→ Ls(Ω) is compact for

s ∈ (1, p∗). Moreover, for all s ∈ (1, p∗], there exists Cs > 0 such that

∥u∥s ≤ Cs∥u∥. (19)

For λk < λk+1, define

Ck+1 =

{
u ∈W1,p

0 (Ω) :
∫
Ω

|∇u|pdx ≥ λk+1

∫
Ω

|u|pdx
}
.

Clearly, Ck+1 is a symmetric closed subset of W1,p
0 (Ω). In addition, let X is a Banach space, we say that

the function I satisfies the Cerami condition if any sequence {vn} ⊂ X such that I(vn) → c ∈ R and
(1 + ∥vn∥)|I′(vn)|X∗ → 0 as n→∞ has a convergent subsequence.

Definition 3.1. Let Q be a submanifold of a Banach space E with relative boundary ∂Q, S be a closed subset of a
Banach space F and G be a subset of C0(∂Q,F \ S). We say that S and ∂Q are G-linked if for any map h ∈ C0(Q,F)
such that h|∂Q ∈ G there holds h(Q) ∩ S , ∅.

Now, we introduce the G-Linking Theorem in the critical point theory, which will play an essential role
in the proof of the main theorems.

Theorem 3.2. (G-Linking Theorem [25, 26]). Let E,F be two real Banach spaces, S ⊂ F be a closed subset, Q ⊂ E
be a submanifold with relative boundary ∂Q and G is a subset of C0(∂Q,F \ S). Set Γ = {h ∈ C0(Q,F) : h|∂Q ∈ G}.
Suppose that S and ∂Q are G-linked and I ∈ C1(F,R) satisfies the Cerami condition. In addition, suppose that

(a) there exists h0 ∈ Γ such that supx∈Q I(h0(x)) < +∞;
(b) there exist two constants a, b with b > a such that infy∈S I(y) ≥ b and supx∈Q I(h(x)) ≤ a, ∀h ∈ Γ.

Then, the number c = infh∈Γ supx∈Q I(h(x)) defines a critical value c ≥ b of I.

Proof of Theorem 2.2. The aim is to prove the existence of critical points for the functional J and hence
problem (1) has at least a weak solution. In the following, we divide our proof in three steps.

Step 1. We verify that any Cerami sequence for J is bounded in W1,p
0 (Ω).

Indeed, let {vn} ⊂W1,p
0 (Ω) be a Cerami sequence for J, that is,

J(vn)→ c ∈ R and (1 + ∥vn∥)∥J′(vn)∥ → 0 (20)

as n → ∞. Suppose, by contradiction, that ∥vn∥ → ∞ as n → ∞. Fixed ε0 > 0, it follows from (16) and the
continuity of F that there exists M1 =M1(ε0) > 0 such that

|F(x, t)| ≤
λk+1 + ε0

pβ
|t|αp +M1, ∀(x, t) ∈ Ω ×R. (21)

From (9), (10), (20) and (21), for n large enough, one has

∥vn∥
p = pJ(vn) + p

∫
Ω

F(x, 1(vn))dx

≤ p(c + 1) +
λk+1 + ε0

β

∫
Ω

|1(vn)|αpdx + pM1|Ω|

≤ p(c + 1) + (λk+1 + ε0)
∫
Ω

|vn|
pdx + pM1|Ω|, (22)

where |Ω| denotes the Lebesgue measure of Ω. Let ṽn =
vn
∥vn∥

p , then ∥ṽn∥ = 1 and hence there exists

ṽ ∈ W1,p
0 (Ω) such that ṽn ⇀ v weakly in W1,p

0 (Ω) and ṽn → v strongly in Lp(Ω). It follows from (22) that
1 ≤ (λk+1 + ε0)∥ṽn∥

p
Lp . This means that there exists Ω0 ⊂ Ω with positive measure such that v(x) , 0 for
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every x ∈ Ω0. Thus we have vnχΩ0 → ∞ as n→ ∞, where χΩ0 denotes the characteristic function of Ω0. In
addition, it follow from (5), (6) and (9) that

1(t) ≥ αt1′(t) ≥ α1(t) for all t ≤ 0, (23)

lim
t±→∞

1(t) = ±∞, (24)

which implies that

1(vn(x))→∞ as n→∞ for x ∈ Ω0. (25)

Note that (16) and (17) imply that

lim
|t|→∞

f (x, t)t = +∞. (26)

In other words, there exists t0 > 0 such that f (x, t)t ≥ 0 for all x ∈ Ω0 and |t| ≥ t0. Meanwhile, we also note
that 1(t)t is nonnegative for all t ∈ R. Hence, from (8), (23), (25), (26) and (17), we have

f (x, 1(vn))1′(vn)vn − pF(x, 1(vn)) ≥
1
α

f (x, 1(vn))1(vn) − pF(x, 1(vn))

=
1
α

[
f (x, 1(vn))1(vn) − αpF(x, 1(vn))

]
→ +∞ (27)

as n→∞ for all x ∈ Ω0. It follows from (27) and Fatou’s lemma that

lim inf
n→∞

∫
Ω

[ f (x, 1(vn))1′(vn)vn − pF(x, 1(vn))]dx

≥
1
α

∫
Ω0

lim inf
n→∞

[ f (x, 1(vn))1(vn) − αpF(x, 1(vn))]dx

= +∞. (28)

On the other hand, it follows from (20) that there exists M2 > 0 such that

M2 ≥ lim inf
n→∞

(pJ(vn) − ⟨J′(vn), vn⟩) = lim inf
n→∞

∫
Ω

[ f (x, 1(vn))1′(vn)vn − pF(x, 1(vn))]dx,

which contradicts with (28) and hence this completes the proof of Step 1.
Step 2. We verify that J satisfies the Cerami condition.
Indeed, let {vn} ⊂ W1,p

0 (Ω) be a Cerami sequence for J. It follows from Step 1 that {vn} is bounded in
W1,p

0 (Ω), that is, there exists M3 > 0 such that

∥vn∥ ≤M3, ∀n ∈N. (29)

Hence, we can assume that there exists a function v ∈W1,p
0 (Ω) such that{

vn ⇀ v weakly in W1,p
0 (Ω),

vn → v strongly in Lp(Ω).

It follows from (20) that

lim
n→∞
⟨J′(vn), vn − v⟩ = 0. (30)
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Moreover, from (11), (5), (10), (19) and (29), one has∣∣∣∣∣∫
Ω

f (x, 1(vn))1′(vn)(vn − v)dx
∣∣∣∣∣ ≤ c0

∫
Ω

(1 + |1(vn)|α(q−1))|1′(vn)||vn − v|dx

≤ c0

∫
Ω

(1 + β
q−1

p |vn|
q−1)||vn − v|dx

≤ c0

(
|Ω|

q−1
q + β

q−1
p ∥vn∥

q−1
Lq

)
∥vn − v∥Lq

≤ c0

(
|Ω|

q−1
q + (CqM3β

1
p )q−1

)
∥vn − v∥Lq

→ 0 (31)

as n→∞. It follows from (30) and (31) that

lim
n→∞

∫
Ω

|∇vn|
p−2
∇vn∇(vn − v)dx = 0. (32)

Similarly, we also have

lim
n→∞

∫
Ω

|∇v|p−2
∇v∇(vn − v)dx = 0. (33)

From (32) and (33), one has

lim
n→∞

∫
Ω

|∇vn − ∇v|p dx ≤ lim
n→∞

∫
Ω

(
|∇vn|

p−2
∇vn − |∇v|p−2

∇v
)
∇(vn − v)dx = 0.

That is, vn → v strongly in W1,p
0 (Ω). This completes the proof of Step 2.

Step 3. We prove that J satisfies the conditions in Theorem 3.2.
Indeed, by the continuity of F and the left hand side inequality of (18), for any ε > 0, there exists

M4 =M4(ε) > 0 such that

F(x, t) ≥
λk + 2ε

pβ
|t|p −M4, ∀(x, t) ∈ Ω. (34)

By (15), there exists Λ ∈ Σk such that

sup
v∈Λ

∫
Ω

|∇v|pdx ≤ λk + ε. (35)

It follows from (34), (35) and (10) that

J(tv) =
1
p
∥tv∥p −

∫
Ω

F(x, 1(tv))dx ≤
1
p
∥tv∥p −

λk + 2ε
pβ

∫
Ω

|1(tv))|αpdx +M4|Ω|

≤
1
p
∥tv∥p −

λk + 2ε
p
∥tv∥pLp dx +M4|Ω|

≤ −
ε
p

tp +M4|Ω|

→ −∞ (36)

as t→ +∞. In the following, letting

G(x, t) = F(x, t) −
λk+1

pβ
|t|αp. (37)

Thus we have

G′(x, t)t − αpG(x, t) = f (x, t)t − αpF(x, t).
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From this and (17), for any M > 0, there exists cM > 0 such that if |t| ≥ cM,

G′(x, t)t − αpG(x, t) ≥M, ∀x ∈ Ω. (38)

So, we obtain for s > 0,

d
ds

(
G(x, s)

sαp

)
=

G′(x, s)s − αpG(x, s)
sαp+1 ≥

M
sαp+1 . (39)

Integrating (39) over the interval [t,T] ⊂ [cM,+∞), we get

G(x, t)
tαp ≤

G(x,T)
Tαp +

M
αp

( 1
Tαp −

1
tαp

)
. (40)

Now, we claim that there exists M5 > 0 such that

G(x, t) ≤M5 for all t ∈ R and x ∈ Ω. (41)

In fact, by the right side inequality of (16), we have

lim sup
T→+∞

G(x,T) = lim sup
T→+∞

(
F(x,T) −

λk+1

pβ
|T|αp

)
≤ lim sup

T→+∞

|T|αp

p

(
pF(x,T)
|T|αp −

λk+1

β

)
≤ 0. (42)

It follows from (40) and (42) that

G(x, t) ≤ −
M
αp

(43)

for all t ∈ (cM,+∞) and x ∈ Ω. Similarly, we can also conclude that (43) holds for all t ∈ (−∞,−cM) and
x ∈ Ω. Then, from the arbitrariness of M, one gets lim|t|→∞ G(x, t) → −∞ uniformly for x ∈ Ω. This means
that (41) is true. Therefore, from (37), (10) and (41), we have for any v ∈ Ck+1,

J(v) =
1
p
∥v∥p −

∫
Ω

F(x, 1(v))dx

=
1
p
∥v∥p −

∫
Ω

(
G(x, 1(v)) +

λk+1

pβ
|1(v)|αp

)
dx

≥
1
p

(∥v∥p − λk+1∥v∥
p
Lp ) −

∫
Ω

G(x, 1(v))dx

≥ −M5|Ω|. (44)

It follows from (36) and (44) that there exists ρ0 > 0 such that

α0 = max
v∈Λ,t≥ρ0

φ(tv) < −M5|Ω| = β0. (45)

This meams that the condition (b) in Theorem 3.2 is satisfied.
Next, we claim that Ck+1 and Sk−1 are G-linked. Indeed, the proof of the claim is quite similar to that

given in [25, 26] and so is omitted. In addition, from the compactness of the closed unit ball Bk in Rk, we
easily conclude that the condition (a) in Theorem 3.2 is also true. In conclusion, the functional J satisfies all
of the conditions in Theorem 3.2. Hence, problem (12) has at least a weak solution, so is problem (1).
Proof of Corollary 2.3. In fact, when h(s) = s

σ
2 with σ ≥ 1, we have

1′(t) =
[
1 +

σp

2
|1(t)|p(σ−1)

]− 1
p

. (46)
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By Theorem 2.2, it suffices to check 1 defined by (6) and (46) satisfies the condition (10) with α = σ and
β = 2. Indeed, let l : R+ → R be defined by

l(t) = σt −
[
1 +

σp

2
|1(t)|p(σ−1)

] 1
p

1(t).

It follows from (6) that l(0) = 0, and since σ ≥ 1,

l′(t) = (σ − 1)

1 − σp

2 |1(t)|
p(σ−1)

1 + σp

2 |1(t)|
p(σ−1)

 ≥ 0, (47)

which means that l(t) ≥ l(0) for all t ∈ R+. This proves that the left hand side inequality of (8). The right
hand side inequality can be proved in a similar way. Now we begin to prove (9). Indeed, it follow from (8)
that 1(t)→ +∞ as t→ +∞. By the principle of L’Hospital and (46), we have

lim
t→+∞

1σp(t)
tp =

[
lim

t→+∞

1σ(t)
t

]p

=
[

lim
t→+∞

σ1σ−1(t)1′(t)
]p

= lim
t→+∞

[
σ1σ−1(t)

]p

1 + σp

2 |1(t)|
p(σ−1)

= 2.

Hence, the function 1 defined by (6) and (46) satisfies the condition (10) with α = σ and β = 2. Hence, it
follows from Theorem 2.2 that (18) has at least a weak solution.
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