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Abstract. In this paper, we investigate the conditions under which the Toeplitz composition operator on
the Hardy space H2 becomes complex symmetric with respect to a certain conjugation. We also study
various normality conditions for the Toeplitz composition operator onH2.

1. Introduction and Preliminaries

Let D denote the open unit disc and T = {eiθ : θ ∈ [0, 2π)} denote the unit circle in the complex plane
C. Recall that the Hardy space H2 is a Hilbert space which consists of all those analytic functions f on D
having power series representation with square summable complex coefficients. That is,

H
2 = { f : D→ C | f (z) =

∞∑
n=0

f̂ (n)zn and ∥ f ∥2
H2 :=

∞∑
n=0

| f̂ (n)|2 < ∞}

or equivalently,

H
2 = { f : D→ C analytic | sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ)|2dθ < ∞}.

The evaluation of functions in H2 at each w ∈ D is a bounded linear functional and for all f ∈ H2,
f (w) = ⟨ f ,Kw⟩ where Kw(z) = 1/(1 − wz). The function Kw(z) is called the reproducing kernel for the Hardy
spaceH2. Consider the Hilbert space

H̃2 = { f ∗ : T→ C | f ∗(z) =
∞∑

n=0

f̂ (n)einθ and ∥ f ∗∥2
H2 :=

∞∑
n=0

| f̂ (n)|2 < ∞}.

Let L2 denote the Lebesgue (Hilbert) space on the unit circle T. It is well known that every function
f ∈ H2 satisfies the radial limit f ∗(eiθ) = lim

r→1−
f (reiθ) for almost every θ ∈ [0, 2π) and it is obvious that the
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correspondence where f (z) =
∑
∞

n=0 f̂ (n)zn is mapped to f ∗(eiθ) =
∑
∞

n=0 f̂ (n)einθ is an isometric isomorphism
from H2 onto the closed subspace H̃2 of L2. Since {en(z) = zn : n ∈ Z} forms an orthonormal basis for L2,
every function f ∈ L2 can be expressed as f (z) =

∑
∞

n=−∞ f̂ (n)zn where f̂ (n) denotes the nth Fourier coefficient
of f . Let L∞ be the Banach space of all essentially bounded functions on the unit circle T. For any ϕ ∈ L∞,
the Toeplitz operator Tϕ : H2

→ H
2 is defined by Tϕ f = P(ϕ · f ) for f ∈ H2 where P : L2

→ H
2 is the

orthogonal projection. It can be easily verified that for m,n ∈ Z,

P(zmzn) =

zm−n if m ≥ n,
0 otherwise.

For a non-zero bounded analytic function u onD and a self-analytic mapϕ onD, the weighted composition
operator Wu,ϕ is defined by Wu,ϕ f = u · f ◦ϕ for every f ∈ H2. Over the past several decades, there has been
tremendous development in the study of composition operators and weighted composition operators over
the Hardy space H2 and various other spaces of analytic functions. Readers may refer [1, 10] for general
study and background of the composition operators on the Hardy space H2. In this paper, we introduce
the notion of the Toeplitz composition operator on the Hardy space H2 where the symbol u in Wu,ϕ need
not necessarily be analytic. For a function ψ ∈ L∞ and a self-analytic map ϕ on D, the Toeplitz composition
operator TψCϕ : H2

→ H
2 is defined by TψCϕ f = P(ψ · f ◦ ϕ) for every f ∈ H2 where Cϕ f := f ◦ ϕ is

the composition operator on H2. The authors in [5] introduced the concept of the Toeplitz composition
operators on the Fock space and also studied its various properties.

LetH be a separable Hilbert space. Then a mapping S onH is said to be anti-linear (also conjugate-linear)
if S(αx1 + βx2) = αS(x1) + βS(x2) for all scalars α, β ∈ C and for all x1, x2 ∈ H .

An anti-linear mapping C : H →H is said to be a conjugation if it is involutive (i.e. C2 = I) and isometric
(i.e. ∥Cx∥ = ∥x∥ for every x ∈ H). A complex symmetric operator S on H is a bounded linear operator such
that S = CS∗C for some conjugation C onH . We call such an operator S to be a C−symmetric operator.

Garcia and Putinar [3, 4] began the general study of complex symmetric operators on Hilbert spaces
which are the natural generalizations of complex symmetric matrices. There exist a wide variety of complex
symmetric operators which include normal operators, compressed Toeplitz operators, Volterra integration
operators etc. Jung et al. [7] studied the complex symmetry of the weighted composition operators on the
Hardy space in the unit disc D. Garcia and Hammond [2] undertook the study of complex symmetry of
weighted composition operators on the weighted Hardy spaces. Ko and Lee [8] gave a characterization of
the complex symmetric Toeplitz operators on the Hardy spaceH2 of the unit discD. Motivated by this, we
study the complex symmetry of the Toeplitz composition operators on the Hardy spaceH2. In this paper
we give a characterization of such types of operators. We also investigate certain conditions under which
a complex symmetric operator turns out to be a normal operator. In the concluding section of this article,
we discuss the normality of the Toeplitz composition operators onH2.

2. Complex Symmetric Toeplitz Composition Operators

In this section we aim to find the conditions under which a Toeplitz composition operator becomes
complex symmetric with respect to a certain fixed conjugation. In order to determine these conditions, we
need an explicit formula for the adjoint C∗ϕ of a composition operator Cϕ where ϕ is a self-analytic map
on the unit disc D. But there exists no general formula and there are only a few special cases where it is
possible to find a formula for C∗ϕ explicitly. C. Cowen was the first to find the representation for the adjoint
of a composition operator Cϕ onH2, famously known as the Cowen’s Adjoint Formula, where the symbol
ϕ is a linear fractional self-map of the unit disc D. The Cowen’s Adjoint Formula was extended to the
Bergman spaceA2 by P. Hurst [6] and it is stated as follows:

Theorem 2.1 ([1]). (Cowen’s Adjoint Formula) Let ϕ(z) = az+b
cz+d be a linear fractional self-map of the unit disc where

ad − bc , 0. Then σ(z) = az−c
−bz+d

maps disc into itself, 1(z) = (−bz + d)−p and h(z) = (cz + d)p are bounded analytic
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functions on the disc and onH2 orA2, C∗ϕ =M1CσM∗

h where p = 1 onH2 and p = 2 onA2.(Note that the operator
M1 is the multiplication operator defined by M1 f = 1 · f .)

Next we have the following lemmas which would be instrumental in proving certain results throughout
this article :

Lemma 2.2 ([9]). A linear fractional map ϕ, written in the form ϕ(z) = az+b
cz+d ; ad − bc , 0, mapsD into itself if and

only if:

|bd − ac| + |ad − bc| ≤ |d|2 − |c|2. (1)

Lemma 2.3 ([1]). Let ϕ(z) = az+b
cz+d be a linear fractional map and define the associated linear fractional transformation

ϕ∗ by

ϕ∗(z) =
1

ϕ−1( 1
z )
=

az − c

−bz + d
.

Then ϕ is a self-map of the disc if and only if ϕ∗ is also a self-map of the disc.

Lemma 2.4 ([1]). If ϕ(z) = az+b
cz+d is a linear fractional transformation mappingD into itself where ad − bc = 1, then

σ(z) = az−c
−bz+d

mapsD into itself.

In the following lemma, a conjugation on the Hardy space H2 has been defined with respect to which
we will find the complex symmetry of the operator TψCϕ.

Lemma 2.5 ([8]). For every ξ and θ, let Cξ,θ : H2
→H

2 be defined by

Cξ,θ f (z) = eiξ f (eiθz).

Then Cξ,θ is a conjugation onH2. Moreover, Cξ,θ and Cξ̃,θ̃ are unitarily equivalent where (ξ̃, θ̃) satisfies the equation
ξ̃ − kθ̃ = −ξ + kθ − 2nπ for every k ∈N and n ∈ Z.

In the next theorem, we determine the conditions under which the Toeplitz composition operator TψCϕ
turns out to be complex symmetric with respect to the conjugation Cξ,θ onH2.

Theorem 2.6. For ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and for self-analytic linear transformation ϕ(z) = az + b (a , 0)

mapping D into itself, let TψCϕ be a Toeplitz composition operator on H2. Then TψCϕ is complex symmetric with
the conjugation Cξ,θ if and only if for each k, p ∈N ∪ {0} and for every n ∈ Z, we have :

(i)
∑p

n=−k+p

( k
p−n

)
ψ̂(n)ap−nb

n+k−p
λp =

∑−k+p
n=−k

( p
p−n−k

)
ψ̂(−n)an+kb

p−n−k
λk for b , 0 and, (ii) ψ̂(n)λn = ψ̂(−n)an for

b = 0.

Proof. If TψCϕ is complex symmetric with respect to the conjugation Cξ,θ, then for all k ∈N ∪ {0}we have

Cξ,θTψCϕzk = (TψCϕ)∗Cξ,θzk. (2)

We take µ = eiξ and λ = e−iθ and consider the following two cases:
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Case (i) : Let b , 0. Then

Cξ,θTψCϕzk = Cξ,θTψ(ϕ(z))k

= Cξ,θTψ(az + b)k

= Cξ,θP(ψ(z) ·
k∑

m=0

(
k
m

)
ambk−mzm)

= Cξ,θP(
k∑

m=0

(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= Cξ,θ(
k∑

m=0

P(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= Cξ,θ(
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)ambk−mzm+n))

=

k∑
m=0

Cξ,θ(
∞∑

n=−m

(
k
m

)
ψ̂(n)ambk−mzm+n)

= eiξ
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)amb

k−m
e−i(m+n)θzm+n)

= µ
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)amb

k−m
λm+nzm+n) (3)

and

(TψCϕ)∗Cξ,θzk = C∗ϕT∗ψCξ,θzk

= C∗ϕTψ(eiξe−ikθzk)

= C∗ϕTψ(µλkzk)

= C∗ϕP(µλk
∞∑

n=−∞

ψ̂(n)zk−n)

= C∗ϕP(µλk
∞∑

n=−∞

ψ̂(−n)zn+k)

= µλkC∗ϕ(
∞∑

n=−k

ψ̂(−n)zn+k). (4)

On using Theorem 2.1 for a , 0, c = 0 and d = 1, we obtain that C∗ϕ = M1Cσ where 1(z) = (1 − bz)−1 and

σ(z) = az
1−bz

. Since |a| + |b| ≤ 1 from Lemma 2.2, so |b| < 1 and hence, 1
(1−bz)i

=
∑
∞

j=0
( j+i−1

j

)
(bz) j for z ∈ D.
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Therefore, from (4) we get that

(TψCϕ)∗Cξ,θzk = µλkM1Cσ(
∞∑

n=−k

ψ̂(−n)zn+k)

= µλkM1(
∞∑

n=−k

ψ̂(−n)
(

az

1 − bz

)n+k

)

= µλk(
∞∑

n=−k

ψ̂(−n)an+k
(

1

1 − bz

)n+k+1

zn+k)

= µ
∞∑
j=0

(
∞∑

n=−k

(
n + k + j

j

)
ψ̂(−n)an+kb

j
λkzn+k+ j). (5)

It follows from (2) that for each k ∈N ∪ {0}, we have

k∑
m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)amb

k−m
λm+nzm+n) =

∞∑
j=0

(
∞∑

n=−k

(
n + k + j

j

)
ψ̂(−n)an+kb

j
λkzn+k+ j). (6)

Thus, the coefficient of zp where p ∈ N ∪ {0} must be equal on the both sides of (6). On comparing the
coefficients of 1, z, z2, z3 and so on, on the both sides of (6), we observe that

p∑
n=−k+p

(
k

p − n

)
ψ̂(n)ap−nb

n+k−p
λp =

−k+p∑
n=−k

(
p

p − n − k

)
ψ̂(−n)an+kb

p−n−k
λk (7)

for each k, p ∈N ∪ {0} .
Conversely, let us suppose that (7) holds for each k, p ∈N ∪ {0}. Then from (3) and (5), we have

(Cξ,θTψCϕ − (TψCϕ)∗Cξ,θ)zk = µ(
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)amb

k−m
λm+nzm+n))

− µ(
∞∑
j=0

(
∞∑

n=−k

(
n + k + j

j

)
ψ̂(−n)an+kb

j
λkzn+k+ j))

= 0.

Case (ii) : If b = 0 , then

Cξ,θTψCϕzk = Cξ,θTψ(ϕ(z))k

= Cξ,θTψ(az)k

= Cξ,θP(
∞∑

n=−∞

ψ̂(n)akzn+k)

= Cξ,θ(
∞∑

n=−k

ψ̂(n)akzn+k)

= eiξ
∞∑

n=−k

ψ̂(n)ake−i(n+k)θzn+k

= µ
∞∑

n=−k

ψ̂(n)akλn+kzn+k. (8)
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For a , 0, b = c = 0 and d = 1, we get from Theorem 2.1 that 1(z) = h(z) = 1 and σ(z) = az. Thus, C∗ϕ = Cσ.
We compute

(TψCϕ)∗Cξ,θzk = C∗ϕT∗ψCξ,θzk

= CσTψ(µλkzk)

= CσP(µ
∞∑

n=−∞

ψ̂(n)λkzk−n)

= CσP(µ
∞∑

n=−∞

ψ̂(−n)λkzn+k)

= µCσ(
∞∑

n=−k

ψ̂(−n)λkzn+k)

= µ
∞∑

n=−k

ψ̂(−n)λkan+kzn+k. (9)

Since the equation (2) holds, on equating the expressions (8) and (9), we obtain that ψ̂(n)λn = ψ̂(−n)an for

every n ∈ Z. Conversely, let us assume that ψ̂(n)λn = ψ̂(−n)an for every n ∈ Z. Then (8) and (9) implies that
(Cξ,θTψCϕ − (TψCϕ)∗Cξ,θ)zk = 0. Thus, TψCϕ is complex symmetric with conjugation Cξ,θ.

Example 2.7. Let ψ(z) = z + z ∈ L∞. Then, ψ̂(n) = ψ̂(−n) for all n ∈ Z. Let ϕ(z) = iz. Then ϕ(z) is a self-analytic
map on D. Consider the conjugation Cξ,θ where we choose θ = π/2. Then λ = e−iθ = −i. On taking a = i, b = 0

and λ = −i in Theorem 2.6 , we get that ψ̂(n)λn = ψ̂(−n)an for every n ∈ Z and hence, Cξ,θTψCϕ = (TψCϕ)∗Cξ,θ.
Therefore, the operator TψCϕ is complex symmetric with respect to the conjugation Cξ,π/2.

In the light of the above example, an interesting observation has been made in the following Corollary:

Corollary 2.8. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az be a self-analytic map onD where a = eiθ for θ ∈ R.

Then TψCϕ is complex symmetric with respect to the conjugation Cξ,θ if and only if ψ̂(n) = ψ̂(−n) for all n ∈ Z.

Proof. It follows from Theorem 2.6 that TψCϕ is complex symmetric with respect to the conjugation Cξ,θ if

and only if ψ̂(n)λn = ψ̂(−n)an if and only if ψ̂(n) = ψ̂(−n) for all n ∈ Zwhere a = eiθ and λ = e−iθ.

An operator T : H → H where H denotes a Hilbert space is said to be hyponormal if T∗T ≥ TT∗

or equivalently, ∥Tx∥ ≥ ∥T∗x∥ for every x ∈ H . Our next goal is to find out the conditions under which a
Toeplitz composition operator TψCϕ becomes a normal operator. The proof involves the technique followed
in [Proposition 2.2, [2]].

Theorem 2.9. Letψ ∈ L∞ and letϕ be any self-analytic mapping fromD into itself. If the operator TψCϕ : H2
→H

2

is hyponormal and complex symmetric with conjugation Cξ,θ, then TψCϕ is a normal operator onH2.

Proof. Since TψCϕ is complex symmetric with respect to the conjugation Cξ,θ, this gives that (TψCϕ)∗ =
Cξ,θTψCϕCξ,θ. On using the isometry of Cξ,θ, we obtain that

∥(TψCϕ)∗ f ∥ = ∥Cξ,θTψCϕCξ,θ f ∥ = ∥TψCϕCξ,θ f ∥ for every f ∈ H2.

By hypothesis, TψCϕ is a hyponormal operator on H2 and thus, ∥TψCϕ f ∥ ≥ ∥(TψCϕ)∗ f ∥ for every f ∈ H2.
Therefore, ∥(TψCϕ)∗ f ∥ = ∥TψCϕCξ,θ f ∥ ≥ ∥(TψCϕ)∗Cξ,θ f ∥ = ∥Cξ,θTψCϕ f ∥ = ∥TψCϕ f ∥ for every f ∈ H2. Hence,
∥(TψCϕ)∗ f ∥ ≥ ∥TψCϕ f ∥ and this together with the hyponormality of TψCϕ implies that ∥(TψCϕ)∗ f ∥ = ∥TψCϕ f ∥
for every f ∈ H2 which proves that TψCϕ is a normal operator.
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In the following theorem, the conditions under which the Toeplitz composition operator TψCϕ commutes
with the conjugation Cξ,θ has been investigated which further provides us with a criteria which together
with the complex symmetry of TψCϕ makes the operator TψCϕ a normal operator.

Theorem 2.10. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mapping D into itself. Then the Toeplitz composition operator TψCϕ commutes with the conjugation Cξ,θ on H2 if
and only if for each m, k ∈N ∪ {0}(0 ≤ m ≤ k) and n ∈ Z, we have:

(i) ψ̂(n)ambk−mλk = ψ̂(n)amb
k−m
λm+n if b , 0 and,

(ii) ψ̂(n)ak = ψ̂(n)akλn if b = 0.

Proof. If the operator TψCϕ commutes with Cξ,θ, then for each k ∈N∪{0}, we have TψCϕCξ,θzk = Cξ,θTψCϕzk.
We consider the following two cases:
Case (i) : Let us suppose that b , 0. Since for each k ∈N ∪ {0},

TψCϕCξ,θzk = TψCϕ(eiξe−ikθzk)

= P(ψ(z) · µλk(az + b)k)

= µλkP(
k∑

m=0

(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= µλk(
k∑

m=0

P(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= µλk
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)ambk−mzm+n)

and

Cξ,θTψCϕzk = Cξ,θTψ((az + b)k)

= Cξ,θP(
k∑

m=0

(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= Cξ,θ(
k∑

m=0

P(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

= Cξ,θ(
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)ambk−mzm+n))

= µ
k∑

m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)amb

k−m
λm+nzm+n) ;

we obtain that ψ̂(n)ambk−mλk = ψ̂(n)amb
k−m
λm+n for each n ∈ Z and m ∈N ∪ {0}(0 ≤ m ≤ k).

Conversely, if for each n ∈ Z and m, k ∈ N ∪ {0}, we have ψ̂(n)ambk−mλk = ψ̂(n)amb
k−m
λm+n, then

(TψCϕCξ,θ − Cξ,θTψCϕ)zk = 0 which proves that TψCϕ commutes with Cξ,θ.
Case (ii) : Let b = 0. Then TψCϕCξ,θzk = Cξ,θTψCϕzk if and only if P(ψ(z) · µλk(az)k) = Cξ,θP(ψ(z) ·

(az)k) if and only if P(
∑
∞

n=−∞ ψ̂(n)µλkakzn+k) = eiξ∑∞
n=−k ψ̂(n)ake−i(n+k)θzn+k if and only if

∑
∞

n=−k ψ̂(n)λkakzn+k =∑
∞

n=−k ψ̂(n)akλn+kzn+k if and only if ψ̂(n)ak = ψ̂(n)akλn for every n ∈ Z and k ∈N ∪ {0}.

Corollary 2.11. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mapping D into itself. Then the Toeplitz composition operator TψCϕ commutes with the conjugation C0,0 on H2 if
and only if for each n ∈ Z and m, k ∈N ∪ {0}(0 ≤ m ≤ k), we have:
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(i) ψ̂(n)ambk−m
∈ R if b , 0, and

(ii) ψ̂(n)ak
∈ R if b = 0.

The following theorem is in general valid for any linear operator T on a Hilbert spaceH which is complex
symmetric with respect to any conjugation C defined onH such that T commutes with C.

Theorem 2.12. Let ψ ∈ L∞ and let ϕ be any self-analytic mapping from D into itself. Suppose that TψCϕ is a
complex symmetric operator with conjugation Cξ,θ onH2 and further, suppose that TψCϕ commutes with Cξ,θ. Then
TψCϕ is a normal operator onH2.

Proof. By hypothesis, TψCϕ is a complex symmetric operator with conjugation Cξ,θ such that it commutes
with Cξ,θ which implies that TψCϕ is a self-adjoint operator. That is,

(TψCϕ)∗ = Cξ,θTψCϕCξ,θ = Cξ,θCξ,θTψCϕ = TψCϕ. (10)

Hence, TψCϕ is a normal operator onH2.

Corollary 2.13. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mapping D into itself. Suppose that TψCϕ : H2
→ H

2 is a complex symmetric operator with conjugation C0,0 and
ψ̂(n)ambk−m

∈ R for each n ∈ Z and m, k ∈N ∪ {0}(0 ≤ m ≤ k). Then TψCϕ is a normal operator onH2.

Proof. From Corollary 2.11, we obtain that TψCϕ commutes with the conjugation C0,0 as ψ̂(n)ambk−m
∈ R for

each n ∈ Z and m, k ∈ N ∪ {0}(0 ≤ m ≤ k). Thus, we get that TψCϕ is a normal operator onH2 by Theorem
2.12.

3. Normality Of Toeplitz Composition Operators

In this section we discuss the normality of the Toeplitz composition operators on H2. We explore the
conditions under which the operator TψCϕ becomes normal and further we discover the necessary and
sufficient conditions for the operator TψCϕ to be Hermitian.

Theorem 3.1. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mappingD into itself. Let the operator TψCϕ onH2 be hyponormal. Then we have the following:
(i) If b , 0, then

∑
∞

n=0{|ψ̂(n)|2 −
∑
∞

m=0(
(m+n

m
)
|ψ̂(−n)||a|n|b|m)2

} ≥ 0.
(ii) If b = 0, then

∑
∞

n=0{|ψ̂(n)|2 − |ψ̂(−n)|2|a|2n
} ≥ 0.

Proof. By the hyponormality of TψCϕ on H2, we have ∥TψCϕ f ∥2 ≥ ∥(TψCϕ)∗ f ∥2 for every f ∈ H2. In
particular, on taking f ≡ 1, we obtain that

∥TψCϕ(1)∥2 ≥ ∥(TψCϕ)∗(1)∥2. (11)

Then ∥TψCϕ(1)∥2 = ∥P(
∑
∞

n=−∞ ψ̂(n)zn)∥2 = ∥
∑
∞

n=0 ψ̂(n)zn
∥

2 =
∑
∞

n=0 |ψ̂(n)|2. It can be noted that the function
ψ(z) can be expressed as

ψ(z) = ψ+(z) + ψ0(z) + ψ−(z)

where ψ+(z) =
∑
∞

n=1 ψ̂(n)zn, ψ−(z) =
∑
∞

n=1 ψ̂(−n)zn and ψ0(z) = ψ̂(0). It follows that P(ψ(z)) = P(ψ+(z) +

ψ0(z) + ψ−(z)) =
∑
∞

n=0 ψ̂(−n)zn.
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Let us first assume that b , 0. Since C∗ϕ =M1Cσ where 1(z) = (1− bz)−1 and σ(z) = az
1−bz

, it is obtained that

∥(TψCϕ)∗(1)∥2 = ∥C∗ϕTψ(1)∥2 = ∥M1CσP(ψ(z))∥2

= ∥M1Cσ(
∞∑

n=0

ψ̂(−n)zn)∥2

= ∥

∞∑
n=0

ψ̂(−n)
anzn

(1 − bz)n+1
∥

2

= ∥

∞∑
n=0

( ∞∑
m=0

(
m + n

m

)
ψ̂(−n)anb

m
zm+n

)
∥

2

=

∞∑
n=0

( ∞∑
m=0

((m + n
m

)
|ψ̂(−n)||a|n|b|m

)2)
.

Hence, it follows from (11) that
∑
∞

n=0{|ψ̂(n)|2 −
∑
∞

m=0(
(m+n

m
)
|ψ̂(−n)||a|n|b|m)2

} ≥ 0.

If b = 0, then C∗ϕ = Cσ where σ(z) = az. This implies that ∥(TψCϕ)∗(1)∥2 = ∥CσTψ(1)∥2 =
∑
∞

n=0 |ψ̂(−n)|2|a|2n.

Thus, from (11), we get that
∑
∞

n=0{|ψ̂(n)|2 − |ψ̂(−n)|2|a|2n
} ≥ 0.

Corollary 3.2. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mappingD into itself. Let the operator TψCϕ onH2 be normal. Then we have the following:

(i) If b , 0, then
∑
∞

n=0{|ψ̂(n)|2 −
∑
∞

m=0(
(m+n

m
)
|ψ̂(−n)||a|n|b|m)2

} = 0.
(ii) If b = 0, then

∑
∞

n=0{|ψ̂(n)|2 − |ψ̂(−n)|2|a|2n
} = 0.

The condition obtained above in Corollary 3.2 is necessary but not sufficient which can be observed through
the following example:

Example 3.3. Let ψ(z) = z + z and ϕ(z) = iz. Then, for a = i, b = 0, ψ̂(−1) = ψ̂(1) = 1 and ψ̂(−n) = ψ̂(n) = 0
where n ∈ Z − {0}, the condition

∑
∞

n=0{|ψ̂(n)|2 − |ψ̂(−n)|2|a|2n
} = 0 is satisfied. But the Toeplitz composition operator

TψCϕ is not normal as (TψCϕ)(TψCϕ)∗(z) = z3 + 2z whereas (TψCϕ)∗(TψCϕ)(z) = −z3 + 2z.

Next we investigate the necessary and sufficient conditions under which the operator TψCϕ becomes
Hermitian.

Theorem 3.4. Let ψ(z) =
∑
∞

n=−∞ ψ̂(n)zn
∈ L∞ and ϕ(z) = az + b (a , 0) be a linear fractional transformation

mapping D into itself. Then the Toeplitz composition operator TψCϕ on H2 is Hermitian if and only if for each
k, p ∈N ∪ {0} and n ∈ Z, we have :

(i)
∑p

n=−k+p

( k
p−n

)
ψ̂(n)ap−nbn+k−p =

∑−k+p
n=−k

( p
p−n−k

)
ψ̂(−n)an+kb

p−n−k
when b , 0

and, (ii) akψ̂(n) = an+kψ̂(−n) when b = 0.

Proof. Let us suppose that the operator TψCϕ is Hermitian onH2. This implies that TψCϕzk = (TψCϕ)∗zk for
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every k ∈N ∪ {0}. Let us suppose b , 0. Since

TψCϕzk = Tψ(ϕ(z))k

= P(ψ(z) ·
k∑

m=0

(
k
m

)
ambk−mzm)

= P(
k∑

m=0

(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n))

=

k∑
m=0

P(
∞∑

n=−∞

(
k
m

)
ψ̂(n)ambk−mzm+n)

=

k∑
m=0

(
∞∑

n=−m

(
k
m

)
ψ̂(n)ambk−mzm+n)

and

(TψCϕ)∗zk = C∗ϕTψzk

= C∗ϕP(
∞∑

n=−∞

ψ̂(−n)zn+k)

=M1Cσ(
∞∑

n=−k

ψ̂(−n)zn+k)

=

∞∑
n=−k

ψ̂(−n)an+k
(

1

1 − bz

)n+k+1

zn+k)

=

∞∑
j=0

(
∞∑

n=−k

(
n + k + j

j

)
ψ̂(−n)an+kb

j
zn+k+ j)

where 1(z) = (1 − bz)−1 and σ(z) = az
1−bz

; it follows that the coefficient of zp for p ∈N ∪ {0} in the expressions
for TψCϕzk and (TψCϕ)∗zk are equal for each k ∈N ∪ {0}. Therefore, on comparing the coefficients of 1, z, z2,
z3 and so on in the expressions of TψCϕzk and (TψCϕ)∗zk, we obtain that for each k, p ∈N ∪ {0},

p∑
n=−k+p

(
k

p − n

)
ψ̂(n)ap−nbn+k−p =

−k+p∑
n=−k

(
p

p − n − k

)
ψ̂(−n)an+kb

p−n−k
. (12)

Conversely, let us assume that for each k, p ∈N∪{0}, equation (12) holds. Then evaluating the expression
(TψCϕ − (TψCϕ)∗)zk for each k ∈N ∪ {0} gives the value as zero. Hence, we obtain that the operator TψCϕ is
Hermitian onH2.

Now we take b = 0. Then it can be easily evaluated that (TψCϕ − (TψCϕ)∗)zk = 0 if and only if∑
∞

n=−k ψ̂(n)akzn+k
−

∑
∞

n=−k ψ̂(−n)an+kzn+k = 0 if and only if akψ̂(n) = an+kψ̂(−n) for every n ∈ Z and k ∈
N ∪ {0}.
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