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An Extension of Apostol Type of Hermite-Genocchi Polynomials and
their Probabilistic Representation
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Abstract. The main purpose of this paper is to introduce and investigate the various properties of a new
generalization of Apostol Hermite-Genocchi polynomials. We derive many useful results involving new
generalized Apostol Hermite-Genocchi polynomials. We also consider some statistical applications of the
new family in probability distribution theory and reliability.

1. Introduction

The generalized Apostol-Genocchi polynomials G(α)
n (x;λ) of order α are defined by (see, for example

[15], [16] and [35])( 2t
λet + 1

)α
ext =

∞∑
n=0

G
(α)

n (x;λ)
tn

n!
,

(| t |< π, when λ = 1; | t |<| log(−λ) |, when λ , 1, 1α := 1). (1)

Remark 1.1. When λ , −1 in (1), the order α of generalized Apostol-Genocchi polynomials should tacitly be
restricted to non negative integer values.

Some interesting generalizations of Apostol type polynomials have been investigated in the literature (see,
for example [11], [12], [14], [17], [18], [19], [29], [31], [32], [33] and [34] )
Srivastava [27] defined a class of generalized Hermite polynomials by the generating function

∞∑
n=0

γm
n (x)

tn

n!
= emxt−tm

, (2)

for more details, see ([4], [6], [5] and [30]).
Also, the Hermite based Appel polynomials have been introduced and investigated in the literature (see,

2020 Mathematics Subject Classification. 11B68, 33C45, 33C99, 05A10.
Keywords. Hermite distribution, Generalized Hermite distribution, Hermite polynomials, Genocchi polynomials, Hermite-

Genocchi polynomials, Apostol-Genocchi polynomials, Discrete distribution, Reliability.
Received: 09 April 2019; Revised: 31 December 2019; Accepted: 10 January 2021
Communicated by Hari M. Srivastava
Email addresses: b_desouky@yahoo.com (Beih S. El-Desouky), dr.rsg12@yahoo.com (Rabab S. Gomaa), alia.ma16@yahoo.com

(Alia M. Magar)



B. S. El-Desouky et al. / Filomat 36:7 (2022), 2269–2280 2270

for example [2],[3], [22], [23], [33] and [34]).
Araci et al. [1] introduced a new concept of the Apostol Hermite-Genocchi polynomials by

∞∑
n=0

G
(α)

n (x, y; a, b, c;λ)
tn

n!
=

( 2t
λbt + at

)α
cxt+h(t,y),

| t |<| log(−λ)

log( b
a )
|; a ∈ C\{0}, b, c ∈ R+; 1α := 1

 . (3)

Recently, by using the exponential as well as trigonometric generating functions, Srivastava et al. [34]
defined two parametric kinds of each of generated Apostol-Bernoulli B(c,α)

n (p, q;λ), Apostol-Euler E(c,α)

n (p, q;λ)
and Apostol-Genocchi polynomials G(c,α)

n (p, q;λ) of order α, as follows( t
λet − 1

)α
ept cos(qt) =

∞∑
n=0

B
(c,α)

n (p, q;λ)
tn

n!
, (4)

( 2
λet + 1

)α
ept cos(qt) =

∞∑
n=0

E
(c,α)

n (p, q;λ)
tn

n!
, (5)

( 2t
λet + 1

)α
ept cos(qt) =

∞∑
n=0

G
(c,α)

n (p, q;λ)
tn

n!
. (6)

In this article as a motivation of these works, we introduced and investigated the new generalization of the
Apostol Hermite-Genocchi polynomials and some basic properties are derived.
On the other side, discrete data or count data comprises of observations are common medical sciences and
epidemiology. Nakagawa and Osaki [21] were the first to study a discrete life time distribution. Salvia
and Bollinger [26] introduced basic results about discrete reliability and illustrated them with the simple
discrete life distributions. The characterization of discrete distributions has been studied by Roy et al. [25].
Gupta et al. [9] introduced classes of discrete distributions with increasing failure rate. Nair and Asha [20]
derived some classes of multivariate life distributions in discrete time.
According to that, we introduced new multivariate distribution which combined the features of the class
of generalized power series distribution and new generalized polynomials.
The rest of this paper is organized as follows. In Section 2, we introduce a new generalization of the Apostol
Hermite-Genocchi polynomials and their properties. In Section 3, we give implicit summation formulas for
this generalization. In Section 4, we consider some statistical applications of the new family in probability
distribution theory and reliability.

2. A new generalization of the Apostol Hermite-Genocchi polynomials

Definition 2.1.
Let a, b and c be positive integers with the condition a , b. A new generalization of the Apostol Hermite-Genocchi
polynomials HM(r)

n (x, y; k, a, b, c; ᾱr) for nonnegative integer n is defined by means of the generating function

∞∑
n=0

HM
(r)

n (x, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)rtrk2r(1−k)

r−1∏
i=0

(αibt − at)
cxt+h(t,y),

| t |<| log(αi)

log( b
a )
|; a, b, c ∈ R+; αi , 1; ∀ i = 0, 1, · · · , r − 1

 , (7)

where k ∈ N0; r ∈ C; ᾱr = (α0, α1, · · · , αr−1) is a sequence of complex numbers.

Setting h(t, y) = yt2 in (7), we get the following definition.
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Definition 2.2.
Let a, b and c be positive integers with the condition a , b. A new generalization of the Apostol Hermite-Genocchi
polynomials HM(r)

n (x, y; k, a, b, c; ᾱr) for nonnegative integer n is defined by means of the generating function

∞∑
n=0

HM(r)
n (x, y; k, a, b, c; ᾱr)

tn

n!
=

(−1)rtrk2r(1−k)

r−1∏
i=0

(αibt − at)
cxt+yt2

,

| t |<| log(αi)

log( b
a )
|; a, b, c ∈ R+; αi , 1; ∀ i = 0, 1, · · · , r − 1

 , (8)

where k ∈ N0; r ∈ C; ᾱr = (α0, α1, · · · , αr−1) is a sequence of complex numbers.

Remark 2.3. When αi , 1, i = 0, 1, ..., r − 1 in (7) and (8), the generalized Apostol-Genocchi polynomials should
tacitly be restricted to non negative integer values.

Remark 2.4.
If we set x = y = 0 in (8), then we obtain the new unified generalized Apostol Hermite-Genocchi numbers, as

HM(r)
n (0, 0; a, b, 1; ᾱr) = HM(r)

n (a, b; ᾱr).

Remark 2.5. By comparing the generating function in (7) and (4), (5) and (6), we obtain the following relationships

1. HM
(r)

n (x, y; 1, 1, e, e, λ) = (−1)rB(c,r)

n (x, y;λ).
2. HM

(r)

n (x, y; 0, 1, e, e,−λ) = E(c,r)

n (x, y;λ).
3. HM

(r)

n (x, y; 1, 1, e, e,−λ) = (2)−rG(c,r)

n (x, y;λ).

Moreover, the family of polynomials HM(r)
n (x, y; k, a, b, c; ᾱr) and HM(r)

n (x, y; k, a, b, c; ᾱr) includes well known
polynomials, some of which we list below:

1. HM
(r)

n (x, y; 1, a, b, c;−λ) = 2−r G(r)

n (x, y; a, b, c;λ).
(Generalized Apostol-Genocchi polynomials, see [1] )

2. HM(r)

n (x, y; 1, a, b, c;−λ) = 2−r
HG(r)

n (x, y; a, b, c;λ).
(Generalized Apostol Hermite-Genocchi polynomials of order r, see [8])

3. HM(r)

n (x, 0; k, 1, e, e; ᾱr) = (−1)−rM(r)

n (x; k, ᾱr).
(Unified family of generalized Apostol-Bernoulli, Euler and Genocchi polynomials, see [7]).

For the other known polynomials which are related with the family HM(r)

n (x, y; k, a, b, c; ᾱr), we refer to [8],
[13], [28], [33] and [34].
The family of polynomials HM(r)

n (x, y; k, a, b, c; ᾱr) possess the following interesting properties. These are
stated as Theorems 2.6 and 2.7 below.

Theorem 2.6.
Let a, b and c be positive integers with a , b. For x ∈ R and n ≥ 0. Then we have

HM(r+β)
n (x + y, z + u; k, a, b, c; ᾱr) =

∞∑
k=0

(
n
k

)
HM(r)

n (y, z; k, a, b, c; ᾱr)HM(β)
n (x,u; k, a, b, c; ᾱr). (9)

Proof. From (8), we get

∞∑
n=0

HM(r+β)
n (x + y, z + u; k, a, b, c; ᾱr) =

(−1)r+β2(r+β)(1−k)t(r+β)k

(r+β)−1∏
i=0

(αibt − at)

c(x+y)t+(z+u)t2
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=

 ∞∑
n=0

HM(r)
n (y, z; k, a, b, c; ᾱr)

tn

n!


 ∞∑

n=0
HM(β)

n (x,u; k, a, b, c; ᾱr)
tn

n!

 .
By using Cauchy product and comparing the coefficients of tn on both sides, yields (9).

Theorem 2.7.
Let a, b and c be positive integers with the rule a , b for x ∈ R and n ≥ 0. Then we have

HM(r)
n (x + z, y; k, a, b, c; ᾱr) =

n∑
m=0

(
n
m

)
HM(r)

n−m(z; k, a, b, c; ᾱr)Hm(x, y, c). (10)

Proof. From (8), we get
∞∑

n=0
HM(r)

n (x + z, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
c(x+z)t+yt2

=

∞∑
n=0

HM(r)
n (z; k, a, b, c; ᾱr)

tn

n!

∞∑
m=0

Hm(x, y, c)
tm

m!
,

using Cauchy product and equating the coefficients of tn on both sides of the last equation, yields (10).

3. Implicit summation formulas on the generalized Apostol Hermite-Genocchi polynomials

Theorem 3.1.
Let a, b and c be positive integers with a , b for x, y ∈ R and n ≥ 0. Then we have

HM(r)
n (x + z, y; k, a, b, c; ᾱr) =

n∑
l=0

(
n
l

)
zn−l(ln c)n−l

HM(r)
n (x, y; k, a, b, c; ᾱr). (11)

Proof. From Eq. (8), we have
∞∑

n=0
HM(r)

n (x + z, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
c(x+z)t+yt2

=

∞∑
i=0

HM(r)
i (x, y; k, a, b, c; ᾱr)

ti

i!

∞∑
l=0

(z t log c)l

l!
,

using Cauchy product and equating the coefficients of tn on both sides of the last equation, yields (11).

Theorem 3.2.
Let a, b and c positive integers, by a , b then, for x, y ∈ R and n, m ≥ 0, we have

HM(r)
n+m(z, y; k, a, b, c; ᾱr) =

m∑
s=0

n∑
ℓ=0

(
m
s

)(
n
ℓ

)
(log c)s+ℓ(z − x)s+ℓ

HM(r)
n+m−s−ℓ(x, y; k, a, b, c; ᾱr). (12)

Proof. Replacing t by t + u and rewrite the generating function (8) as the following

(−1)r(t + u)rk2r(1−k)

r−1∏
i=0

(αibt+u − at+u)
cx(t+u)+y(t+u)2

=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!
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(−1)r(t + u)rk2r(1−k)

r−1∏
i=0

(αibt+u − at+u)
cy(t+u)2

= c−x(t+u)
∞∑

n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!
. (13)

Replacing x by z in Eq. (13), we have

c−x(t+u)
∞∑

n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!
= c−z(t+u)

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!

c(z−x)(t+u)
∞∑

n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!
=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!
. (14)

By applying [see Pathan and khan [24], p. 52]

∞∑
N=0

f (N)
(x + y)N

N!
=

∞∑
n=0

∞∑
m=0

f (n +m)
xn

n!
ym

m!

to c(z−x)(t+u) in Eq. (14), we get

∞∑
N=0

(log c)N [(z − x)(t + u)]N

N!

∞∑
n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!
=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!
.

∞∑
ℓ=0

∞∑
s=0

(log c)s+ℓ(z − x)s+ℓ

ℓ!s!
tℓ us

∞∑
n=0

∞∑
m=0

HM(r)
n+m(x, y; k, a, b, c; ᾱr)

tn

n!
um

m!

=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!
. (15)

Replacing n by n − ℓ and m by m − s in Eq. (15), we have

∞∑
ℓ=0

∞∑
s=0

(log c)s+ℓ(z − x)s+ℓ

ℓ!s!
tℓ us

∞∑
n=ℓ

∞∑
m=s

HM(r)
n+m−ℓ−s(x, y; k, a, b, c; ᾱr)

tn−ℓ

(n − ℓ)!
um−s

(m − s)!

=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!
.

By using the lemma in [Srivastava [28], p. 100], we get

∞∑
n=0

∞∑
m=0

 ∞∑
ℓ=0

∞∑
s=0

(log c)s+ℓ(z − x)s+ℓ

ℓ!s! HM(r)
n+m−ℓ−s(x, y; k, a, b, c; ᾱr)

 tn

(n − ℓ)!
um

(m − s)!

=

∞∑
n=0

∞∑
m=0

HM(r)
n+m(z, y; k, a, b, c; ᾱr)

tn

n!
um

m!
.

Comparing the coefficients of tn um, yields (12).

Theorem 3.3.
Let a, b and c be positive integers with the rule a , b for x, y ∈ R and n ≥ 0, we have

HM(r)
n (x, y; k, a, b, c; ᾱr) =

n∑
m=0

(
n
m

)
HM(r)

n−m(a, b; ᾱr)Hm(x, y, c). (16)
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Proof. From Eq. (8), we have
∞∑

n=0
HM(r)

n (x, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
c(x)t+yt2

=

∞∑
n=0

 n∑
m=0

(
n
m

)
HM(r)

n−m(a, b; ᾱr)Hm(x, y, c)

 tn

n!
.

Thus, equating the coefficients of tn on both sides of last equation, yields (16).

Theorem 3.4.
For arbitrary real or complex parameter (r), the following implicit summation formula holds true

HM(r)
n (x + 1, y; k, a, b, c; ᾱr) =

n∑
k=0

(
n
k

)
(log c)n−k

HM(r)
n (x, y; k, a, b, c; ᾱr). (17)

Proof. From (8), we have
∞∑

n=0
HM(r)

n (x + 1, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
c(x+1)t+yt2

=

 ∞∑
k=0

HM(r)
k (x, y; k, a, b, c; ᾱr)

tk

k!


 ∞∑

n=0

(log c)n tn

n!

 .
By using Cauchy product and equating the coefficients of tn on both sides of last equation, yields (17).

Theorem 3.5.
For arbitrary real or complex parameter (r), the following implicit summation formula holds true

n∑
k=0

(
n
k

)
(log ab)krk

HM(r)
n (−x, y; k, a, b, c; ᾱr) = (−1)n−rk

HM(r)
n (x, y; k, a, b, c; ᾱr). (18)

Proof. From (8), we have

∞∑
n=0

[1 − (−1)n]HM(r)
n (x, y; k, a, b, c; ᾱr)

tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
cxt+yt2

−
(−1)r2r(1−k)(−t)rk

r−1∏
i=0

(αib−t − a−t)
c−xt+yt2

= cyt2


(−1)r2r(1−k)trk

r−1∏
i=0

(αibt − at)
cxt
− (−1)rk(ab)rt (−1)r2r(1−k)(t)rk∏r−1

i=0 (αiat − bt)
c−xt


=

∞∑
n=0

HM(r)
n (x, y; k, a, b, c; ᾱr)

tn

n!
− (−1)rk

 ∞∑
k=0

(log a b)k rtk

k!

 ∞∑
n=0

HM(r)
n (−x, y; k, a, b, c; ᾱr)

tn

n!

=

∞∑
n=0

HM(r)
n (x, y; k, a, b, c; ᾱr)

tn

n!
− (−1)rk

∞∑
n=0

n∑
k=0

(log a b)krk
HM(r)

n−k(−x, y; k, a, b, c; ᾱr)
tn

n!
.

Equating the coefficients of tn on both sides, yields (18).
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Theorem 3.6.
Let a, b and c be positive integers by a , b. For x, y ∈ R and n ≥ 0. Then we have

HM(r)
n (x + r, y; k, a, b, c; ᾱr) =

[ n
2 ]∑

k=0

(
n
2k

)
yk(log c)k

HM(r)
n−2k(x; k,

a
c
,

b
c
, c; ᾱr), (19)

where [.] is Gauss notation, and represents the maximum integer which does not exceed a number in the square
brackets.

Proof. From (8), we have
∞∑

n=0
HM(r)

n (x + r, y; k, a, b, c; ᾱr)
tn

n!
=

(−1)r2r(1−k)trk

r−1∏
i=0

(αi( b
c )t − ( a

c )t)
cxtcyt2

=

∞∑
n=0

[ n
2 ]∑

k=0

(
n
2k

)
(log c)kykM(r)

n−2k(x; k,
a
c
,

b
c
, c; ᾱr)

tn

n!
.

Equating the coefficients of tn, yields (19).

Theorem 3.7.
Explicit formula of the generalized Apostol Hermite-Genocchi polynomials is given by

HM(r)
n (α, β; ᾱr) = 2r

∑
x1,...,xn=0

r∏
i=1

(αi−1 )xi

[ n
m ]∑

k=0

βkn!
k!(n −mk)!

(α + X)n−mk, (20)

where X = x1 + x2 + ... + xr.

Proof. Put x = α, y = β, b = c = e, a = 1, k = 0 and h(t, β) = βtm in (7) we have
∞∑

n=0
HM(r)

n (α, β; ᾱr)
tn

n!
= 2r

∑
x1,...,xr=0

r∏
i=1

(αi−1 )xi e(x1+...+xr+α)t+βtm
.

Let x1 + x2 + .... + xr = X ,we have:
∞∑

n=0
HMn(r)(α, β; ᾱr)

tn

n!
= 2r

∑
x1,...,xr=0

r∏
i=1

(αi−1 )xi e(X+α)t+βtm
,

but the generating function of the generalized Hermite polynomial is given by

eαt+βtm
=

∞∑
n=0

Hn,m(α, β)
tn

n!
,

then
∞∑

n=0
HM(r)

n (α, β; ᾱr)
tn

n!
= 2r

∞∑
n=0

[
∑

x1,...,xr=0

r∏
i=1

(αi−1 )xi Hn,m(α + X, β)]
tn

n!
.

Equating the coefficients tn on both sides and form the definition of generalized Hermite polynomials, we
have

Hn,m(α + X, β) =
[ n

m ]∑
k=0

βkn!
k!(n −mk)!

(α + X)n−mk,

this yields (20).
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4. Application involving probability distribution and some concepts of reliability

Definition 4.1.
Let X1,X2, ...,Xr be nonnegative random variable. Then X = (X1,X2, ...,Xr) is said to be generalized Hermite-
Genocchi distribution, if its probability mass function is

P(X) = B
r∏

i=1

(αi−1 )xi Hn,m

 r∑
i=1

xi + γ, β

 , β, γ ≥ 0; r ≥ 1, m ∈ N (21)

where normalizing constant is given by

1
B
= HM(r)

n (γ, β; ᾱr ) =
∞∑

ℓ1,ℓ2,...,ℓr=0

r∏
i=1

(αi−1)ℓi Hn,m

 r∑
i=1

ℓi + γ, β

 ,
and

Hn,m(
r∑

i=1

xi + γ, β) =
[ n

m ]∑
k=0

βk

k!
n!

(n −mk)!

 r∑
i=1

xi + γ


n−mk

.

HM(r)
n (γ, β; ᾱr ) is convergent and positive for ᾱr = (α0, α1, ..., αr−1), 0 < αr < 1 and the distribution is denoted

by GHG[m; ᾱr ;γ, β].

Definition 4.2.
Let m = 2 in (21), then X is said to have Hermite-Genocchi distribution, if its probability mass function is

P(X) = B
r∏

i=1

(αi−1 )Xi Hn,2

 r∑
i=1

xi + γ, β

 , (22)

where

Hn,2(
r∑

i=1

xi + γ, β) =
[ n

2 ]∑
k=0

βk

k!
n!

(n − 2k)!

 r∑
i=1

xi + γ


n−2k

.

The distribution is denoted by HG[ᾱr ;γ, β].
Result 4.1: Let X = (X1, ...,Xr), following the generalized Hermite-Genocchi distribution, then the

probability generating function of X is

GX(t) = B HM(r)
n (γ, β; tᾱr ) (23)

Proof. Form the definition of the probability generating function, we have

GX(t) = E(tX) =
∑

x1,x2,...,xr=0

P(x1, x2, ..., xr) t
X
,

where t = (t1, t2, ..., tr), this yield (23).

Result 4.2: The moment generating function of the generalized Apostol Hermite-Genocchi distribution
is

MX(t) = B HM(r)
n (γ, β; etᾱr ) (24)

Result 4.3: The ℓ − th factorial moments µ[ℓ] with moment generating function MX(t) of the generalized
Hermite-Genocchi distribution is

µ[ℓ] = B
∞∑

x1,x2,...,xr=0

(xi)ℓ
r∏

i=1

(αi−1)xi Hn,m

 r∑
i=1

xi + γ, β

 . (25)
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Result 4.4: The ℓ − th moments µ̀ℓ with moment generating function MX(t) of the generalized Hermite-
Genocchi distribution is

µ̀ℓ = B
∞∑

x1,x2,...,xr=0

xℓi

r∏
i=1

(αi−1)xi Hn,m

 r∑
i=1

xi + γ, β

 . (26)

Result 4.5: The mean and variance of the generalized Apostol Hermite-Genocchi distribution with ℓ − th
moments µ̀ℓ is

E(X) = B
∞∑

x1,x2,...,xr=0

xi

r∏
i=1

(αi−1 )xi Hn,m

 r∑
i=1

xi + γ, β

 . (27)

Var(X) =

B ∞∑
x1,x2,...,xr=0

x2
i

r∏
i=1

(αi−1 )xi Hn,m

 r∑
i=1

xi + γ, β


 (28)

−

B ∞∑
x1,x2,...,xr=0

xi

r−1∏
i=1

(αi−1 )xi Hn,m

 r∑
i=1

xi + γ, β




2

.

Lemma 4.3. Let Xi ∼ GHG(m, αi, γ, β), i = 1, 2, ..., r− 1 Then the marginal joint cumulative distribution function

P(Xi ≤ xi) = 1 − B (αi−1)xi
HM(r)

n (γ + xi + 1, β; ᾱr ) (29)

Proof. Since

P(Xi ≤ xi) = 1 − P(Xi > xi)

= 1 − B
∞∑

ℓi=xi+1

∞∑
ℓ1,...,ℓi−1
ℓi+1,...,ℓr=0

(α0)ℓ1 (α1)ℓ2 ...(αi−1)ℓi ...(αr−1)ℓr Hn,m

 r∑
i=1

ℓi + γ, β

 .
If setting ℓi − xi − 1 = ℓ, then

P(Xi ≤ xi) = 1 − B
∞∑

ℓ,ℓ1,...,ℓi−1
ℓi+1,...,ℓr=0

(α0)ℓ1 (α1)ℓ2 ...(αi−1)xi+ℓi + 1...(αr−1)ℓr Hn,m

 r∑
i=1

ℓi + γ + xi + 1, β

 .
From (21), we obtain (29).

Theorem 4.4.
If X1,X2, ...,Xr are mutually independent where Xi ∼ GHG(m, αi, γ, β), i = 1, 2, ..., r − 1. Then the multivariate
cumulative distribution function is given by

P(X1 ≤ x1,X2 ≤ x2, ...,Xr ≤ xr) =
r∏

i=1

(
1 − B (αi−1)xi

HM(r)
n (γ + xi + 1, β; ᾱr )

)
. (30)

Proof. Since X1,X2, ...,Xr are mutually independent, hence

P(X1 ≤ x1,X2 ≤ x2, ...,Xr ≤ xr) =

r∏
i=1

(1 − P(Xi > xi)) .

From (29), we obtain (30).
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4.1. Reliability concepts for GHG distributions

4.1.1. Multivariate reliability function
Theorem 4.5.
Let x = (x1, x2, ..., xr) ∈ Rr

+ representing the lifetimes of r−component system with the multivariate reliability function,
then

R(x) = B
r∏

i=1

(αi−1)xi
HM(r)

n (γ + x1 + x2 + ... + xr, β; ᾱr ). (31)

Proof. From the definition of the multivariate reliability function, see [20] and (21)

R(x) = P(X1 ≥ x1,X2 ≥ x2, ...,Xr ≥ xr)

=
∑

m1≥x1

∑
m2≥x2

...
∑

mr≥xr

P(X1 = m1,X2 = m2, ...,Xr = mr),

hence we obtain (31).

Theorem 4.6. R(x) is said to be

i) Multivariate new better than used (Multivariate new worse than used ) MNBU (MNWU) if

HM(r)
n (γ, β; ᾱr )HM(r)

n (xr + t́ + γ, β; ᾱr ) ≤ (≥)HM(r)
n (xr + γ, β; ᾱr )HM(r)

n (t̀ + γ, β; ᾱr ) (32)

ii) Multivariate new better than used in expectation (Multivariate new worse than used in expectation ) MNBUE
(MNWUE) if

HM(r)
n (γ, β; ᾱr )

∑
t1,t2,...,tr=0

r−1∏
i=0

αi HM(r)
n (xr + t́ + γ, β; ᾱr ) ≤ (≥)

HM(r)
n (xr + γ, β; ᾱr )

∑
t1,t2,...,tr=0

r−1∏
i=0

αi HM(r)
n (t́ + γ, β; ᾱr ), (33)

where xr = x1 + x2 + ... + xr, t́ = t1 + t2 + ... + tr.

Proof. If

HM(r)
n (xr + t́ + γ, β; ᾱr ) ≤

HM(r)
n (Xr + γ, β; ᾱr )HM(r)

n (t́ + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

HM(r)
n (xr + t́ + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

≤
HM(r)

n (xr + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

HM(r)
n (t́ + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

r−1∏
i=1

(αi−1)xi+ti HM(r)
n (xr + t́ + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

≤

r−1∏
i=1

(αi−1)xi HM(r)
n (xr + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

r−1∏
i=1

(αi−1)ti HM(r)
n (t́ + γ, β; ᾱr )

HM(r)
n (γ, β; ᾱr )

hence, we get

R(x1 + t1, x1 + t1, ..., x1 + t1) ≤ R(x1, x2, ..., xr)R(t1, t2, ..., tr)

From the definition of the Multivariate new better used,then R(x) is MNBU.
Similarly, from the definition of MNBUE (multivariate new better used in expectation), then R(x) is MN-
BUE.
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4.1.2. Multivariate hazard rate function
The multivariate hazard rate function is defined as, see [20]

h(x) = (h1(x), h2(x), ..., hr(x))

hi = P(Xi = xi|X ≥ x)

= 1 −
R(x1, x2, ..., xi−1, xi + 1, xi−1, ..., xr)

R(x1, x2, ..., xr)
,

where x = (x1, x2, ..., xr) ∈ Rr
+, so we obtain the following theorems.

Theorem 4.7.
The multivariate hazard rate function of GHG distribution is given by

hi(x) = 1 − αi−1
HM(r)

n (x1 + x2 + ... + xi−1 + xi + 1 + xi−1 + ... + xr + γ, β; ᾱr )

HM(r)
n (x1 + x2 + ... + xr + γ, β; ᾱr )

. (34)

Theorem 4.8.
Let X̀r = (x1 + x2 + ... + xi−1 + xi + 1 + xi+1 + ... + xr), xr = (x1 + x2 + ... + xr) and t́ = t1 + t2 + ... + tr, then the
following statement about GHG distribution holds.
The GHG distribution is multivariate increasing hazard rate (multivariate decreasing hazard rate) MIHR (MDHR)
iff

HM(r)
n (X̀r + t́ + γ, β; ᾱr )

HM(r)
n (xr + t + γ, β; ᾱr )

≤ (≥) HM(r)
n (X̀r + γ, β; ᾱr )

HM(r)
n (xr + γ, β; ᾱr )

. (35)

Proof. If

HM(r)
n (X̀r + t́ + γ, β; ᾱr )

HM(r)
n (xr + t + γ, β; ᾱr )

≤
HM(r)

n (X̀r + γ, β; ᾱr )

HM(r)
n (xr + γ, β; ᾱr )

,

then

1 − αi−1
HM(r)

n (X̀r + t́ + γ, β; ᾱr )

HM(r)
n (xr + t + γ, β; ᾱr )

≥ 1 − αi−1
HM(r)

n (X̀r + γ, β; ᾱr )

HM(r)
n (xr + γ, β; ᾱr )

,

hence
hi(x1 + t1, ..., xi + ti, ..., xr + tr) ≥ hi(x1, x2, ..., xr).

From the definition of the multivariate increasing Hazard rate, we have GHG distribution is MIHR
(multivariate increasing Hazard rate).
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