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Abstract. In this paper, we investigate the concept of demicompactness and we establish some new results
in Fredholm theory connected with the existence of selections of a given linear relation and we explore the
possibility of finding a selection demicompact for some linear relation demicompact. Moreover, we give
the relationship of the resolvent set between the linear relation with its selection. Furthermore, we give an
application to matrix linear relation.

1. Introduction

Let X is a infinite dimensional vector spaces over K = R or C. T multivalued linear operator or simply
a linear relation T : X → X is a mapping from a subspace D(T) of X, called the domain of T, into P(X)\{∅}
(the collection of non empty subsets of X) such that T(αx1 + βx2) = αT(x1) + βT(x2) for all non zero scalars
α, β ∈ K and x1, x2 ∈ D(T). If T maps the points of its domain to singletons, then T is said to be a single
valued linear operator or simply an operator, which is equivalent to T(0) = {0}. We denote by LR(X) the
class of linear relations everywhere defined. Let T ∈ LR(X) is uniquely determined by its graph G(T), which
is defined by:

G(T) :=
{
(x, y) ∈ X × X : x ∈ D(T), y ∈ Tx

}
,

so that we can identify T with G(T). The closure of T, denoted by T, is the linear relation defined by
G(T) := G(T). We denote by CR(X) the class of all closed linear relations on X, and we denote by C(X)
the set of all closed, densely defined linear operators on X. The inverse of T is a linear relation T−1 given
by G(T−1) := {(x, y) ∈ X × X : (x, y) ∈ G(T)}. If G(T) is closed, then T is said to be closed. We design by
R(T) = T(D(T)) the range of T. T is called surjective if R(T) = Y. The subspace N(T) := T−1(0) is called the
null space of T. T is called injective if N(T) = {0}, that is, if T−1 is a single valued linear operator. Notice that
when x ∈ D(T),

y ∈ Tx if, and only if, Tx = y + T(0).

For T and S ∈ LR(X), the notation T ⊂ S means that G(T) ⊂ G(S). The linear relation T + S is defined by:

G(T + S) :=
{
(x, y) ∈ X × X : y = u + v with (x,u) ∈ G(T), (x, v) ∈ G(S)

}
.
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Let T ∈ LR(X) and S ∈ LR(Y,Z) where R(T) ∩D(S) , ∅. The product of ST is defined by:

G(ST) :=
{
(x, z) ∈ X × Z : (x,u) ∈ G(T) and (u, z) ∈ G(S) for some u ∈ Y

}
.

Let QT denote the quotient map from X onto X/T(0). We shall denote QT(0) by QT. Clearly QTT is a
single valued operator and the norm of T is defined by ∥T∥ := ∥QTT∥. We say that T is continuous if for
each neighborhood V in R(T), T−1(V) is a neighborhood in D(T) (equivalently ∥T∥ < ∞); bounded if its
continuous with D(T) = X; open if T−1 is continuous equivalently γ(T) > 0 where γ(T) is the minimum
modulus of T defined by

γ(T) := sup
{
λ ≥ 0 : λd(x,N(T)) ≤ ∥Tx∥ for x ∈ D(T)

}
where d(x,N(T)) is the distance between x and N(T). We denote the class of all bounded linear relations
from X by BR(X) and we denote by L(X) the set of all bounded linear operators on X. We denote the class
of compact linear relations from X by KR(X). We denote byK (X) the subspace of compact operators on X.

If M and N are subspaces of X and of the dual space X′ respectively, then

M⊥ :=
{
x′ ∈ X′ : x′(x) = 0 for all x ∈M

}
and

N⊤ :=
{
x ∈ X : x

′

(x) = 0 for all x
′

∈ N
}
.

The conjugate of T ∈ LR(X,Y) is the linear relations T′ defined by G(T′) := G(−T−1)⊥ ⊂ Y′ × X′, so that
(y′, x′) ∈ G(T′) if and only if y′(y) = x′(x) for all (x, y) ∈ G(T). For T ∈ LR(X), we write α(T) := dim N(T),
β(T) := dim X/R(T), β(T) := dim Y/R(T) and the index of T is the quantity i(T) := α(T) − β(T) provided that
α(T) and β(T) are not both infinite. The classes of upper semi-Fredholm and lower semi-Fredholm from X
into Y are defined respectively by

Φ+(X) :=
{
T ∈ CR(X) : α(T) < ∞ and R(T) is closed

}
,

and
Φ−(X) :=

{
T ∈ CR(X) : β(T) < ∞ and R(T) is closed

}
.

Φ(X) := Φ+(X) ∩Φ−(X) is the set of Fredholm relations from X into X.
In this paper, we are concerned with the following essential spectrum of a closed linear relation T

σe(T) :=
{
λ ∈ C : λ − T ∈ Φ(X)

}
.

σe1(T) :=
{
λ ∈ C : λ − T ∈ Φ+(X)

}
.

Definition 1.1. A bounded operator S is called a essential inverse of the closed operator T if
(i) R(S) ⊂ D(T) and TS = I + K1, where K1 ∈ K (X).
(ii) ST = I + K2, K2 ∈ K (X).

Let Tλ(T) := Ti[(λ − λi)Ti + I]−1 for all λ ∈ Φi(T)\Φ0
i (T) such that

Φ0
i (T) =

{
µ ∈ C :

−1
µ − λi

σ(Ti)
}
∩Φi(T)

and Ti is the bounded operator satisfying:

Ti(λi − T) = I − P1i onD(T)
(λi − T)Ti = I − P2i on X,
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where P1i and P2i are two projection bounded finite rank operators. The operator Tλ(T) is shown in [38] to
be a essential inverse of (λ − T).

The concept of Fredholm operators is one of the attempts to understand the classical Fredholm theory of
integral equations. Further important contributions were due to A. Jeribi [33] who gave a simple and unified
treatment of this theory which covered all the basic points while avoiding some of the involved concepts
(see also [2]-[22]). Recently, W. Chaker, A. Jeribi and B. Krichen [32] have utilized demicompact operators
in order to investigate the essential spectra of closed linear operators. In [34] B. Krichen introduced the
relative demicompactness class with respect to a given closed linear operator as a generalization of the
demicompactness notion. Lately, in [29] A. Ammar, H. Daoud and A. Jeribi defined the demicompact of
a linear relation by T : D(T) ⊆ X → X is said to be demicompact if for every bounded sequence {xn} in
D(T) such that QI−T(I − T)xn → y ∈ X/(I − T)(0), there is a convergent subsequence of {QTxn}. Then, is to
generalize some results given in [32] to multivalued linear operators.

In [24] T. Alvarez, A. Ammar and A. Jeribi extended some properties of Fredholm relations that we
need to study the concept of essential spectra. Linear selections have been investigated in R. W. Cross
[31] and have found several applications. In [26, 27] A. Ammar, A. Jeribi and B. Saadaoui introduced the
phenomenon of linear selection to ensure certain matrix decomposition (example: the Frobenius-Schur
decomposition for multivalued matrices operator). The development of spectral theory for linear relations
was the aim of recent paper in 2012 D. Gheorghe and F.-H. Vasilescu [35]. It has to be mentioned that D.
Gheorghe and F.-H. Vasilescu study in paper [36] linear maps defined between spaces of the form X = X0,
where X is a vector space and X0 is a vector subspace of X. The strong connection between linear relations
and quotient range operators is well known and easily explained (see [37]). In [28] A. Ammar, A. Jeribi and
B. Saadaoui studied some perturbation results and some relations between the essential pseudospectra of
the sum of two multivalued linear operator and the essential pseudospectra of each of this multivalued
linear operator.

This work is devoted to extend the results started in [23, 39] to various essential spectra of bounded
multivalued operator.

The general objectives of the study to characterize the spectrum of the sum and the product of two
linear relations. We organize our paper in the following way. In section 2, we recall some definitions
and results needed in the rest of the paper. In section 3, we give some sufficient conditions for the linear
relation demicompact that must be Fredholm. In section 4, we gather some results and notations from
Fredholm theory connected with the third section. In section 5, we obtain a result equivalent to a special
case of Theorems 3.1 and 3.2 in [23]. In the last section we apply the results of section 3 to describe the

matrixA =
(

A B
C + CA−1

− CA−1 D + CA−1B − CA−1B

)
of a linear relation in the form of a Fredholm linear

relations.

2. Preliminary and auxiliary results

In this section, we recall some preliminary results from the theory of linear relation in Banach spaces
which will be needed In the sequel (see [1]).

Lemma 2.1. [31] Let X and Y be two vector spaces and let T ∈ LR(X). Then
(i)D(T−1) = R(T) andD(T) = R(T−1).
(ii) T injective if, and only if, T−1T = ID(T).
(iii) T is single valued if, and only if, T(0) = {0}.
(iv) TT−1y = y + T(0) and T−1Tx = x + T−1(0).

Lemma 2.2. [31, Lemma V.2.9] If T ∈ LR(X,Y) and S ∈ LR(Y,Z) such that T(0) ⊂ D(S) and S is a continuous,
then QSTST = QSTSQ−1

T QTT.

Lemma 2.3. [29] Let D be a compact linear subspace of a space X. Let {xn} in X be a sequence such that {QDxn} is a
convergent sequence, then {xn} has a convergent subsequence.
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Corollary 2.4. Let D a linear subspace of a space X with dim(D) < ∞. Let {xn} in X be a sequence such that {QDxn}

is a convergent sequence, then {xn} has a convergent subsequence.

Theorem 2.5. [31, Theorem III.5.3] Let X,Y be Banach spaces and let T ∈ CR(X,Y). Then, T is open if, and only
if, R(T) is closed.

Proposition 2.6. (i) [30, Lemma 2.4] Let T ∈ LR(X) and S,R ∈ LR(Y,Z). If T(0) ⊂ N(S) or T(0) ⊂ N(R), then
(R + S)T = RT + ST.
(ii) [31, Proposition I.4.2] Let R,S,T ∈ LR(X). Then,

(ii1) (R + S)T ⊂ RT + ST with equality if T is single valued.

(ii2) T(R + S) is an extension of TR + TS and TR + TS = T(R + S) if

D(T) is the whole space.
(iii) [24, Theorem 2.2] Let S,T ∈ LR(X) be closed. If S and T are everywhere defined such that TS ∈ Φ(X) and
ST ∈ Φ(X), then S ∈ Φ(X) and T ∈ Φ(X).

Theorem 2.7. Let T ∈ CR(X) and µ ∈ C∗. If 1
µT is demicompact, then µ − T ∈ Φ+(X).

Lemma 2.8. (i) ([31, Lemma V.7.8]) Let T ∈ LR(X,Y) have dimT(0) < ∞. Then, S+T−T ∈ Φ+(X,Y) if, and only
if, S ∈ Φ+(X).

(ii) ([31, Lemma VII.1.4]) Let the relation S satisfyD(F) ⊃ D(T) and dimT(0) < ∞. Then, T + S ∈ Φ(X,Y) if, and
only if, T ∈ Φ(X,Y).

Theorem 2.9. [31, Theorem V.10.3] Let T ∈ LR(X). Then, the following are equivalent:
(i) T ∈ Φ+(X).
(ii) There exists A ∈ BR(X) and a finite rank projection K such that AT = I − K.

Lemma 2.10. [31, Corollary V.15.7] Let X and Y be complete and T closed. Then, for any linear operator S satisfying
D(S) ⊃ D(T) and ∥S∥ < γ(T) we have

i(T + S) = i(T).

Lemma 2.11. [25, Lemma 2.5]Let S,T,A ∈ LR(X,Y). If S(0) ⊂ T(0) andD(T) ⊂ D(S), then T − S + S = T.

Theorem 2.12. [24, Theorem 2.2] Let X be a Banach space and let S,T ∈ CR(X). Then
(i) T ∈ Φ+(X) if, and only if, QTT ∈ Φ+(X). In such case i(T) = i(QTT).
(ii) If S,T ∈ Φ+(X), then ST ∈ Φ+(X) and TS ∈ Φ+(X).
(iii) If S and T are everywhere defined and TS ∈ Φ+(X), then S ∈ Φ+(X).

Lemma 2.13. [30, Lemma 2.4] Let T ∈ LR(X,Y) and S,R ∈ LR(Y,Z). If T(0) ⊂ N(S) or T(0) ⊂ N(R), then
(R + S)T = RT + ST.

Proposition 2.14. [26, Proposition 2.2] Let T ∈ LR(X,Y) be closed and S ∈ LR(X,Y) be continuous. We have

(i) If T ∈ Φ+(X,Y) and S ∈ P+(X,Y), then T + S ∈ Φ+(X,Y) and i(T + S) = i(T).

(ii) If T ∈ Φ−(X,Y) and S ∈ P−(X,Y), then T + S ∈ Φ−(X,Y) and i(T + S) = i(T).

(iii) If T ∈ Φ(X,Y) and S ∈ P(X,Y), then T + S ∈ Φ(X,Y) and i(T + S) = i(T).

Proposition 2.15. [31, Exercise I.2.14(b)] T,S ∈ LR(X,Y). If D(T) = D(S) and T(0) = S(0), then T = S or the
graphs of T and S are incomparable.

Theorem 2.16. [26, Theorem 3.1] Let T ∈ BR(X,Y) be a single valued bijective and assume that R ∈ BR(Z,W) is
bijective with R(0) closed.
(i) If S ∈ LR(Y,Z) is closable, then RST is closable and RST = RST.
(ii) If R is bounded single valued bijective, then S ∈ LR(Y,Z) is closable if, and only if, RST is closable and RST = RST.
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Definition 2.17. [26, Definition 2.1] Let S ∈ LR(X) be continuous.
S is called a Fredholm perturbation if T + S ∈ Φ(X) whenever T ∈ Φ(X) with dim(S(0)) < ∞ and S(0) ⊂ T(0).
The sets of Fredholm perturbation is denoted by P(X).

3. Demicompact linear relation and selection

In this section, we define a demicompact linear relation and give few properties and results.

Definition 3.1. [31, Definition I.5.1]Let T ∈ LR(X). A linear operator S is called a selection of T if T =
S + T − T and D(T) = D(S).

Remark 3.2. It’s clear that if S is a selection of T, then we have

Tx = Sx + T(0) for all x ∈ D(T).

Theorem 3.3. Let S be selection of T ∈ LR(X) and dim(T(0)) < ∞. If T is a demicompact linear relation, then S is
a demicompact operator.

Proof. Let S be selection of T. Suppose that T is a demicompact linear relation. It suffices to show that, S is
demicompact operator. Let {xn} be a bounded sequence of X such that:

(I − S)xn −→ y.

Therefore, QT(I − S)xn −→ QT y ∈ Y/T(0). Since QTT(0) = 0, we deduce that

QT(I − S)xn +QTT(0) −→ QT y ∈ X/T(0).

Hence QT(I − T)xn −→ QT y ∈ X/T(0). This implies that {QTxn} has a convergent subsequence. Since
dim(T(0)) < ∞, then the result follows directly from Corollary 2.4.

Theorem 3.4. Let S be selection of T ∈ LR(X) and dim(T(0)) < ∞. Then, T is a demicompact linear relation if, and
only if, S is a demicompact operator.

Proof. Let T is a demicompact linear relation by using Theorem 2.7, we get I − T ∈ Φ+(X). Since I − S be
selection of I − T with dim(T(0)) < ∞, then by Lemma 2.8 we obtain I − S ∈ Φ+(X). From Theorem 2.9, it
follows that there exists A ∈ BR(X) and a finite rank projection K such that A(I − S) = I − K. Let {xn} be a
bounded sequence ofD(S) such that (I − S)xn −→ y, then

A(I − S)xn −→ Ay.

We conclude that
(I − K)xn −→ Ay.

Since K is compact, then (Kxn)n has a convergent subsequence and so {xn}has also a convergent subsequence.
Conversely, let S is a demicompact operator, then by using Theorem 2.7, we get I − S ∈ Φ+(X). Since I − S
be selection of I − T with dim(T(0)) < ∞, then by Lemma 2.8 we obtain I − T ∈ Φ+(X). From Theorem 2.9, it
follows that there exists A ∈ BR(X) and a finite rank projection K such that A(I − T) = I − K. Let {xn} be a
bounded sequence ofD(T) such that QT(I − T)xn −→ y. Since QA(I−T)AQ−1

T is a bounded operator, then

QA(I−T)AQ−1
T QT(I − T)xn −→ QA(I−T)AQ−1

T y.

Since T(0) ⊂ D(A) and A is continuous, then by using Lemma 2.2, we obtain QI−KA(I−T)xn −→ QI−KAQ−1
T y.

Equivalently to QK(I − K)xn −→ QKAQ−1
T y. Since dim K(0) < ∞, then {xn} has also a convergent subse-

quence.
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Theorem 3.5. Let T ∈ CR(X) and dimT(0) < ∞. If 1
µT is demicompact for each µ ∈ [1,+∞[, then µ − T ∈ Φ(X).

Proof. Let S is selection of T. Since 1
µT is demicompact for each µ ∈ [1,+∞[, then by Theorem 2.7 we get

µ − T ∈ Φ+(X). By using Lemma 2.8 (i) and Theorem 3.3, we get µ − S ∈ Φ(X). We shall prove that the map

φ : [1,+∞[ −→ Z
µ −→ i(µ − S)

is continuous in µ. For this, let µ, µ0 ∈ [1,+∞[ arbitrary but fixed such that |µ − µ0| < γ(µ − S). By using
Lemma 2.10, we have

i(µ − S) = i(µ − S − µ + µ0) = i(µ0 − S).

Let ε > 0 there exists δ := γ(µ − S) such that, if µ, µ0 ∈ [1,+∞[ with |µ − µ0| < δ, then |i(µ − S) − i(µ0 − S)| =
|0| = 0 < ε. So, that φ(µ) is continuous. Now, we know that every continuous mapping of a connected inZ
is constant.

If µ −→ +∞, then i
((

I − 1
µS

)
µ
)
= i

(
I − 1

µS
)
= i(I) = 0. Showing that

i(µ − S) = 0 for each µ ∈ [1,+∞[. We conclude that α(µ − S) = β(µ − S) < ∞, then µ − S is a Fredholm linear
operator. Now, by Lemma 2.8 we conclude that µ − T ∈ Φ(X).

4. Some properties of linear selections

Lemma 4.1. Let T1 is selection of T and S1 is selection of S, then:
(i) T1 + S1 is selection of T + S.
(ii) IfD(T) containing the ranges of both S and S1, then T1S1 is selection of TS.

Proof. (i) Let T1 is selection of T and S1 is selection of S, then

D(T + S) = D(T) ∩D(S) = D(T1) ∩D(S1) = D(T1 + S1).

It is easy to prove that

T + S = T1 + T − T + S1 + S − S = T1 + S1 + (T + S) − (T + S).

(ii) Let T1 is selection of T and S1 is selection of S, then

TS = T(S1 + S − S).

SinceD(T) containing the ranges of both S, then by Proposition 2.6 and Proposition 4.7 we have T(S1+S−S) =
TS1 + TS − TS. This implies that TS = (T1 + T − T)S1 + TS − TS. Hence, S1 is single valued, then

TS = T1S1 + TS1 − TS1 + TS − TS.

Let x ∈ D(TS), then TSx = T1S1x + TS1(0) + TS(0) = T1S1x + T(0) + TS(0). Since T(0) ⊂ TS(0), then

TSx = T1S1x + TS1(0) + TS(0) = T1S1x + TS(0).

We still have to show thatD(T1S1) = D(TS). Indeed,

D(T1S1) =
{
x ∈ D(S1) : D(T1) ∩ S1x , 0

}
=

{
x ∈ D(S) : D(T) ∩ S1x , 0

}
.

We haveD(T) containing the ranges of both S, then

D(T1S1) ⊂

{
x ∈ D(S) : D(T) ∩ Sx , 0

}
.
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Conversely,

D(TS) =
{
x ∈ D(S) : D(T) ∩ Sx , 0

}
=

{
x ∈ D(S1) : D(T1) ∩ Sx , 0

}
⊂ S−1

1 D(T1) = D(T1S1).

We conclude that T1S1 is selection of TS.

Proposition 4.2. Let T ∈ CR(X,Y). If S is selection of T, then S ∈ CR(X,Y).

Remark 4.3. Let S is a selection of T, then for all λ ∈ Cwe have λ−S is a selection of λ−T. Indeed, for all x ∈ D(T)
we have (λ − T)x = (λ − S)x + T(0) = (λ − S)x + (λ − T)(0) andD(λ − T) = D(T) = D(S) = D(λ − S).

Proposition 4.4. Let T ∈ LR(X) and K is a demicompact linear relation, then I − K + T − T ∈ Φ(X).

Proof. By using Theorem 3.5, we have I − K ∈ Φ(X) for all K is a demicompact linear relation. Since
0 = ∥T − T∥ < γ(I − K), then by applying [31, Theorem V.5.12 ] we get I − K + T − T ∈ Φ(X).

Proposition 4.5. Let T ∈ LR(X). Let S is a selection of T it is assumed there exist S1 ∈ BR(X) and S2 ∈ L(X) with
K1 and K2 are demicompact such that S1S = I − K1 and SS2 = I − K2, then T ∈ Φ(X).

Proof. By using Proposition 2.6, it is clear that S1T = S1(S + T − T) = I − K1 + S1T − S1T. By Theorem
3.5 we get I − K1 ∈ Φ(X). Since 0 = ∥S1T − S1T∥ < γ(I − K1), then by [31, Theorem V.5.12 ] we have
S1T = I − K1 + S1T − S1T ∈ Φ(X). In the same way to find the following result TS2 ∈ Φ(X). By applying
Proposition 2.6 (iii) we conclude that T ∈ Φ(X).

Corollary 4.6. Let T ∈ LR(X). Let S is a selection of T it is assumed there exist S1,S2 ∈ L(X) and K1,K2 ∈ K (X)
such that S1S = I − K1 and SS2 = I − K2, then T ∈ Φ(X).

Proposition 4.7. If S is a selection of T then we have:
(i) N(S) ⊂ N(T),
(ii) R(S) ⊂ R(T),
(iii) If T(0) ⊂ R(S), then R(S) = R(T).

Proof. (i) Let x ∈ N(S) if and only if x ∈ D(S) such that S(x) = 0. Then we have Sx + T(0) = Tx = T(0) for all
x ∈ D(S) = D(T). So, x ∈ N(T).
(ii) Let y ∈ R(S) if and only if there exists x ∈ D(S) such that Sx = y, then Sx + T(0) = y + T(0). Therefore
Tx = y + T(0) equivalent to y ∈ R(T).
(iii) Since R(T) = R(S) + T(0), we conclude that R(T) = R(S).

Proposition 4.8. Let T ∈ CR(X) is injective. If R(T) is closed, then there exists an injective selection S such that
R(S) is closed.

Proof. If T is closed, then by Proposition 4.2 we have a closed selection S. Since T is injective by Proposition
4.7 we have N(T) = N(S) = {0}. Let R(T) is closed, then by Theorem 2.5 we have T is open equivalent sense
γ(T) > 0. So,

γ(T)∥d(x,N(T)∥ ≤ ∥Tx∥

since T is injective, then
γ(T)∥x∥ ≤ ∥Tx∥ ≤ ∥Sx∥.

Let yn ∈ R(S) such that yn −→ y.
There exists xn, xm ∈ D(S) such that yn = Sxn and ym = Sxm for all n,m ≥ 1. As,

∥xn − xm∥ ≤
1
γ(T)

∥S(xn − xm)∥ ≤
1
γ(T)

∥yn − ym∥.
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Since yn is converge, then it is Cauchy, consequently (xn)n is Cauchy, therefore xn −→ x, and we have
xn ∈ D(S), Sxn −→ y and S is closed, then x ∈ D(S) and Sx = y. Consequently y ∈ R(S).

Proposition 4.9. Let T ∈ LR(X,Y) is injective and S is the selection of T, then

γ(T) ≤ γ(S).

Proof. We have γ(T)d(x,N(T)) ≤ ∥Tx∥, by Proposition 4.7 we get N(S) = N(T) = {0}, then γ(T)∥x∥ ≤ ∥Tx∥.
Equivalently γ(T)∥x∥ ≤ ∥Tx∥ ≤ ∥Sx∥, so

γ(T)d(x,N(S)) ≤ ∥Sx∥.

Consequently, γ(T) ≤ γ(S).

Corollary 4.10. Let T ∈ LR(X,Y) is injective and S is the selection of T.
(i) If T is open, then S is open.
(ii) If R(T) is closed, then R(S) is closed.
(iii) If dimR(T) < ∞, then R(S) is closed.

Proof. (i) Since T is open, then γ(T) > 0. Using Proposition 4.9, we obtain γ(S) is open.
(ii) Using Theorem 2.5 and (i).
(iii) Using [31, Proposition II.3.2 (d)] and (ii).

Example 4.11. If T is open, then there exists an open selection.
Indeed, if P is a linear projection with domain R(T) and kernel T(0), then PT is a selection of T. Using [31, Theorem
II.3.11] we get

γ(P)γ(T) ≤ γ(PT).

Since T is open, then γ(T) > 0. If R(P) ⊈ N(P) , then by Example [31, Example II.3.3] we get γ(P) > 0, therefore
γ(PT) > 0.

Theorem 4.12. Let T ∈ CR(X)(X), then T has a closed selection S and if T(0) ⊂ R(S) we get

ρ(T) ⊂ ρ(S).

Proof. Let T ∈ CR(X)(X), by Lemma 4.2 we get T has a selection S is closed.
Let λ ∈ ρ(T), then λ − T is bijective. Show that λ − S is bijective. Indeed, let x ∈ N(λ − S) if, and only

if,
{

x ∈ D(λ − S) = D(S) = D(T)
(λ − S)x = 0 , therefore (λ − T)x = (λ − S)x + T(0) = T(0), then x ∈ N(λ − T). Hence,

N(λ − S) ⊂ N(λ − T), that is λ − S is injective. Show that R(λ − S) = X, indeed, since T(0) ⊂ R(S). Therefore
by Proposition 4.7 we get R(λ − T) = R(λ − S) = X. We conclude that λ ∈ ρ(S).

Lemma 4.13. Let T ∈ Φ(X), S ∈ BR(X) and F ∈ P(X), suppose that TS = F. If S(0) ⊂ N(T), then S ∈ P(X).

Proof. Let T1 is a selection of T with T(0) ⊂ R(T1). Since T ∈ Φ(X), then T1 ∈ Φ(X). So, there exists A ∈ L(X)
such that AT1 = I − K where K ∈ K (X). Hence, ATS = A(T1 + T − T)S = AF by using Proposition 2.6
(ii) we gate ATS = (AT1 + AT − AT)S = (I − K + AT − AT)S. Since S(0) ⊂ N(AT − AT), then we applied
Proposition 2.6 (i) we find ATS = (I − K)S + (AT − AT)S, since D(A) = X, then by Proposition 2.6 (ii) we
have ATS = (I − K)S + A(T − T)S. Hence S(0) ⊂ N(T), then by Proposition 2.6 (i) we get

ATS = (I − K)S + A(TS − TS) = (I − K)S + ATS − ATS.

Therefore, (I − K)Sx ∈ ATSx for all x ∈ X. Obviously, ATSx = AFx = F1x where AF = F1, then we get
F1 ∈ P(X), then T + F1 ∈ Φ(X). We deduce that

T + (I − K)S + F1 − F1 = T + S − KS + F1 − F1 ∈ Φ(X).

Now using the fact that the linear relation KS + F1 − F1 ∈ P(X). Hence T + S ∈ Φ(X), since T ∈ Φ(X), then it
is clear that S is a Fredholm perturbation.



A. Ammar et al. / Filomat 36:7 (2022), 2215–2235 2223

Lemma 4.14. Let T ∈ BR(X), S ∈ L(X), λ ∈ ΦT(X)\Φ0(T), µ ∈ ΦS(X)\Φ0(T) and T1 is a selection of T with
T(0) ⊂ R(T1). If there exist a Fredholm perturbation F1 is single valued, such that TS = ST + F1. Then there exists a
Fredholm perturbation single valued F depending analytically on λ and µ such that

(λ − T)
(
STλ(T1) − Tλ(T1)S

)
= T(0) + F.

If λ − T is injective, then Tλ(T1)Tµ(S) = Tµ(S)Tλ(T1) + F.

Proof. Let x ∈ X, then by Proposition 2.6 (i) we have

(λ − T)STλ(T1)x = (λS − TS)Tλ(T1)x

=
(
λS − (ST − F1)

)
Tλ(T1)x.

Since Tλ(T1) is single valued, therefore by Proposition 2.6 (ii) we have

(λ − T)STλ(T1)x =
(
λSTλ(T1) − (ST − F1)Tλ(T1)

)
x

=
(
λSTλ(T1) − STTλ(T1) − F1Tλ(T1)

)
x

=
(
S(λ − T)Tλ(T1) − F1Tλ(T1)

)
x.

Since (λ − T)Tλ(T1) = (λ − T1 + T − T)Tλ(T1) = I − K1 + (T − T)Tλ(T1). Hence, we get

(λ − T)STλ(T1)x =
(
S − SK1 + S(T − T)Tλ(T1) − F1Tλ(T1)

)
x.

Let F2 = −SK1 − F1Tλ(T1) and we have F2 ∈ P(X), then (λ − T)STλ(T1)x = Sx + ST(0) + F2x. Moreover,

(λ − T)Tλ(T1)Sx =
(
I − K1 + (T − T)Tλ(T1)

)
Sx

= (I − K1)Sx + T(0)
= Sx − K1Sx + T(0)
= Sx + K2x + T(0), (where − K1Sx = K2x).

This make us conclude that

(λ − T)
(
STλ(T1) − Tλ(T1)S

)
x = Sx + ST(0) + F2x − Sx − K2 + T(0)

= S(0) + ST(0) + F3x + T(0)
= (TS + F1)(0) + F3x
= T(0) + F3x.

If λ − T is injective we get,

(λ − T)−1(λ − T)
(
STλ(T1) − Tλ(T1)S

)
x = (λ − T)−1

(
T(0) + F3x

)
= (λ − T)−1T(0) + (λ − T)−1F3x
= (λ − T)−1(0) + (λ − T)−1F3x
= (λ − T)−1F3x.

By using Lemma 2.1, we get(
STλ(T1) − Tλ(T1)S

)
x + (λ − T)−1(0) = (λ − T)−1F3x.
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Since λ − T is injective we obtain that
(
STλ(T1) − Tλ(T1)S

)
= F4, where F4 = (λ − T)−1F3. Therefore,

STλ(T1) = Tλ(T1)S + F4. Thus, we obtain

(µ − S)[Tµ(S)Tλ(T1) − Tλ(T1)Tµ(S)] = (I − K3)Tλ(T1) − (µ − S)Tλ(T1)Tµ(S)
= Tλ(T1) − K4 − [Tλ(T1)(µ − S) + F5]Tµ(S)
= Tλ(T1) − K4 − Tλ(T1)(I − K5) − F6

= −K4 + K6 − F6

= F7.

where Ki ∈ K (X) for i = 3, 4, 5, 6 and Fi ∈ P(X) for i = 6, 7. Hence,

Tµ(S)Tλ(T1) − Tλ(T1)Tµ(S) = F where F ∈ P(X).

Furthermore, the analyticity of F in λ and µ follows from the analyticity of Tµ(S) and Tλ(T1).

5. Some perturbations results

In this section, we give some perturbation results and some relations between the essential spectrum of
the sum of two linear relation.

Let T ∈ CR(X). We define the setsΨ(X) and ΠT(X) by:

Ψ(X) =
{
T ∈ LR(X) : µT is demicompact for every µ ∈ [0, 1]

}
,

ΠT(X) =

 K ∈ LR(X) :
D(T) ⊂ D(K),

K(0) ⊂ T(0) and ∀µ ∈ ρ(T + K),
−(µ − T − K)−1K ∈ Ψ(X)

 .
We denote

σr(T) :=
⋂

K∈ΠT(X)

σ(T + K).

Theorem 5.1. For each T ∈ CR(X), we have

σe(T) ⊆ σr(T).

Proof. Let T ∈ CR(X) and µ < σr(T), then µ < ∩K∈ΠT(X)σ(T+K). Therefore, µ ∈ ∪K∈ΠT(X)ρ(T+K). Hence, there
exists K ∈ ΠT(X) such that µ ∈ ρ(T +K). We conclude that −(µ− T −K)−1K is demicompact and µ− T −K is
bijective. Hence, µ−T−K ∈ Φ(X) and by applying Theorem 3.5 we get I+ (µ−T−K)−1K ∈ Φ(X). Moreover,

R((µ − T − K)−1K) = D(K−1(µ − T − K))
= (µ − T − K)−1R(K)

=
{
x ∈ D(µ − T − K) : R(K) ∩ (µ − T − K)x , ∅

}
=

{
x ∈ D(T) : R(K) ∩ (µ − T − K)x , ∅

}
.

Let x ∈ D(T), sinceD(T) contain the ranges of (µ − T − K)−1K, then by Proposition 2.6 (ii) we get

(µ − T − K)(x + (µ − T − K)−1Kx) = (µ − T − K)x
= +(µ − T − K)(µ − T − K)−1Kx.

By Lemma 2.1 (iv), we have

(µ − T − K)(x + (µ − T − K)−1Kx) = (µ − T − K)x + Kx
+(µ − T − K)(0)

= (µ − T − K)x + Kx.
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SinceD(T) ⊂ D(K) and K(0) ⊂ T(0). By Lemma 2.11, we get

µ − T = µ − T − K + K.

Therefore, (µ − T − K)(I + (µ − T − K)−1K) = µ − T. Hence, applying Theorem 2.12, we get µ − T ∈ Φ(X). We
deduce that µ < σe(T).

Theorem 5.2. Let T,S ∈ BR(X), T(0) is closed and S(0) ⊂ T(0). If for every λ < σe1(T), there exists Aλ a left inverse
modulo compact of λ − T such that SAλ is demicompact and T(0) ⊂ N(SAλ), then

σe1(T + S) ⊂ σe1(T).

Proof. Let λ < σe1(T), then λ − T ∈ Φ+(X). By Theorem 2.9, there exists Aλ ∈ BR(X) and a finite rank
projection K such that Aλ(λ − T) = I − K. Since SK(0) = S(0) ⊂ T(0) andD(SK) = D(T) = X, then by Lemma
2.11 we have

λ − T − S = λ − T − S + SK − SK.

By using Proposition 2.6 (ii) we get

λ − T − S + SK − SK = λ − T − S(I − K) − SK
= λ − T − SAλ(λ − T) − SK.

Since (λ − T)(0) = T(0) ⊂ N(SAλ), then by Lemma 2.13 we get

λ − T − S = (I − SAλ)(λ − T) − SK.

As SAλ it follows from Theorem 2.7 that I − SAλ ∈ Φ+(X) and we have λ−T ∈ Φ+(X), then by Theorem 2.12
we get (I − SAλ)(λ − T) − SK ∈ Φ+(X). Since SK ∈ P(X), then by Proposition 2.14 we get λ − T − S ∈ Φ+(X).
Hence λ < σe1(T + S). We conclude that σe1(T + S) ⊂ σe1(T).

Theorem 5.3. Let T,S ∈ BR(X), T(0) is closed and S(0) ⊂ T(0). If for every λ < σe(T), there exists Aλ a left inverse
modulo compact of λ − T such that SAλ ∈ Ψ(X) and T(0) ⊂ N(SAλ), then

σe(T + S) ⊂ σe(T).

Proof. Let λ < σe(T), then λ−T ∈ Φ+(X). Since Aλ a left inverse modulo compact operator of µ−T such that
SAλ ∈ Ψ(X), then

λ − T − S = (I − SAλ)(λ − T) − SK.

As, SAλ ∈ Ψ(X), then by Theorem 3.5 we get I− SAλ ∈ Φ(X). By using Lemma 2.12 we get (I− SAλ)(λ−T) ∈
Φ(X). According to Proposition 2.14, we conclude that λ − T − S ∈ Φ(X). Then λ < σe(T + S).

Theorem 5.4. Let T,S ∈ BR(X), T(0) is closed and S(0) ⊂ T(0) with λ − T − S ∈ Φ+(X).
(H1) If there exists Hλ a left inverse modulo compact of λ − T − S such that −λ−1(T)SHλ is demicompact, then[

σe1(T + S)
]
\{0} ⊂

[
σe1(T) ∪ σe1(S)

]
\{0}.

(H2) Moreover, if there exists Gλ a left inverse modulo compact of λ − T − S such that −λ−1S(T)Gλ is demicompact,
then then [

σe1(T) ∪ σe1(S)
]
\{0} =

[
σe1(T + S)

]
\{0}.
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Proof. (i) Let λ ∈ C\{0}. If there exists Hλ a left inverse modulo compact of λ − T − S, then by Theorem
2.9 we get Hλ(λ − T − S) = I − K where K ∈ K (X). Since T ∈ BR(X), then by Proposition 2.6 (ii) we have
(λ − T)(λ − S) = λ(λ − T) − (λ − T)S and by Lemma 2.13 we have

λ(λ − T) − (λ − T)S = λ(λ − T − S) + TS

Hence, TSK(0) = TS(0) ⊂
(
λ(λ−T − S)+TS

)
(0) andD(λ(λ−T − S)+TS) = D(TSK), then by lemma 2.11 we

get
(λ − T)(λ − S) = λ(λ − T − S) + TS + TSK − TSK.

Clearly,D(TS) = X, then

(λ − T)(λ − S) = λ(λ − T − S) + TS(I − K) + TSK
= λ(λ − T − S) + TSHλ(λ − T − S) + TSK.

By using Lemma 2.13 we get λ(λ − T − S) + TSHλ(λ − T − S) + TSK = λ
(
I + λ−1TSHλ

)
(λ − T − S) + TSK. we

conclude
(λ − T)(λ − S) = λ

(
I + λ−1TSHλ

)
(λ − T − S) + TSK.

SinceD(TSK) = D
(
λ
(
I+λ−1TSHλ

)
(λ−T−S)

)
and TSK(0) ⊂ λ(λ−T−S)+TS(I−K)(0) = λ

(
I+λ−1TSHλ

)
(λ−

T − S)(0). Then, by using Lemma 2.11 we prove that

(λ − T)(λ − S) − TSK = λ
(
I + λ−1TSHλ

)
(λ − T − S).

Let λ <
[
σe1(T) ∪ σe1(S)

]
\{0}, then λ − T ∈ Φ+(X) and λ − S ∈ Φ+(X). Hence, TSK ∈ P(X), then by Lemma

2.12 (iii) and Proposition 2.14 we get

(λ − T)(λ − S) − TSK ∈ Φ+(X).

Again, by using Lemma 2.12 (v), we show that λ − T − S ∈ Φ+(X). We deduce that, λ <
[
σe1(T + S)

]
\{0}.

(ii) Continuing in the same way, we can find

(λ − S)(λ − T) = λ(λ − T − S)
(
I + λ−1STGλ

)
+ STK.

Let λ <
[
σe1(T + S)

]
\{0}, then λ − T − S ∈ Φ+(X). Since −λ−1TSHλ and −λ−1STGλ are demicompact, then by

Theorem 2.7 we have
I + λ−1TSHλ ∈ Φ+(X) and I + λ−1STGλ ∈ Φ+(X).

Therefore, by Lemma 2.12 we have λ(λ−T−S)
(
I+λ−1(T+D)TSHλ

)
+STK ∈ Φ+(X) and λ

(
I+λ−1TSHλ

)
(λ−

T−S)+TSK ∈ Φ+(X).Consequently, TSK,STK ∈ P(X), then (λ−T)(λ−S) ∈ Φ+(X) and (λ−S)(λ−T) ∈ Φ+(X).
Applying Lemma 2.12, then λ − T ∈ Φ+(X) and λ − S ∈ Φ+(X). We deduce that

λ <
[
σe1(T) ∪ σe1(S)

]
\{0}.

5.1. The essential spectra of the sum and the product

In this subsection, we determined the description of the essential spectra of two essentially commuting
multivalued operators.

Theorem 5.5. Let T ∈ BR(X) and S ∈ L(X). Suppose that there exist F ∈ P(X) such that TS = ST + F. Then
σe(T + S) ⊆ σe(T) + σe(S).
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Proof. If σe(T)+σe(S) = C, then the theorem is trivially true. Thus, we assume in the next that σe(T)+σe(S) is
not the entire plane and let µ < σe(T) + σe(S). We define the operator Z as Z = µ − T and let Z1 is a selection
of Z with Z(0) ⊂ R(Z1). Hence, if λ ∈ σe(S), then µ = (µ − λ) + λ < σe(T) + σe(S), then µ − λ < σe(T). By using
[40, Theorem 3.3], we infer that there exists a domain D can be chosen such Tλ(Z1) and Tλ(S) are analytic
on B(D). Define the operators M1 and M2 as follows

M1 =
−1
2iπ

∫
+B(D)

Tλ(Z1)Tλ(S)dλ

and

M2 =
−1
2iπ

∫
+B(D)

Tλ(S)Tλ(Z1)dλ.

We have µ − S − T = −(λ − Z) + (λ − S). Since we can write

(µ − S − T)M1 =
−1
2iπ

∫
+B(D)

−(λ − Z)Tλ(Z1)Tλ(S)dλ

+
−1
2iπ

∫
+B(D)

(λ − S)Tλ(Z1)Tλ(S)dλ.

Obviously,
(λ − Z)Tλ(Z1) = (λ − Z1 + Z − Z)Tλ(Z1) = I − K + (Z − Z)Tλ(Z1)

where K ∈ K (X). Then the first integral of the above equality is of the form

−1
2iπ

∫
+B(D)

(
I − K + (Z − Z)Tλ(Z1)

)
Tλ(S)dλ =

−1
2iπ

∫
+B(D)

(I − K)Tλ(S)dλ

+Z − Z.

By [38, Theorem 13], we get −1
2iπ

∫
+B(D) Tλ(S)dλ = I − K1. So, we infer that the first integral is of the form

(µ − S − T)M1 = I − K2 +
−1
2iπ

∫
+B(D)

(λ − S)Tλ(Z1)Tλ(S)dλ + Z − Z.

Applying Lemma 4.14, we get Tλ(Z1)Tλ(S) = Tλ(S)Tλ(Z1)+K3 where K3 is compact and we have S is a single
valued, then we get

−1
2iπ

∫
+B(D)

(λ − S)Tλ(S)Tλ(Z1)dλ = I + K4, K4 ∈ K (X).

Using the fact that −1
2iπ

∫
+B(D)(λ − S)K3dλ is compact, we have

(µ − S − T)M1 = I + K5 + Z − Z.

By a similar argument we obtain M2(µ − S − T) = I + K6 + Z − Z, where K6 ∈ K (X). By using [31, Theorem
V.5.12 ] we have (µ−S−T)M1 ∈ Φ(X). Again by applying [31, Theorem V.5.12 ] we get M2(µ−S−T) ∈ Φ(X).
Therefore, Proposition 2.6 (iii) we conclude that (µ − S − T) ∈ Φ(X).

Theorem 5.6. Let T ∈ CR(X) and S ∈ L(X)∩Φ(X). Suppose that there exist F ∈ P(X) such that TSx = STx + Fx,
for all x ∈ D(T). Then σe(TS) ⊆ σe(T)σe(S).

Proof. Let γ ∈ σe(S)σe(T). In what follows, we will show that γ ∈ σe(TS). Observing that σe(T) is closed, σe(S)
is compact and 0 < σe(S). then there exists an open set U, with bounded boundary B(U), containing σe(S)
and satisfying that 0 < U and γ−µT ∈ Φ(X). we obtain the existence of a domainD such that σe(S) ∈ D ⊆ U.
Let γ − µT as follows

γ − µT = (µγ)
( 1
µ
−

1
γ

T
)
=

(γ
λ

) (
λ −

1
γ

T
)
, where λ =

1
µ
.



A. Ammar et al. / Filomat 36:7 (2022), 2215–2235 2228

TakingD
′

the image ofD under the map λ = 1
µ , we can assume that Tλ(Z1) is analytic in λ on S(D

′

) where
Z := 1

γT and Z1 is a selection of Z with Z(0) ⊂ R(Z1). This assumption holds true thanks to the fact that
λ − Z ∈ Φ(X). Let us define the operators M1 and M2 as follows

M1 =
−1
2iπ

∫
+B(D)

1
γλ

Tλ(Z1)T 1
λ
(S)dλ

and

M2 =
−1
2iπ

∫
+B(D)

1
γλ

T 1
λ
(S)Tλ(Z1)dλ.

Moreover, since S is a single valued, then we have

(γ − ST) = (γ − SγZ)
= γ − SγZ + γλS − γλS
= γS(λ − Z) + γ(I − λS).

We get

(γ − ST)M1 =
−1
2iπ

∫
+B(D)

1
λ

S(λ − Z)Tλ(Z1)T 1
λ
(S) + (

1
λ
− S)Tλ(Z1)T 1

λ
(S)dλ.

In light of this, the first part of the integrand can be written as follows∫
+B(D)

1
λ

S(λ − Z)Tλ(Z1)T 1
λ
(S)dλ

=

∫
+B(D)

1
λ

S
(
I − K1 + (Z − Z)Tλ(Z1)

)
T 1
λ
(S)dλ

=

∫
+B(D)

1
λ

ST 1
λ
(S)dλ + K2 + Z − Z.

Since 0 < D and S is single valued, hence using [38, Theorems 13 and 14.9] we get

−1
2iπ

∫
+B(D)

1
λ

ST 1
λ
(S)dλ =

−1
2iπ

∫
+B(D)

µSTµ(S)dλ = I + K3.

Then we obtain,

(γ − ST)M1 =
−1
2iπ

∫
+B(D)

1
λ

S(λ − Z)Tλ(Z1)T 1
λ
(S)dλ = I + K4 + Z − Z. (1)

Since S is a single valued, we get the second part of the integrand is equal to∫
+B(D)

(
1
λ
− S)Tλ(Z1)T 1

λ
(S)dλ =

∫
+B(D)

Tλ(Z)dλ + F3. (2)

Then we deduce by [38, Theorem 7.4] that

1
2iπ

∫
+B(D)

Tλ(Z)dλ = K5. (3)

By using Eqs. (1),(2) and (3) we find

−1
2iπ

∫
+B(D)

1
λ

S(λ − Z)Tλ(Z1)T 1
λ
(S)dλ = I + K4 + K5 + F3 + Z − Z

= I + F4 + Z − Z.
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Since B ∈ L(X) we can easily check that

(γ − ST) = γ − γS
T
γ
+ γλS − γλS

= γS(λ − Z) + γ(I − λS)
= γ(λ − Z)S + γ(I − λS) + F5.

This implies that,

M2(γ − ST) =
−1
2iπ

∫
+B(D)

1
γλ

T 1
λ
(S)Tλ(Z1)

(
γ(λ − Z)S + γ(I − λS) + F5

)
dλ

=
−1
2iπ

∫
+B(D)

1
λ

T 1
λ
(S)Tλ(Z1)(λ − Z)Sdλ

−
1

2iπ

∫
+B(D)

1
λ

T 1
λ
(S)Tλ(Z1)(I − λS)dλ + F5

=
−1
2iπ

∫
+B(D)

1
λ

T 1
λ
(S)

(
I − K6 + Tλ(Z1)(Z − Z)

)
Sdλ

−
1

2iπ

∫
+B(D)

1
λ

(Tλ(Z1)T 1
λ
(S) − F1)(I − λS)dλ + F5

=
−1
2iπ

∫
+B(D)

1
λ

T 1
λ
(S)Sdλ + K7 + ZS − ZS

−
1

2iπ

∫
+B(D)

1
λ

Tλ(Z1)T 1
λ
(S)(I − λS)dλ + F6

= I + F7 + Z − Z −
1

2iπ

∫
+B(D)

Tλ(Z1)T 1
λ
(S)(

1
λ
− S)dλ

= I −
1

2iπ

∫
+B(D)

Tλ(Z1)(I − K8)dλ.

= I + F8 + Z − Z

where, Ki ∈ K (X) and Fi ∈ P(X) for all i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Now, to show that σe(TS) ⊆ σe(S)σe(T). Indeed,
(γT−TS)M1 = (γ−ST+F)M1 = (γ−ST)M1+F9 = I+F4+F9+T−T = I+F10+T−T.where, Fi ∈ P(X) for all
i ∈ {9, 10}. By using [31, Theorem V.5.12 ] we have (γ − TS)M1 ∈ Φ(X). Furthermore, since S single valued
we have M2(γ − TS) = M2

(
γ(λ − Z)S + γ(I − λS)

)
= I + F11 + T − T where, F11 ∈ P(X). Again by applying

[31, Theorem V.5.12 ] we get M2(γ − TS) ∈ Φ(X). Therefore, by using Proposition 2.6 (iii) we conclude that
(γ − TS) ∈ Φ(X).

6. Application 2 × 2 matrix linear relation

In the product space X × Y, we consider an multivalued linear relation formally defined by a matrix

A =

(
A B

C + CA−1
− CA−1 D + CA−1B − CA−1B

)
.

The block matrices multivalued linear realtion is defined with domain

D(A) =
[
D(A) ∩D(C + CA−1

− CA−1)
]
×

[
D(B) ∩D(D + CA−1B − CA−1B)

]
.
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Remark 6.1. If CA−1(0) ⊂ C(0) and CA−1B(0) ⊂ D(0) withD(C) ⊂ D(CA−1) andD(D) ⊂ D(CA−1B), then

A =

(
A B
C D

)
.

The purpose of this section is to determine the decomposition ofA then we will use the notion of compact-
ness to discuss Fredholm relation.

6.1. Relationship between Fredholm linear relation ofA and demicompactness
Theorem 6.2. Let D(CA−1) contain the ranges of both A and B and, D(C) contain the ranges of A with C(0) ⊂
CA−1(0) and D(0) ⊂ CA−1B(0). Then,

A =

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)
.

Proof. Let
[(

x1
x2

)
,

(
y1
y2

)]
∈ G

[(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)]
.

This is equivalent to (
y1
y2

)
∈

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

) (
x1
x2

)
.

We can get
(

y1
y2

)
∈

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
x1 + A−1Bx2

x2

)
if, and only if,

(
y1
y2

)
∈

(
I 0

CA−1 I

) (
A(x1 + A−1Bx2)
Dx2 − CA−1Bx2

)
. Since,

R(A−1B) = D(B−1A)
= A−1R(B)

=
{
x ∈ D(A) : Ax ∩ R(B) , ∅

}
,

thenD(A) contain the ranges of A−1B. According to Proposition 2.6, we obtain(
y1
y2

)
∈

(
I 0

CA−1 I

) (
Ax1 + AA−1Bx2
Dx2 − CA−1Bx2

)
. Therefore,

(
y1
y2

)
∈

(
I 0

CA−1 I

) (
Ax1 + Bx2 + A(0)
Dx2 − CA−1Bx2

)
.

Which is equivalent to that
(

y1
y2

)
∈

(
I 0

CA−1 I

) (
Ax1 + Bx2

Dx2 − CA−1Bx2

)
if, and only if,

(
y1
y2

)
∈

(
Ax1 + Bx2

CA−1(Ax1 + Bx2) +Dx2 − CA−1Bx2

)
. Hence,D(CA−1)

contain the ranges of both A and B, then by Proposition 2.6 we get(
y1
y2

)
∈

(
Ax1 + Bx2

CA−1Ax1 + CA−1Bx2 +Dx2 − CA−1Bx2

)
.

Equivalent to, (
y1
y2

)
∈

(
Ax1 + Bx2

C(x1 + A−1(0)) +Dx2 + CA−1Bx2 − CA−1Bx2

)
.
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SinceD(C) contain the ranges of A, then(
y1
y2

)
∈

(
Ax1 + Bx2

Cx1 + CA−1
x 1 − CA−1

x 1 +Dx2 + CA−1Bx2 − CA−1Bx2

)
.

We conclude that

G
[(

I 0
CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)]
⊆ G

[(
A B

C + CA−1
− CA−1 D + CA−1B − CA−1B

)]
. (4)

Moreover,
(

I 0
CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

) (
0
0

)

=

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
A−1B(0)

0

)
=

(
I 0

CA−1 I

) (
AA−1B(0)

0

)
=

(
I 0

CA−1 I

) (
A(0) + B(0)

0

)
=

(
A(0) + B(0)

CA−1(B(0) + A(0))

)
=

(
A(0) + B(0)

CA−1(0) + CA−1B(0)

)
.

Since, C(0) ⊂ CA−1(0) and D(0) ⊂ CA−1B(0), then(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

) (
0
0

)
=

(
A(0) + B(0)

C(0) + CA−1(0) +D(0) + CA−1B(0)

)

=

(
A B

C + CA−1
− CA−1 D + CA−1B − CA−1B

) (
0
0

)
. (5)

Let
(

x
y

)
∈ D

[(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)]
if, and only if,

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

) (
x
y

)
, ∅

if, and only if,
(

I 0
CA−1 I

) (
A 0
0 D − CA−1B

) (
x + A−1By

y

)
, ∅

if, and only if,
(

I 0
CA−1 I

) (
Ax + By

Dy − CA−1By

)
, ∅

if, and only if,
(

Ax + By
Cx + CA−1(0) + CA−1By +Dy − CA−1By

)
, ∅

if, and only if,
(

A B
C + CA−1

− CA−1 D + CA−1B − CA−1B

) (
x
y

)
, ∅.
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We obtain that

D

[(
A B

C + CA−1
− CA−1 D + CA−1B − CA−1B

)]
= D

[(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)]
. (6)

By Eq.s (4), (5), (6) and by using Proposition 2.15, we conclude that(
A B

C + CA−1
− CA−1 D + CA−1B − CA−1B

)
=

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)
.

Theorem 6.3. LetD(CA−1) = X andD(C) contain the ranges of A with C(0) ⊂ CA−1(0) and D(0) ⊂ CA−1B(0).

If
(

A−1B(0)
0

)
⊂ N

[(
I − A 0

0 I −D + CA−1B

)]
, then

A = −

(
I 0

CA−1 I

) (
I − A 0

0 I −D + CA−1B

) (
I A−1B
0 I

)
+

(
I A−1B

CA−1 I + C(A−1)2B

)
.

Proof. By Theorem 6.2, we get

A =

(
I 0

CA−1 I

) (
A 0
0 D − CA−1B

) (
I A−1B
0 I

)
.

Therefore,

A =

(
I 0

CA−1 I

) (
A + I − I 0

0 I − I +D − CA−1B

) (
I A−1B
0 I

)
=

(
I 0

CA−1 I

) [(
I 0
0 I

)
−

(
I − A 0

0 I −D + CA−1B

)] (
I A−1B
0 I

)
.

Hence,
(

A−1B(0)
0

)
⊂ N

[(
I − A 0

0 I −D + CA−1B

)]
, then by using Lemma 2.13 we get

A =

(
I 0

CA−1 I

) [(
I A−1B
0 I

)
−

(
I − A 0

0 I −D + CA−1B

) (
I A−1B
0 I

)]
According to Proposition 2.6, we conclude that

A =

(
I 0

CA−1 I

) (
I A−1B
0 I

)
−

(
I 0

CA−1 I

) (
I − A 0

0 I −D + CA−1B

) (
I A−1B
0 I

)
.

Let
[(

x1
x2

)
,

(
y1
y2

)]
∈ G

[(
I 0

CA−1 I

) (
I A−1B
0 I

)]
. This is equivalent

to
(

y1
y2

)
∈

(
I 0

CA−1 I

) (
x1 + A−1Bx2

x2

)
. Then, we can infer that

(
y1
y2

)
∈

(
x1 + A−1Bx2

CA−1(x1 + A−1Bx2) + x2

)
.

Therefore,
(

y1
y2

)
∈

(
x1 A−1Bx2

CA−1x1 CA−1A−1Bx2 + x2

)
. We prove that,

G
[(

I 0
CA−1 I

) (
I A−1B
0 I

)]
⊂ G

[(
I A−1B

CA−1 C(A−1)2B + I

)]
. (7)



A. Ammar et al. / Filomat 36:7 (2022), 2215–2235 2233

Moreover,(
I 0

CA−1 I

) (
I A−1B
0 I

) (
0
0

)
=

(
I 0

CA−1 I

) (
A−1B(0)

0

)
=

(
A−1B(0)

C(A−1)2B(0)

)
,

we infer that(
I 0

CA−1 I

) (
I A−1B
0 I

) (
0
0

)
=

(
I A−1B

CA−1 C(A−1)2B + I

) (
0
0

)
. (8)

On the one hand,

D

[(
I 0

CA−1 I

) (
I A−1B
0 I

)]
= D

[(
I A−1B
0 I

)]
= X ×D(A−1B).

On the other hand,

D

[(
I A−1B

CA−1 C(A−1)2B + I

)]
= X ×D(A−1B).

We can also show that

D

[(
I A−1B

CA−1 C(A−1)2B + I

)]
= D

[(
I 0

CA−1 I

) (
I A−1B
0 I

)]
. (9)

By Eq.s (7), (8), (9) and by using Proposition 2.15, we deduce that(
I A−1B

CA−1 C(A−1)2B + I

)
=

(
I 0

CA−1 I

) (
I A−1B
0 I

)
.

6.2. Fredholm linear relation ofA
Theorem 6.4. Assume that the hypotheses of Theorem 6.3 are satisfied. Let A and D − CA−1B are closed and
demicompact linear relation such that A−1B and

CA−1 are bounded single valued. If
(

I A−1B
CA−1 C(A−1)2B + I

)
∈ P(X), thenA is a Fredholm linear relation.

Proof. LetA = −
(

I 0
CA−1 I

) (
I − A 0

0 I −D + CA−1B

) (
I A−1B
0 I

)
+

(
I A−1B

CA−1 I + C(A−1)2B

)
.

Since A and D − CA−1B are closed, then
(

I − A 0
0 I −D + CA−1B

)
is closed.

It is easy to notice that
(

I 0
CA−1 I

)
and

(
I A−1B
0 I

)
are single valued

bounded bijective. By using Theorem 2.16 we infer that A is closed. Hence, A and D − CA−1B are
demicompact, according to Theorem 3.5, we deduce that I − A ∈ Φ(X) and I −D + CA−1B ∈ Φ(X). By using
Theorem 2.12, we get(

I 0
CA−1 I

) (
I − A 0

0 I −D + CA−1B

) (
I A−1B
0 I

)
is a Fredholm linear

relation. Since
(

I A−1B
CA−1 C(A−1)2B + I

)
∈ P(X), then by Theorem 2.14 (iii)

we getA is a Fredholm linear relation.
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