Complex Symmetry and Normality of Toeplitz Composition Operators on the Hardy Space

Anuradha Gupta ${ }^{\text {a }}$, Aastha Malhotra ${ }^{\text {b }}$
${ }^{a}$ Delhi College of Arts and Commerce, Department of Mathematics,University of Delhi, New Delhi-110023, India.
${ }^{b}$ Faculty of Mathematical Sciences, Department of Mathematics, University of Delhi, Delhi-110007, India

Abstract

In this paper, we investigate the conditions under which the Toeplitz composition operator on the Hardy space \mathcal{H}^{2} becomes complex symmetric with respect to a certain conjugation. We also study various normality conditions for the Toeplitz composition operator on \mathcal{H}^{2}.

1. Introduction and Preliminaries

Let \mathbb{D} denote the open unit disc and $\mathbb{T}=\left\{e^{i \theta}: \theta \in[0,2 \pi)\right\}$ denote the unit circle in the complex plane \mathbb{C}. Recall that the Hardy space \mathcal{H}^{2} is a Hilbert space which consists of all those analytic functions f on \mathbb{D} having power series representation with square summable complex coefficients. That is,

$$
\mathcal{H}^{2}=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \mid f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n} \text { and }\|f\|_{\mathcal{H}^{2}}^{2}:=\sum_{n=0}^{\infty}|\hat{f}(n)|^{2}<\infty\right\}
$$

or equivalently,

$$
\mathcal{H}^{2}=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }\left.\left|\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\right| f\left(r e^{i \theta}\right)\right|^{2} d \theta<\infty\right\} .
$$

The evaluation of functions in \mathcal{H}^{2} at each $w \in \mathbb{D}$ is a bounded linear functional and for all $f \in \mathcal{H}^{2}$, $f(w)=\left\langle f, K_{w}\right\rangle$ where $K_{w}(z)=1 /(1-\bar{w} z)$. The function $K_{w}(z)$ is called the reproducing kernel for the Hardy space \mathcal{H}^{2}. Consider the Hilbert space

$$
\widetilde{\mathcal{H}^{2}}=\left\{f^{*}: \mathbb{T} \rightarrow \mathbb{C} \mid f^{*}(z)=\sum_{n=0}^{\infty} \hat{f}(n) e^{i n \theta} \text { and }\left\|f^{*}\right\|_{\mathcal{H}^{2}}^{2}:=\sum_{n=0}^{\infty}|\hat{f}(n)|^{2}<\infty\right\} .
$$

Let L^{2} denote the Lebesgue (Hilbert) space on the unit circle \mathbb{T}. It is well known that every function $f \in \mathcal{H}^{2}$ satisfies the radial limit $f^{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1^{-}} f\left(r e^{i \theta}\right)$ for almost every $\theta \in[0,2 \pi)$ and it is obvious that the

[^0]correspondence where $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ is mapped to $f^{*}\left(e^{i \theta}\right)=\sum_{n=0}^{\infty} \hat{f}(n) e^{i n \theta}$ is an isometric isomorphism from \mathcal{H}^{2} onto the closed subspace $\overline{\mathcal{H}^{2}}$ of L^{2}. Since $\left\{e_{n}(z)=z^{n}: n \in \mathbb{Z}\right\}$ forms an orthonormal basis for L^{2}, every function $f \in L^{2}$ can be expressed as $f(z)=\sum_{n=-\infty}^{\infty} \hat{f}(n) z^{n}$ where $\hat{f}(n)$ denotes the $n t h$ Fourier coefficient of f. Let L^{∞} be the Banach space of all essentially bounded functions on the unit circle \mathbb{T}. For any $\phi \in L^{\infty}$, the Toeplitz operator $T_{\phi}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ is defined by $T_{\phi} f=P(\phi \cdot f)$ for $f \in \mathcal{H}^{2}$ where $P: L^{2} \rightarrow \mathcal{H}^{2}$ is the orthogonal projection. It can be easily verified that for $m, n \in \mathbb{Z}$,
\[

P\left(z^{m} \bar{z}^{n}\right)=\left\{$$
\begin{array}{cl}
z^{m-n} & \text { if } m \geq n \\
0 & \text { otherwise }
\end{array}
$$\right.
\]

For a non-zero bounded analytic function u on \mathbb{D} and a self-analytic map ϕ on \mathbb{D}, the weighted composition operator $W_{u, \phi}$ is defined by $W_{u, \phi} f=u \cdot f \circ \phi$ for every $f \in \mathcal{H}^{2}$. Over the past several decades, there has been tremendous development in the study of composition operators and weighted composition operators over the Hardy space \mathcal{H}^{2} and various other spaces of analytic functions. Readers may refer [1, 10] for general study and background of the composition operators on the Hardy space \mathcal{H}^{2}. In this paper, we introduce the notion of the Toeplitz composition operator on the Hardy space \mathcal{H}^{2} where the symbol u in $W_{u, \phi}$ need not necessarily be analytic. For a function $\psi \in L^{\infty}$ and a self-analytic map ϕ on \mathbb{D}, the Toeplitz composition operator $T_{\psi} C_{\phi}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ is defined by $T_{\psi} C_{\phi} f=P(\psi \cdot f \circ \phi)$ for every $f \in \mathcal{H}^{2}$ where $C_{\phi} f:=f \circ \phi$ is the composition operator on \mathcal{H}^{2}. The authors in [5] introduced the concept of the Toeplitz composition operators on the Fock space and also studied its various properties.

Let \mathcal{H} be a separable Hilbert space. Then a mapping S on \mathcal{H} is said to be anti-linear (also conjugate-linear) if $S\left(\alpha x_{1}+\beta x_{2}\right)=\bar{\alpha} S\left(x_{1}\right)+\bar{\beta} S\left(x_{2}\right)$ for all scalars $\alpha, \beta \in \mathbb{C}$ and for all $x_{1}, x_{2} \in \mathcal{H}$.

An anti-linear mapping $C: \mathcal{H} \rightarrow \mathcal{H}$ is said to be a conjugation if it is involutive (i.e. $C^{2}=I$) and isometric (i.e. $\|C x\|=\|x\|$ for every $x \in \mathcal{H}$). A complex symmetric operator S on \mathcal{H} is a bounded linear operator such that $S=C S^{*} C$ for some conjugation C on \mathcal{H}. We call such an operator S to be a C-symmetric operator.

Garcia and Putinar [3, 4] began the general study of complex symmetric operators on Hilbert spaces which are the natural generalizations of complex symmetric matrices. There exist a wide variety of complex symmetric operators which include normal operators, compressed Toeplitz operators, Volterra integration operators etc. Jung et al. [7] studied the complex symmetry of the weighted composition operators on the Hardy space in the unit disc \mathbb{D}. Garcia and Hammond [2] undertook the study of complex symmetry of weighted composition operators on the weighted Hardy spaces. Ko and Lee [8] gave a characterization of the complex symmetric Toeplitz operators on the Hardy space \mathcal{H}^{2} of the unit disc \mathbb{D}. Motivated by this, we study the complex symmetry of the Toeplitz composition operators on the Hardy space \mathcal{H}^{2}. In this paper we give a characterization of such types of operators. We also investigate certain conditions under which a complex symmetric operator turns out to be a normal operator. In the concluding section of this article, we discuss the normality of the Toeplitz composition operators on \mathcal{H}^{2}.

2. Complex Symmetric Toeplitz Composition Operators

In this section we aim to find the conditions under which a Toeplitz composition operator becomes complex symmetric with respect to a certain fixed conjugation. In order to determine these conditions, we need an explicit formula for the adjoint C_{ϕ}^{*} of a composition operator C_{ϕ} where ϕ is a self-analytic map on the unit disc \mathbb{D}. But there exists no general formula and there are only a few special cases where it is possible to find a formula for C_{ϕ}^{*} explicitly. C. Cowen was the first to find the representation for the adjoint of a composition operator C_{ϕ} on \mathcal{H}^{2}, famously known as the Cowen's Adjoint Formula, where the symbol ϕ is a linear fractional self-map of the unit disc \mathbb{D}. The Cowen's Adjoint Formula was extended to the Bergman space \mathcal{A}^{2} by P. Hurst [6] and it is stated as follows:

Theorem 2.1 ([1]). (Cowen's Adjoint Formula) Let $\phi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map of the unit disc where $a d-b c \neq 0$. Then $\sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}}$ maps disc into itself, $g(z)=(-\bar{b} z+\bar{d})^{-p}$ and $h(z)=(c z+d)^{p}$ are bounded analytic
functions on the disc and on \mathcal{H}^{2} or $\mathcal{A}^{2}, C_{\phi}^{*}=M_{g} C_{\sigma} M_{h}^{*}$ where $p=1$ on \mathcal{H}^{2} and $p=2$ on \mathcal{A}^{2}.(Note that the operator M_{g} is the multiplication operator defined by $M_{g} f=g \cdot f$.)

Next we have the following lemmas which would be instrumental in proving certain results throughout this article:

Lemma 2.2 ([9]). A linear fractional map ϕ, written in the form $\phi(z)=\frac{a z+b}{c z+d} ; a d-b c \neq 0$, maps \mathbb{D} into itself if and only if:

$$
\begin{equation*}
|b \bar{d}-a \bar{c}|+|a d-b c| \leq|d|^{2}-|c|^{2} \tag{1}
\end{equation*}
$$

Lemma 2.3 ([1]). Let $\phi(z)=\frac{a z+b}{c z+d}$ be a linear fractional map and define the associated linear fractional transformation $\phi^{*} b y$

$$
\phi^{*}(z)=\frac{1}{\overline{\phi^{-1}\left(\frac{1}{\bar{z}}\right)}}=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}} .
$$

Then ϕ is a self-map of the disc if and only if ϕ^{*} is also a self-map of the disc.
Lemma 2.4 ([1]). If $\phi(z)=\frac{a z+b}{c z+d}$ is a linear fractional transformation mapping \mathbb{D} into itself where $a d-b c=1$, then $\sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}}$ maps \mathbb{D} into itself.

In the following lemma, a conjugation on the Hardy space \mathcal{H}^{2} has been defined with respect to which we will find the complex symmetry of the operator $T_{\psi} C_{\phi}$.

Lemma 2.5 ([8]). For every ξ and θ, let $C_{\xi, \theta}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ be defined by

$$
C_{\xi, \theta} f(z)=e^{i \xi} \overline{f\left(e^{i \theta} \bar{z}\right)}
$$

Then $C_{\xi, \theta}$ is a conjugation on \mathcal{H}^{2}. Moreover, $C_{\xi, \theta}$ and $C_{\xi, \tilde{\theta}}$ are unitarily equivalent where $(\tilde{\xi}, \tilde{\theta})$ satisfies the equation $\tilde{\xi}-k \tilde{\theta}=-\xi+k \theta-2 n \pi$ for every $k \in \mathbb{N}$ and $n \in \mathbb{Z}$.

In the next theorem, we determine the conditions under which the Toeplitz composition operator $T_{\psi} C_{\phi}$ turns out to be complex symmetric with respect to the conjugation $C_{\xi, \theta}$ on \mathcal{H}^{2}.

Theorem 2.6. For $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and for self-analytic linear transformation $\phi(z)=a z+b(a \neq 0)$ mapping \mathbb{D} into itself, let $T_{\psi} C_{\phi}$ be a Toeplitz composition operator on \mathcal{H}^{2}. Then $T_{\psi} C_{\phi}$ is complex symmetric with the conjugation $C_{\xi, \theta}$ if and only if for each $k, p \in \mathbb{N} \cup\{0\}$ and for every $n \in \mathbb{Z}$, we have :
(i) $\sum_{n=-k+p}^{p}\binom{k}{p-n} \overline{\hat{\psi}(n)} \bar{a}^{p-n} \bar{b}^{n+k-p} \lambda^{p}=\sum_{n=-k}^{-k+p}\binom{p-n-k}{p} \overline{\hat{\psi}(-n)} \bar{a}^{n+k} \bar{b}^{p-n-k} \lambda^{k}$ for $b \neq 0$ and, (ii) $\overline{\hat{\psi}(n)} \lambda^{n}=\overline{\hat{\psi}(-n)} \bar{a}^{n}$ for $b=0$.

Proof. If $T_{\psi} C_{\phi}$ is complex symmetric with respect to the conjugation $C_{\xi, \theta}$, then for all $k \in \mathbb{N} \cup\{0\}$ we have

$$
\begin{equation*}
C_{\xi, \theta} T_{\psi} C_{\phi} z^{k}=\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta} z^{k} \tag{2}
\end{equation*}
$$

We take $\mu=e^{i \xi}$ and $\lambda=e^{-i \theta}$ and consider the following two cases:

Case (i) : Let $b \neq 0$. Then

$$
\begin{align*}
C_{\xi, \theta} T_{\psi} C_{\phi} z^{k} & =C_{\xi, \theta} T_{\psi}(\phi(z))^{k} \\
& =C_{\xi, \theta} T_{\psi}(a z+b)^{k} \\
& =C_{\xi, \theta} P\left(\psi(z) \cdot \sum_{m=0}^{k}\binom{k}{m} a^{m} b^{k-m} z^{m}\right) \\
& =C_{\xi, \theta} P\left(\sum_{m=0}^{k}\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =C_{\xi, \theta}\left(\sum_{m=0}^{k} P\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =C_{\xi, \theta}\left(\sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =\sum_{m=0}^{k} C_{\xi, \theta}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right) \\
& =e^{i \xi} \sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \frac{\hat{\psi}(n)}{\bar{a}^{m}} \bar{b}^{-k-m} e^{-i(m+n) \theta} z^{m+n}\right) \\
& =\mu \sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{-k-m} \lambda^{m+n} z^{m+n}\right) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta} z^{k} & =C_{\phi}^{*} T_{\psi}^{*} C_{\xi, \theta} z^{k} \\
& =C_{\phi}^{*} T_{\bar{\psi}}\left(e^{i \xi} e^{-i k \theta} z^{k}\right) \\
& =C_{\phi}^{*} T_{\bar{\psi}}\left(\mu \lambda^{k} z^{k}\right) \\
& =C_{\phi}^{*} P\left(\mu \lambda^{k} \sum_{n=-\infty}^{\infty} \overline{\hat{\psi}(n)} z^{k-n}\right) \\
& =C_{\phi}^{*} P\left(\mu \lambda^{k} \sum_{n=-\infty}^{\infty} \overline{\hat{\psi}(-n)} z^{n+k}\right) \\
& =\mu \lambda^{k} C_{\phi}^{*}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} z^{n+k}\right) \tag{4}
\end{align*}
$$

On using Theorem 2.1 for $a \neq 0, c=0$ and $d=1$, we obtain that $C_{\phi}^{*}=M_{g} C_{\sigma}$ where $g(z)=(1-\bar{b} z)^{-1}$ and $\sigma(z)=\frac{\bar{a} z}{1-\bar{b} z}$. Since $|a|+|b| \leq 1$ from Lemma 2.2, so $|b|<1$ and hence, $\frac{1}{(1-\bar{b} z)^{i}}=\sum_{j=0}^{\infty}\binom{j+i-1}{j}(\bar{b} z)^{j}$ for $z \in \mathbb{D}$.

Therefore, from (4) we get that

$$
\begin{align*}
\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta} z^{k} & =\mu \lambda^{k} M_{g} C_{\sigma}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} z^{n+k}\right) \\
& =\mu \lambda^{k} M_{g}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)}\left(\frac{\bar{a} z}{1-\bar{b} z}\right)^{n+k}\right) \\
& =\mu \lambda^{k}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} \bar{a}^{n+k}\left(\frac{1}{1-\bar{b} z}\right)^{n+k+1} z^{n+k}\right) \\
& =\mu \sum_{j=0}^{\infty}\left(\sum_{n=-k}^{\infty}\binom{n+k+j}{j} \overline{\left.\hat{\psi}(-n) \bar{a}^{n+k} \bar{b}^{j} \lambda^{k} z^{n+k+j}\right) .}\right. \tag{5}
\end{align*}
$$

It follows from (2) that for each $k \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
\sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{k-m} \lambda^{m+n} z^{m+n}\right)=\sum_{j=0}^{\infty}\left(\sum_{n=-k}^{\infty}\binom{n+k+j}{j} \overline{\hat{\psi}}(-n)_{\bar{a}} \bar{a}^{n+k} \bar{b}^{j} \lambda^{k} z^{n+k+j}\right) \tag{6}
\end{equation*}
$$

Thus, the coefficient of z^{p} where $p \in \mathbb{N} \cup\{0\}$ must be equal on the both sides of (6). On comparing the coefficients of $1, z, z^{2}, z^{3}$ and so on, on the both sides of (6), we observe that
for each $k, p \in \mathbb{N} \cup\{0\}$.
Conversely, let us suppose that (7) holds for each $k, p \in \mathbb{N} \cup\{0\}$. Then from (3) and (5), we have

$$
\begin{aligned}
\left(C_{\xi, \theta} T_{\psi} C_{\phi}-\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta}\right) z^{k} & =\mu\left(\sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \overline{\hat{\psi}(n)} \bar{a}^{m} b^{-k-m} \lambda^{m+n} z^{m+n}\right)\right) \\
& -\mu\left(\sum_{j=0}^{\infty}\left(\sum_{n=-k}^{\infty}\binom{n+k+j}{j} \overline{\hat{\psi}(-n)} \bar{a}^{-n+k} \bar{b}^{j} \lambda^{k} z^{n+k+j}\right)\right) \\
& =0
\end{aligned}
$$

Case (ii) : If $b=0$, then

$$
\begin{align*}
C_{\xi, \theta} T_{\psi} C_{\phi} z^{k} & =C_{\xi, \theta} T_{\psi}(\phi(z))^{k} \\
& =C_{\xi, \theta} T_{\psi}(a z)^{k} \\
& =C_{\xi, \theta} P\left(\sum_{n=-\infty}^{\infty} \hat{\psi}(n) a^{k} z^{n+k}\right) \\
& =C_{\xi, \theta}\left(\sum_{n=-k}^{\infty} \hat{\psi}(n) a^{k} z^{n+k}\right) \\
& =e^{i \xi} \sum_{n=-k}^{\infty} \overline{\hat{\psi}(n)} \bar{a}^{k} e^{-i(n+k) \theta} z^{n+k} \\
& =\mu \sum_{n=-k}^{\infty} \overline{\hat{\psi}(n)} \bar{a}^{k} \lambda^{n+k} z^{n+k} . \tag{8}
\end{align*}
$$

For $a \neq 0, b=c=0$ and $d=1$, we get from Theorem 2.1 that $g(z)=h(z)=1$ and $\sigma(z)=\bar{a} z$. Thus, $C_{\phi}^{*}=C_{\sigma}$. We compute

$$
\begin{align*}
\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta} z^{k} & =C_{\phi}^{*} T_{\psi}^{*} C_{\xi, \theta} z^{k} \\
& =C_{\sigma} T_{\bar{\psi}}\left(\mu \lambda^{k} z^{k}\right) \\
& =C_{\sigma} P\left(\mu \sum_{n=-\infty}^{\infty} \overline{\hat{\psi}(n)} \lambda^{k} z^{k-n}\right) \\
& =C_{\sigma} P\left(\mu \sum_{n=-\infty}^{\infty} \overline{\hat{\psi}(-n)} \lambda^{k} z^{n+k}\right) \\
& =\mu C_{\sigma}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} \lambda^{k} z^{n+k}\right) \\
& =\mu \sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} \lambda^{k} \bar{a}^{n+k} z^{n+k} . \tag{9}
\end{align*}
$$

Since the equation (2) holds, on equating the expressions (8) and (9), we obtain that $\overline{\hat{\psi}(n)} \lambda^{n}=\overline{\hat{\psi}(-n)} \bar{a}^{n}$ for every $n \in \mathbb{Z}$. Conversely, let us assume that $\overline{\hat{\psi}(n)} \lambda^{n}=\overline{\hat{\psi}(-n)} \bar{a}^{n}$ for every $n \in \mathbb{Z}$. Then (8) and (9) implies that $\left(C_{\xi, \theta} T_{\psi} C_{\phi}-\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta}\right) z^{k}=0$. Thus, $T_{\psi} C_{\phi}$ is complex symmetric with conjugation $C_{\xi, \theta}$.

Example 2.7. Let $\psi(z)=z+\bar{z} \in L^{\infty}$. Then, $\hat{\psi}(n)=\hat{\psi}(-n)$ for all $n \in \mathbb{Z}$. Let $\phi(z)=i z$. Then $\phi(z)$ is a self-analytic map on \mathbb{D}. Consider the conjugation $C_{\xi, \theta}$ where we choose $\theta=\pi / 2$. Then $\lambda=e^{-i \theta}=-i$. On taking $a=i, b=0$ and $\lambda=-i$ in Theorem 2.6 , we get that $\overline{\hat{\psi}(n)} \lambda^{n}=\overline{\hat{\psi}(-n)} \bar{a}^{n}$ for every $n \in \mathbb{Z}$ and hence, $C_{\xi, \theta} T_{\psi} C_{\phi}=\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta}$. Therefore, the operator $T_{\psi} C_{\phi}$ is complex symmetric with respect to the conjugation $C_{\xi, \pi / 2}$.

In the light of the above example, an interesting observation has been made in the following Corollary:
Corollary 2.8. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z$ be a self-analytic map on \mathbb{D} where $a=e^{i \theta}$ for $\theta \in \mathbb{R}$. Then $T_{\psi} C_{\phi}$ is complex symmetric with respect to the conjugation $C_{\xi, \theta}$ if and only if $\hat{\psi}(n)=\hat{\psi}(-n)$ for all $n \in \mathbb{Z}$.

Proof. It follows from Theorem 2.6 that $T_{\psi} C_{\phi}$ is complex symmetric with respect to the conjugation $C_{\xi, \theta}$ if and only if $\overline{\hat{\psi}(n)} \lambda^{n}=\overline{\hat{\psi}(-n)} \bar{a}^{n}$ if and only if $\hat{\psi}(n)=\hat{\psi}(-n)$ for all $n \in \mathbb{Z}$ where $a=e^{i \theta}$ and $\lambda=e^{-i \theta}$.

An operator $T: \mathcal{H} \rightarrow \mathcal{H}$ where \mathcal{H} denotes a Hilbert space is said to be hyponormal if $T^{*} T \geq T T^{*}$ or equivalently, $\|T x\| \geq\left\|T^{*} x\right\|$ for every $x \in \mathcal{H}$. Our next goal is to find out the conditions under which a Toeplitz composition operator $T_{\psi} C_{\phi}$ becomes a normal operator. The proof involves the technique followed in [Proposition 2.2, [2]].

Theorem 2.9. Let $\psi \in L^{\infty}$ and let ϕ be any self-analytic mapping from \mathbb{D} into itself. If the operator $T_{\psi} C_{\phi}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ is hyponormal and complex symmetric with conjugation $C_{\xi, \theta}$, then $T_{\psi} C_{\phi}$ is a normal operator on \mathcal{H}^{2}.

Proof. Since $T_{\psi} C_{\phi}$ is complex symmetric with respect to the conjugation $C_{\xi, \theta}$, this gives that $\left(T_{\psi} C_{\phi}\right)^{*}=$ $C_{\xi, \theta} T_{\psi} C_{\phi} C_{\xi, \theta}$. On using the isometry of $C_{\xi, \theta}$, we obtain that

$$
\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\|=\left\|C_{\xi, \theta} T_{\psi} C_{\phi} C_{\xi, \theta} f\right\|=\left\|T_{\psi} C_{\phi} C_{\xi, \theta} f\right\| \text { for every } f \in \mathcal{H}^{2}
$$

By hypothesis, $T_{\psi} C_{\phi}$ is a hyponormal operator on \mathcal{H}^{2} and thus, $\left\|T_{\psi} C_{\phi} f\right\| \geq\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\|$ for every $f \in \mathcal{H}^{2}$. Therefore, $\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\|=\left\|T_{\psi} C_{\phi} C_{\xi, \theta} f\right\| \geq\left\|\left(T_{\psi} C_{\phi}\right)^{*} C_{\xi, \theta} f\right\|=\left\|C_{\xi, \theta} T_{\psi} C_{\phi} f\right\|=\left\|T_{\psi} C_{\phi} f\right\|$ for every $f \in \mathcal{H}^{2}$. Hence, $\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\| \geq\left\|T_{\psi} C_{\phi} f\right\|$ and this together with the hyponormality of $T_{\psi} C_{\phi}$ implies that $\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\|=\left\|T_{\psi} C_{\phi} f\right\|$ for every $f \in \mathcal{H}^{2}$ which proves that $T_{\psi} C_{\phi}$ is a normal operator.

In the following theorem, the conditions under which the Toeplitz composition operator $T_{\psi} C_{\phi}$ commutes with the conjugation $C_{\xi, \theta}$ has been investigated which further provides us with a criteria which together with the complex symmetry of $T_{\psi} C_{\phi}$ makes the operator $T_{\psi} C_{\phi}$ a normal operator.
Theorem 2.10. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Then the Toeplitz composition operator $T_{\psi} C_{\phi}$ commutes with the conjugation $C_{\xi, \theta}$ on \mathcal{H}^{2} if and only if for each $m, k \in \mathbb{N} \cup\{0\}(0 \leq m \leq k)$ and $n \in \mathbb{Z}$, we have:
(i) $\hat{\psi}(n) a^{m} b^{k-m} \lambda^{k}=\overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{k-m} \lambda^{m+n}$ if $b \neq 0$ and,
(ii) $\hat{\psi}(n) a^{k}=\overline{\hat{\psi}(n)} \bar{a}^{k} \lambda^{n}$ if $b=0$.

Proof. If the operator $T_{\psi} C_{\phi}$ commutes with $C_{\xi, \theta}$, then for each $k \in \mathbb{N} \cup\{0\}$, we have $T_{\psi} C_{\phi} C_{\xi, \theta} z^{k}=C_{\xi, \theta} T_{\psi} C_{\phi} z^{k}$. We consider the following two cases:
Case (i): Let us suppose that $b \neq 0$. Since for each $k \in \mathbb{N} \cup\{0\}$,

$$
\begin{aligned}
T_{\psi} C_{\phi} C_{\xi, \theta} z^{k} & =T_{\psi} C_{\phi}\left(e^{i \xi} e^{-i k \theta} z^{k}\right) \\
& =P\left(\psi(z) \cdot \mu \lambda^{k}(a z+b)^{k}\right) \\
& =\mu \lambda^{k} P\left(\sum_{m=0}^{k}\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =\mu \lambda^{k}\left(\sum_{m=0}^{k} P\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =\mu \lambda^{k} \sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C_{\xi, \theta} T_{\psi} C_{\phi} z^{k} & =C_{\xi, \theta} T_{\psi}\left((a z+b)^{k}\right) \\
& =C_{\xi, \theta} P\left(\sum_{m=0}^{k}\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =C_{\xi, \theta}\left(\sum_{m=0}^{k} P\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =C_{\xi, \theta}\left(\sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =\mu \sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{k-m} \lambda^{m+n} z^{m+n}\right) ;
\end{aligned}
$$

we obtain that $\hat{\psi}(n) a^{m} b^{k-m} \lambda^{k}=\overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{k-m} \lambda^{m+n}$ for each $n \in \mathbb{Z}$ and $m \in \mathbb{N} \cup\{0\}(0 \leq m \leq k)$.
Conversely, if for each $n \in \mathbb{Z}$ and $m, k \in \mathbb{N} \cup\{0\}$, we have $\hat{\psi}(n) a^{m} b^{k-m} \lambda^{k}=\overline{\hat{\psi}(n)} \bar{a}^{m} \bar{b}^{k-m} \lambda^{m+n}$, then $\left(T_{\psi} C_{\phi} C_{\xi, \theta}-C_{\xi, \theta} T_{\psi} C_{\phi}\right) z^{k}=0$ which proves that $T_{\psi} C_{\phi}$ commutes with $C_{\xi, \theta}$.
Case (ii) : Let $b=0$. Then $T_{\psi} C_{\phi} C_{\xi, \theta} z^{k}=C_{\xi, \theta} T_{\psi} C_{\phi} z^{k}$ if and only if $P\left(\psi(z) \cdot \mu \lambda^{k}(a z)^{k}\right)=C_{\xi, \theta} P(\psi(z) \cdot$ $\left.(a z)^{k}\right)$ if and only if $P\left(\sum_{n=-\infty}^{\infty} \hat{\psi}(n) \mu \lambda^{k} a^{k} z^{n+k}\right)=e^{i \xi} \sum_{n=-k}^{\infty} \overline{\hat{\psi}(n)} \bar{a}^{k} e^{-i(n+k) \theta} z^{n+k}$ if and only if $\sum_{n=-k}^{\infty} \hat{\psi}(n) \lambda^{k} a^{k} z^{n+k}=$ $\sum_{n=-k}^{\infty} \overline{\hat{\psi}(n)} \bar{a}^{k} \lambda^{n+k} z^{n+k}$ if and only if $\hat{\psi}(n) a^{k}=\overline{\hat{\psi}(n)} \bar{a}^{k} \lambda^{n}$ for every $n \in \mathbb{Z}$ and $k \in \mathbb{N} \cup\{0\}$.

Corollary 2.11. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Then the Toeplitz composition operator $T_{\psi} C_{\phi}$ commutes with the conjugation $C_{0,0}$ on \mathcal{H}^{2} if and only if for each $n \in \mathbb{Z}$ and $m, k \in \mathbb{N} \cup\{0\}(0 \leq m \leq k)$, we have:
(i) $\hat{\psi}(n) a^{m} b^{k-m} \in \mathbb{R}$ if $b \neq 0$, and
(ii) $\hat{\psi}(n) a^{k} \in \mathbb{R}$ if $b=0$.

The following theorem is in general valid for any linear operator T on a Hilbert space \mathcal{H} which is complex symmetric with respect to any conjugation C defined on \mathcal{H} such that T commutes with C.

Theorem 2.12. Let $\psi \in L^{\infty}$ and let ϕ be any self-analytic mapping from \mathbb{D} into itself. Suppose that $T_{\psi} C_{\phi}$ is a complex symmetric operator with conjugation $C_{\xi, \theta}$ on \mathcal{H}^{2} and further, suppose that $T_{\psi} C_{\phi}$ commutes with $C_{\xi, \theta}$. Then $T_{\psi} C_{\phi}$ is a normal operator on \mathcal{H}^{2}.

Proof. By hypothesis, $T_{\psi} C_{\phi}$ is a complex symmetric operator with conjugation $C_{\xi, \theta}$ such that it commutes with $C_{\xi, \theta}$ which implies that $T_{\psi} C_{\phi}$ is a self-adjoint operator. That is,

$$
\begin{equation*}
\left(T_{\psi} C_{\phi}\right)^{*}=C_{\xi, \theta} T_{\psi} C_{\phi} C_{\xi, \theta}=C_{\xi, \theta} C_{\xi, \theta} T_{\psi} C_{\phi}=T_{\psi} C_{\phi} \tag{10}
\end{equation*}
$$

Hence, $T_{\psi} C_{\phi}$ is a normal operator on \mathcal{H}^{2}.
Corollary 2.13. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Suppose that $T_{\psi} C_{\phi}: \mathcal{H}^{2} \rightarrow \mathcal{H}^{2}$ is a complex symmetric operator with conjugation $C_{0,0}$ and $\hat{\psi}(n) a^{m} b^{k-m} \in \mathbb{R}$ for each $n \in \mathbb{Z}$ and $m, k \in \mathbb{N} \cup\{0\}(0 \leq m \leq k)$. Then $T_{\psi} C_{\phi}$ is a normal operator on \mathcal{H}^{2}.

Proof. From Corollary 2.11, we obtain that $T_{\psi} C_{\phi}$ commutes with the conjugation $C_{0,0}$ as $\hat{\psi}(n) a^{m} b^{k-m} \in \mathbb{R}$ for each $n \in \mathbb{Z}$ and $m, k \in \mathbb{N} \cup\{0\}(0 \leq m \leq k)$. Thus, we get that $T_{\psi} C_{\phi}$ is a normal operator on \mathcal{H}^{2} by Theorem 2.12.

3. Normality Of Toeplitz Composition Operators

In this section we discuss the normality of the Toeplitz composition operators on \mathcal{H}^{2}. We explore the conditions under which the operator $T_{\psi} C_{\phi}$ becomes normal and further we discover the necessary and sufficient conditions for the operator $T_{\psi} C_{\phi}$ to be Hermitian.

Theorem 3.1. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Let the operator $T_{\psi} C_{\phi}$ on \mathcal{H}^{2} be hyponormal. Then we have the following:
(i) If $b \neq 0$, then $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-\sum_{m=0}^{\infty}\left(\binom{m+n}{m}|\hat{\psi}(-n)||a|^{n}|b|^{m}\right)^{2}\right\} \geq 0$.
(ii) If $b=0$, then $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-|\hat{\psi}(-n)|^{2}|a|^{2 n}\right\} \geq 0$.

Proof. By the hyponormality of $T_{\psi} C_{\phi}$ on \mathcal{H}^{2}, we have $\left\|T_{\psi} C_{\phi} f\right\|^{2} \geq\left\|\left(T_{\psi} C_{\phi}\right)^{*} f\right\|^{2}$ for every $f \in \mathcal{H}^{2}$. In particular, on taking $f \equiv 1$, we obtain that

$$
\begin{equation*}
\left\|T_{\psi} C_{\phi}(1)\right\|^{2} \geq\left\|\left(T_{\psi} C_{\phi}\right)^{*}(1)\right\|^{2} \tag{11}
\end{equation*}
$$

Then $\left\|T_{\psi} C_{\phi}(1)\right\|^{2}=\left\|P\left(\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n}\right)\right\|^{2}=\left\|\sum_{n=0}^{\infty} \hat{\psi}(n) z^{n}\right\|^{2}=\sum_{n=0}^{\infty}|\hat{\psi}(n)|^{2}$. It can be noted that the function $\psi(z)$ can be expressed as

$$
\psi(z)=\psi_{+}(z)+\psi_{0}(z)+\overline{\psi_{-}(z)}
$$

where $\psi_{+}(z)=\sum_{n=1}^{\infty} \hat{\psi}(n) z^{n}, \psi_{-}(z)=\sum_{n=1}^{\infty} \overline{\hat{\psi}(-n)} z^{n}$ and $\psi_{0}(z)=\hat{\psi}(0)$. It follows that $P(\overline{\psi(z)})=P\left(\overline{\psi_{+}(z)}+\right.$ $\left.\overline{\psi_{0}(z)}+\psi_{-}(z)\right)=\sum_{n=0}^{\infty} \overline{\hat{\psi}(-n)} z^{n}$.

Let us first assume that $b \neq 0$. Since $C_{\phi}^{*}=M_{g} C_{\sigma}$ where $g(z)=(1-\bar{b} z)^{-1}$ and $\sigma(z)=\frac{\bar{a} z}{1-\bar{b} z}$, it is obtained that

$$
\begin{aligned}
\left\|\left(T_{\psi} C_{\phi}\right)^{*}(1)\right\|^{2}=\left\|C_{\phi}^{*} T_{\bar{\psi}}(1)\right\|^{2} & =\left\|M_{g} C_{\sigma} P(\overline{\psi(z)})\right\|^{2} \\
& =\left\|M_{g} C_{\sigma}\left(\sum_{n=0}^{\infty} \overline{\hat{\psi}(-n)} z^{n}\right)\right\|^{2} \\
& =\left\|\sum_{n=0}^{\infty} \frac{\hat{\psi}(-n)}{} \frac{\bar{a}^{n} z^{n}}{(1-\bar{b} z)^{n+1}}\right\|^{2} \\
& =\left\|\sum_{n=0}^{\infty}\left(\sum_{m=0}^{\infty}\binom{m+n}{m} \overline{\hat{\psi}(-n)} \bar{a}^{n} \bar{b}^{m} z^{m+n}\right)\right\|^{2} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{\infty}\left(\binom{m+n}{m}|\hat{\psi}(-n) \| a|^{n}|b|^{m}\right)^{2}\right) .
\end{aligned}
$$

Hence, it follows from (11) that $\left.\left.\sum_{n=0}^{\infty}| | \hat{\psi}(n)\right|^{2}-\sum_{m=0}^{\infty}\left(\binom{m+n}{m}|\hat{\psi}(-n) \| a|^{n}|b|^{m}\right)^{2}\right\} \geq 0$.
If $b=0$, then $C_{\phi}^{*}=C_{\sigma}$ where $\sigma(z)=\bar{a} z$. This implies that $\left\|\left(T_{\psi} C_{\phi}\right)^{*}(1)\right\|^{2}=\left\|C_{\sigma} T_{\bar{\psi}}(1)\right\|^{2}=\sum_{n=0}^{\infty}|\hat{\psi}(-n)|^{2}|a|^{2 n}$. Thus, from (11), we get that $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-|\hat{\psi}(-n)|^{2}|a|^{2 n}\right\} \geq 0$.

Corollary 3.2. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Let the operator $T_{\psi} C_{\phi}$ on \mathcal{H}^{2} be normal. Then we have the following:
(i) If $b \neq 0$, then $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-\sum_{m=0}^{\infty}\left(\binom{m+n}{m}|\hat{\psi}(-n)||a|^{n}|b|^{m}\right)^{2}\right\}=0$.
(ii) If $b=0$, then $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-|\hat{\psi}(-n)|^{2}|a|^{2 n}\right\}=0$.

The condition obtained above in Corollary 3.2 is necessary but not sufficient which can be observed through the following example:

Example 3.3. Let $\psi(z)=z+\bar{z}$ and $\phi(z)=i z$. Then, for $a=i, b=0, \hat{\psi}(-1)=\hat{\psi}(1)=1$ and $\hat{\psi}(-n)=\hat{\psi}(n)=0$ where $n \in \mathbb{Z}-\{0\}$, the condition $\sum_{n=0}^{\infty}\left\{|\hat{\psi}(n)|^{2}-|\hat{\psi}(-n)|^{2}|a|^{2 n}\right\}=0$ is satisfied. But the Toeplitz composition operator $T_{\psi} C_{\phi}$ is not normal as $\left(T_{\psi} C_{\phi}\right)\left(T_{\psi} C_{\phi}\right)^{*}(z)=z^{3}+2 z$ whereas $\left(T_{\psi} C_{\phi}\right)^{*}\left(T_{\psi} C_{\phi}\right)(z)=-z^{3}+2 z$.

Next we investigate the necessary and sufficient conditions under which the operator $T_{\psi} C_{\phi}$ becomes Hermitian.

Theorem 3.4. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \hat{\psi}(n) z^{n} \in L^{\infty}$ and $\phi(z)=a z+b(a \neq 0)$ be a linear fractional transformation mapping \mathbb{D} into itself. Then the Toeplitz composition operator $T_{\psi} C_{\phi}$ on \mathcal{H}^{2} is Hermitian if and only if for each $k, p \in \mathbb{N} \cup\{0\}$ and $n \in \mathbb{Z}$, we have :
(i) $\sum_{n=-k+p}^{p}\binom{k}{p-n} \hat{\psi}(n) a^{p-n} b^{n+k-p}=\sum_{n=-k}^{-k+p}\binom{p}{p-n-k} \overline{\hat{\psi}(-n)} \bar{a}^{n+k} \bar{b}^{p-n-k}$ when $b \neq 0$ and, (ii) $a^{k} \hat{\psi}(n)=\bar{a}^{n+k} \overline{\hat{\psi}(-n)}$ when $b=0$.

Proof. Let us suppose that the operator $T_{\psi} C_{\phi}$ is Hermitian on \mathcal{H}^{2}. This implies that $T_{\psi} C_{\phi} z^{k}=\left(T_{\psi} C_{\phi}\right)^{*} z^{k}$ for
every $k \in \mathbb{N} \cup\{0\}$. Let us suppose $b \neq 0$. Since

$$
\begin{aligned}
T_{\psi} C_{\phi} z^{k} & =T_{\psi}(\phi(z))^{k} \\
& =P\left(\psi(z) \cdot \sum_{m=0}^{k}\binom{k}{m} a^{m} b^{k-m} z^{m}\right) \\
& =P\left(\sum_{m=0}^{k}\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)\right) \\
& =\sum_{m=0}^{k} P\left(\sum_{n=-\infty}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right) \\
& =\sum_{m=0}^{k}\left(\sum_{n=-m}^{\infty}\binom{k}{m} \hat{\psi}(n) a^{m} b^{k-m} z^{m+n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T_{\psi} C_{\phi}\right)^{*} z^{k} & =C_{\phi}^{*} T_{\bar{\psi}} z^{k} \\
& =C_{\phi}^{*} P\left(\sum_{n=-\infty}^{\infty} \overline{\hat{\psi}(-n)} z^{n+k}\right) \\
& =M_{g} C_{\sigma}\left(\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} z^{n+k}\right) \\
& \left.=\sum_{n=-k}^{\infty} \overline{\hat{\psi}(-n)} \bar{a}^{n+k}\left(\frac{1}{1-\bar{b} z}\right)^{n+k+1} z^{n+k}\right) \\
& =\sum_{j=0}^{\infty}\left(\sum_{n=-k}^{\infty}\binom{n+k+j}{j} \overline{\hat{\psi}(-n)} \bar{a}^{n+k} \bar{b}^{j} z^{n+k+j}\right)
\end{aligned}
$$

where $g(z)=(1-\bar{b} z)^{-1}$ and $\sigma(z)=\frac{\bar{a} z}{1-\bar{b} z}$; it follows that the coefficient of z^{p} for $p \in \mathbb{N} \cup\{0\}$ in the expressions for $T_{\psi} C_{\phi} z^{k}$ and $\left(T_{\psi} C_{\phi}\right)^{*} z^{k}$ are equal for each $k \in \mathbb{N} \cup\{0\}$. Therefore, on comparing the coefficients of $1, z, z^{2}$, z^{3} and so on in the expressions of $T_{\psi} C_{\phi} z^{k}$ and $\left(T_{\psi} C_{\phi}\right)^{*} z^{k}$, we obtain that for each $k, p \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\sum_{n=-k+p}^{p}\binom{k}{p-n} \hat{\psi}(n) a^{p-n} b^{n+k-p}=\sum_{n=-k}^{-k+p}\binom{p}{p-n-k} \overline{\hat{\psi}(-n)} \bar{a}^{n+k} \bar{b}^{p-n-k} . \tag{12}
\end{equation*}
$$

Conversely, let us assume that for each $k, p \in \mathbb{N} \cup\{0\}$, equation (12) holds. Then evaluating the expression $\left(T_{\psi} C_{\phi}-\left(T_{\psi} C_{\phi}\right)^{*}\right) z^{k}$ for each $k \in \mathbb{N} \cup\{0\}$ gives the value as zero. Hence, we obtain that the operator $T_{\psi} C_{\phi}$ is Hermitian on \mathcal{H}^{2}.

Now we take $b=0$. Then it can be easily evaluated that $\left(T_{\psi} C_{\phi}-\left(T_{\psi} C_{\phi}\right)^{*}\right) z^{k}=0$ if and only if $\sum_{n=-k}^{\infty} \hat{\psi}(n) a^{k} z^{n+k}-\sum_{n=-k}^{\infty} \hat{\psi}(-n) \bar{a}^{n+k} z^{n+k}=0$ if and only if $a^{k} \hat{\psi}(n)=\bar{a}^{n+k} \hat{\psi}(-n)$ for every $n \in \mathbb{Z}$ and $k \in$ $\mathbb{N} \cup\{0\}$.

Acknowledgement: The authors are thankful to the reviewers for their valuable suggestions and comments.

References

[1] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
[2] S. R. Garcia and C. Hammond, Which weighted composition operators are complex symmetric?, in Concrete operators, spectral theory, operators in harmonic analysis and approximation, 171-179, Operator Theory: Advances and Applications, 236, Birkhäuser/Springer, Basel.
[3] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Transactions of the American Mathematical Society 358 (2006), no. 3, 1285-1315.
[4] S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Transactions of the American Mathematical Society 359 (2007), no. 8, 3913-3931.
[5] A. Gupta and S. K. Singh, Toeplitz composition operators on the Fock space, Complex Variables and Elliptic Equations 64 (2019), no. 7, 1077-1092.
[6] P. R. Hurst, Relating composition operators on different weighted Hardy spaces, Archiv der Mathematik (Basel) 68 (1997), no. 6, 503-513.
[7] S. Jung, Y. Kim, E. Ko, and J. E. Lee, Complex symmetric weighted composition operators on H^{2} (DD), Journal of Functional Analysis 267 (2014), no. 2, 323-351.
[8] E. Ko and J. E. Lee, On complex symmetric Toeplitz operators, Journal of Mathematical Analysis and Applications 434 (2016), no. 1, 20-34.
[9] M. J. Martín and D. Vukotić, Adjoints of composition operators on Hilbert spaces of analytic functions, Journal of Functional Analysis 238 (2006), no. 1, 298-312.
[10] J. H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.

[^0]: 2020 Mathematics Subject Classification. Primary 47B33, 47B35, 47B38
 Keywords. Complex symmetric, Composition operator, Conjugation, Toeplitz operator
 Received: 05 January 2020; Revised: 08 April 2020; Accepted: 13 May 2020
 Communicated by In Sung Hwang
 Email addresses: dishna2@yahoo.in (Anuradha Gupta), aasthamalhotra01@gmail.com (Aastha Malhotra)

