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Abstract. In this paper we develop some properties about bounded linear operators. We investigate
relationships between bounded below and norm equivalent operators. Finally, we study conditions under
which those operators become Fredholmn, Weyl and Browder type operators, respectively.

1. Introduction

The study of properties of operators such as closed range has always been of interest for many math-
ematicians. Just to mention a few, Kulkarni and Nari [7] characterized the closed range bounded linear
operators between Banach spaces. Moorthy and Johnson [8] studied the composition of linear operators
with closed range. Later, Barnes [1] gave conditions under which the closed range of an operator implies the
closed range of its restriction, and also the converse. The closed range of topologically mutually dominated
operators was studied in [6].

The closed range of some specific operators has also been of interest. For example, the closed range
of ∗-multiplication operators defined on LP and Orlicz spaces which was characterized in [4, 5], and also
the closed range of multiplication operators defined on Orlicz spaces and weighted composition operators
acting on multidimensional Lorentz spaces, which was studied in [2, 3].

In this paper, we want to establish some results in a general setting. We deal bounded linear operators
between normed spaces, and we study properties such as boundedness below and closed range. We
also define an equivalence relation (norm equivalence) and then we show that some properties, such
as boundedness below and closed range (among others), are transferred by this equivalence relation.
Moreover, we do a similar study in the context of direct sum of operators.

This paper is organized as follows. In Section 2, we give some basic definitions and results that will
be used throughout the paper. Then, in Section 3, we define the norm equivalence of operators and we
investigate common properties to norm equivalent operators, such as boundedness below, closed range,
being a Fredholm operator, etc., and we also investigate the ascent and descent of norm equivalent operators.
Finally, Section 4 is devoted to the study of the closed range operators. There, we state results regarding the
closed range of direct sums of operators, as well as results about closed range of pseudo-inverse operators.
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2. Preliminaries and Auxiliary Results

2.1. Bounded Below and Closed Range Operators

Let X and Y be normed spaces and B(X,Y) be the set of all continuous linear operators from X into Y.
We recall the definition of a bounded below operator.

Definition 2.1. Let T ∈ B(X,Y). We say that T is bounded below if there exists ε > 0 such that ∥Tx∥ ≥ ε∥x∥, for all
x ∈ X.

For T ∈ B(X,Y), we denote by R(T) and N(T) the range and the null space of T, respectively. T is said to
be a closed range operator if R(T) is a closed set in Y.

By CL(X,Y) and BB(X,Y) we denote the set of all continuous closed range linear operators and all
continuous bounded below linear operators from X to Y, respectively. For every normed space X, we
denote B(X,X) = B(X), CL(X,X) = CL(X) and BB(X,X) = BB(X).

Now, we state the following theorem which we will use throughout this article.

Theorem 2.2. [8] Let T ∈ B(X,Y). Then T ∈ CL(X,Y) if and only if there exists ε > 0 such that for given x ∈ X,
there exists y ∈ X such that Tx = Ty and ∥y∥ ≤ ε∥Tx∥.

Remember that, for a bounded linear operator T, there is a unique factorization of T as a product T = VP,
where V is a partial isometry, P is a non-negative self-adjoint operator and the initial space of V is the closure
of the range of P. The following result shows us the equivalence between the boundedness below of T and
P.

Proposition 2.3. Let H be a Hilbert space and let T ∈ B(H) having polar decomposition T = VP. Then T ∈ BB(H)
if and only if P ∈ BB(H).

Proof. Let T ∈ B(H) having polar decomposition T = VP. Then we have,

∥Px∥2 = ⟨Px,Px⟩ = ⟨P2x, x⟩ = ⟨T∗Tx, x⟩ = ∥Tx∥2,

for all x ∈ H. Suppose that T ∈ BB(H). Then there exists ε > 0 such that ∥Tx∥ ≥ ε∥x∥, for all x ∈ H. Therefore,
∥Px∥ = ∥Tx∥ ≥ ε∥x∥, for all x ∈ H, that is, P ∈ BB(H).

Conversely, suppose that P ∈ BB(H). Then there exists ε > 0 such that ∥Px∥ ≥ ε∥x∥, for all x ∈ H.
Therefore, ∥Tx∥ = ∥Px∥ ≥ ε∥x∥ for all x ∈ H. That is, T ∈ BB(H).

Next, we prove that composition of bounded below operators is again a bounded below operator, as
also are products between bounded below operators with non-zero scalars.

Proposition 2.4. Let T ∈ B(X,Y) and λ ∈ C \ {0}. Let S ∈ B(Y,Z).

(i) If T ∈ BB(X,Y) and S ∈ BB(Y,Z), then ST ∈ BB(X,Z),

(ii) T ∈ BB(X,Y) if and only if λT ∈ BB(X,Y).

Proof. (i) Suppose that T ∈ BB(X,Y) and S ∈ BB(Y,Z). Then ∥STx∥ ≥ η∥Tx∥ ≥ ηε∥x∥, for all x ∈ X.

(ii) Let T ∈ BB(X,Y) and λ ∈ C \ {0}. Then, ∥λTx∥ ≥ ε|λ|∥x∥, for all x ∈ X. Therefore, λT ∈ BB(X,Y).
Conversely, if λT ∈ BB(X,Y) and λ ∈ C \ {0}, we have ∥Tx∥ ≥ ε

|λ|∥x∥, for all x ∈ X.
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3. Norm Equivalent Operators

In this section we present some results on norm equivalent operators. We begin with the following
definition.

Definition 3.1. Let T,S ∈ B(X,Y). S and T are said to be norm equivalent, and we denote this by T ∼ S, if there
exist positive real numbers k1 and k2 such that k1∥Sx∥ ≤ ∥Tx∥ ≤ k2∥Sx∥, for all x ∈ X.

Norm equivalence between operators is in fact an equivalence relation, as the following proposition
shows.

Proposition 3.2. Let T ∈ B(X,Y) and [T] = {S ∈ B(X,Y) : S ∼ T}. Then ∼ is an equivalence relation and [T] is the
equivalence class of T.

Proof. Let T ∈ B(X,Y). It is clear that T ∼ T. Let T,S ∈ B(X,Y) and T ∼ S. Then there exist positive real
numbers k1 and k2 such that k1∥Sx∥ ≤ ∥Tx∥ ≤ k2∥Sx∥, for all x ∈ X. Therefore, 1

k2
∥Tx∥ ≤ ∥Sx∥ ≤ 1

k1
∥Tx∥, for all

x ∈ X, so S ∼ T. Let T,S,V ∈ B(X,Y) such that T ∼ S and S ∼ V. Then there exist positive real numbers k1
and k2 such that k1∥Sx∥ ≤ ∥Tx∥ ≤ k2∥Sx∥, for all x ∈ X. Also, there exist positive real numbers j1 and j2 such
that j1∥Vx∥ ≤ ∥Sx∥ ≤ j2∥Vx∥, for all x ∈ X. Therefore, k1 j1∥Vx∥ ≤ ∥Tx∥ ≤ k2 j2∥Vx∥, for all x ∈ X. So T ∼ V, i.e.
∼ is transitive.

Norm equivalent operators share some of their properties, this is shown in the proposition below.

Proposition 3.3. Let T,S ∈ B(X,Y) be norm equivalent operators. Then, the following propositions holds:

(i) T ∈ BB(X,Y) if and only if S ∈ BB(X,Y),

(ii) T ∈ CL(X,Y) if and only if S ∈ CL(X,Y),

(iii) T is one-to-one if and only if S is one-to-one,

(iv) αT and βS are norm equivalent, where α, β ∈ C \ {0}.

Proof. There exist two positive real numbers k1 and k2 such that k1∥Tx∥ ≤ ∥Sx∥ ≤ k2∥Tx∥, for all x ∈ X.

(i) Let T ∈ B(X,Y). Then there exists ε > 0 such that ∥Tx∥ ≥ ε∥x∥, for all x ∈ X. We have ∥Sx∥ ≥ k1∥Tx∥ ≥
k1ε∥x∥, for all x ∈ X. Conversely, Let S ∈ B(X,Y). Then there exists ε > 0 such that ∥Sx∥ ≥ ε∥x∥, for all
x ∈ X. We have ∥Tx∥ ≥ 1

k2
∥Sx∥ ≥ 1

k2
ε∥x∥, for all x ∈ X.

(ii) It follows Remark 2.4 in [6].

(iii) Let T be one-to-one, and Sx = 0. Then, we have ∥Tx∥ ≤ 1
k1
∥Sx∥. Hence, x = 0. Conversely, Let S is onto

and Tx = 0. By hypothesis, we have ∥Sx∥ ≤ k2∥Tx∥. Hence, x = 0.

(iv) Let α, β ∈ C \ {0}. Then, k1∥
α
|α|Tx∥ ≤ ∥ β

|β|Sx∥ ≤ k2∥
α
|α|Tx∥, for all x ∈ X. Therefore, k1 |β|

|α| ∥αTx∥ ≤ ∥βSx∥ ≤
k2 |β|
|α| ∥αTx∥, for all x ∈ X, which shows that T ∼ V, i.e., ∼ is transitive.

Next, we recall the definition of a Fredholm and also a semi-Fredholm operator.

Definition 3.4. Let X and Y be Banach spaces. T ∈ B(X,Y) is said to be a Fredholm operator and we write
T ∈ Φ(X,Y), if R(T) is closed, nul T := dim N(T) < ∞ and def T := codim R(T) = dim(Y/R(T)) < ∞.

For T ∈ Φ(X,Y), we define the index of T to be

ind T = nul T − def T.
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Now, put

Φ+(X,Y) = {T ∈ B(X,Y) : R(T) is closed and nul T < ∞},

and

Φ−(X,Y) = {T ∈ B(X,Y) : de f T < ∞}.

We say that T is a semi-Fredholm operator if T ∈ Φ+(X,Y) or T ∈ Φ−(X,Y).

The property of being a Fredholm (semi-Fredholm) operator is shared by norm equivalent operators, as
the following proposition states.

Proposition 3.5. Let T,S ∈ B(X,Y) be norm equivalent and let R(T) = R(S). Then the following claims are true:

(i) T is a Fredholm operator if and only if S a is Fredholm operator,

(ii) T is a semi-Fredholm operator if and only if S a is Fredholm operator.

Proof. By hypothesis, N(T) = N(S), R(T) = R(S) and ind T = ind S.

(i) Let T be a Fredholm operator. Then, both nul T and def T are finite. Therefore, both nul S and def S
are finite. Consequently, S is Fredholm operator. Conversely, let S be a Fredholm operator. Then,
both nul S and def S are finite. Therefore, both nul T and def T are finite. Consequently, T is a
Fredholm operator.

(ii) Let T be a semi-Fredholm operator. If T ∈ Φ+(X,Y) then, S ∈ Φ+(X,Y). If T ∈ Φ−(X,Y) then,
S ∈ Φ−(X,Y). Therefore, S is semi-Fredholm. Conversely, Let S be a semi-Fredholm operator. If
S ∈ Φ+(X,Y) then, T ∈ Φ+(X,Y). If S ∈ Φ−(X,Y) then, T ∈ Φ−(X,Y). Therefore, T is a semi-Fredholm.

There is a relationship regarding the closed range and the polar decomposition of norm equivalent
operators. This is our next result.

Proposition 3.6. Let H be a Hilbert space and let T1,T2 ∈ B(H) be norm equivalent operators. Let T1 = V1P1 and
T2 = V2P2 be polar decompositions of T1 and T2. Then R(P1) is closed if and only if R(P2) is closed.

Proof. By hypothesis, there exist two positive real numbers k1 and k2 such that k1∥T1x∥ ≤ ∥T2x∥ ≤ k2∥T1x∥,
for all x ∈ H. Then for x ∈ H, ∥Pix∥ = ∥Tix∥, for i = 1, 2. Therefore, k1∥P1x∥ ≤ ∥P2x∥ ≤ k2∥P1x∥. Hence, by
Proposition 3.3, the proof is complete.

The following two propositions tell us about compositions of norm equivalent operators with bounded
operators and also with isometries.

Proposition 3.7. Let P ∈ B(X,Y) and let T,S ∈ B(Y,Z). If T and S are norm equivalent, then TP ∈ CL(X,Z) if
and only if SP ∈ CL(X,Z).

Proof. There exist two positive real numbers k1 and k2 such that k1∥Ty∥ ≤ ∥Sy∥ ≤ k2∥Ty∥, for all y ∈ Y.
Therefore, k1∥TPx∥ ≤ ∥SPx∥ ≤ k2∥TPx∥, for all x ∈ X. Consequently, TP and SP are norm equivalent. Hence,
TP ∈ CL(X,Z) if and only if SP ∈ CL(X,Z).

Proposition 3.8. Let T,S ∈ B(X,Y) and let P ∈ B(Y,Z) be an isometry. If T and S are norm equivalent, then
PT ∈ CL(X,Z) if and only if PS ∈ CL(X,Z).

Proof. There exist positive real numbers k1 and k2 such that k1∥Sx∥ ≤ ∥Tx∥ ≤ k2∥Sx∥, ∥PTx∥ = ∥Tx∥ and
∥PSx∥ = ∥Sx∥, for all x ∈ X. Therefore, k1∥PTx∥ ≤ ∥PTx∥ ≤ k2∥PTx∥, for all x ∈ X. Consequently, PT and PS
are norm equivalent. Hence, PT ∈ CL(X,Z) if and only if PS ∈ CL(X,Z).
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3.1. Ascent and Descent of Norm Equivalent Operators
The ascent and descent of an operator are defined as follows.

Definition 3.9. Let X be a vector space and T : X→ X be a linear operator. If N(Tn) , N(Tn+1) for all n ∈N, then
T has infinite ascent and we set ascent T = ∞. Otherwise, we say that T has finite ascent and set

ascent T = min{p ∈N : N(Tp) = N(Tp+1)}.

Similarly, if R(Tn) , R(Tn+1) for all n ∈ N, then T has infinite descent and we set descent T = ∞. Otherwise, we
say that T has finite descent and set

descent T = min{p ∈N : R(Tp) = R(Tp+1)}.

Norm equivalent operators have the same ascent and descent. We prove this for the ascent in the
corollary below. Since the proof for the descent is similar, we omit it.

Corollary 3.10. Let T,S ∈ B(X) be norm equivalent and let TS = ST. Then

(i) Tn and Sn are norm equivalent operators and N(Tn) = N(Sn), for all n ∈N.

(ii) ascent T < ∞ if and only if ascent S < ∞;

(iii) T is nilpotent if and only if S is nilpotent.

Proof. (i) Since T ∼ S, then by definition of ∼we have Tn
∼ Sn−1T and Sn

∼ TSn−1, for all n ≥ 2.

On the other hand, since TS = ST, then TSn−1 = Sn−1T. Then, by Proposition 3.2 we have Tn
∼ Sn.

Then the fact that N(Tn) = N(Sn) for all n ∈N is obvious from the definition of ∼.

(ii) Let ascent T = p < ∞. Then N(Tn) = N(Tp), for all n ≥ p. Therefore, N(Sn) = N(Sp), for all n ≥ p.
Consequently, ascent S ≤ p < ∞. The converse is true similarly.

(iii) Let T be nilpotent. Then there exists n ∈ N such that Tnx = 0, for all x ∈ X. Moreover, there exist
positive real numbers k1 and k2 such that k1∥Tnx∥ ≤ ∥Snx∥ ≤ k2∥Tnx∥, for all x ∈ X. Therefore, Snx = 0,
for all x ∈ X. Consequently, S is nilpotent. The proof of the converse is similar.

4. Closed Range Operators

We begin this section by presenting some properties of closed range operators.

Proposition 4.1. Let T ∈ B(X,Y) and λ ∈ C \ {0}. Then T ∈ CL(X,Y) if and only if λT ∈ CL(X,Y).

Proof. Let T be a closed range operator. By Theorem 2.2, there exists a constant c > 0 such that for x ∈ X,
there exists y ∈ X such that Tx = Ty and ∥y∥ ≤ c∥Tx∥. Therefore, for λ ∈ C \ {0} we have λTx = λTy and
∥y∥ ≤ c

|λ|∥λTx∥.
Conversely, let λ ∈ C \ {0} and let R(λT) be closed, then R(T) = R( 1

λλT) is closed.

Proposition 4.2. Let T ∈ B(X,Y) and let S ∈ B(Y,Z). Then the following holds:

(i) If T ∈ CL(X,Y) and S ∈ BB(Y,Z), then ST ∈ CL(X,Z).

(ii) If ST ∈ CL(X,Z) and T is onto, then S ∈ CL(Y,Z).

(iii) If T is invertible and S ∈ BB(Y,Z), then ST ∈ CL(X,Z).

(iv) If ST ∈ CL(X,Z) and S is one-to-one, then T ∈ CL(X,Y).
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Proof. (i) By Theorem 2.2, there exists a constant c > 0 such that for given x ∈ X, there exists y ∈ X
such that Tx = Ty and ∥y∥ ≤ c∥Tx∥. Also, there exists ε > 0 such that ε∥Tx∥ ≤ ∥S(Tx)∥. Therefore,
S(Tx) = S(Ty) and ∥y∥ ≤ c

ε∥STx∥.

(ii) For any y1 ∈ Y, there exists x1 ∈ X such that Tx1 = y1. By hypothesis, there exists a constant c > 0 such
that for x1 ∈ X, there exists x2 ∈ X such that STx1 = STx2 and ∥x2∥ ≤ c∥STx1∥. Therefore, Sy1 = Sy2
where y2 = Tx2 and ∥y2∥ ≤ c∥T∥∥Sy1∥. Consequently, S ∈ CL(Y,Z).

(iii) By hypothesis, there exists a constant c > 0 such that for given x1 ∈ X, there exists a y2 ∈ Y such that
STx1 = Sy2 and ∥y2∥ ≤ c∥STx1∥. Also, There exists ε > 0 such that for y2, there exists x2 ∈ X such that
Tx2 = y2 and ε∥x2∥ ≤ ∥Tx2∥ = ∥y2∥ ≤ c∥STx1∥. Therefore, STx1 = STx2 and ∥x2∥ ≤

c
ε∥STx1∥.

(iv) There exists a constant c > 0 such that for given x1 ∈ X, there exists x2 ∈ X such that STx1 = STx2 and
∥x2∥ ≤ c∥STx1∥. Therefore, Tx1 = Tx2 and ∥x2∥ ≤ c∥S∥∥Tx1∥.

Corollary 4.3. Let T ∈ B(X,Y) and let S ∈ B(Y,Z). Then the following holds:

(i) Let T be invertible. Then ST ∈ CL(X,Z) if and only if S ∈ CL(Y,Z).

(ii) Let S be invertible. Then ST ∈ CL(X,Z) if and only if T ∈ CL(X,Y).

Proof. (i) Let T ∈ B(X,Y) be invertible. Then T is onto. If ST ∈ CL(X,Z), then S ∈ CL(Y,Z) is closed.
Moreover, If S ∈ CL(Y,Z), then ST ∈ CL(X,Z).

(ii) Let T ∈ B(X,Y) and let S ∈ B(Y,Z) be invertible. Then T ∈ BB(X,Y) is one-to-one. If ST ∈ CL(X,Z),
then T ∈ CL(X,Y) is closed. If T ∈ CL(X,Y), then ST ∈ CL(X,Z).

Corollary 4.4. Let T,S ∈ B(X). Then the following holds:

(i) If T ∈ CL(X) and S is invertible, then ST,TS ∈ CL(X),

(ii) If T ∈ BB(X) and n ∈N. Then Tn
∈ CL(X).

4.1. Closed Range of Tensor Product and Direct Sum of Operators

It is a known fact that, if T1 and T2 are bounded linear operators on normed spaces X and Y, respectively,
then there exists unique bounded linear operator T on X ⊕ Y such that

T(x ⊕ y) = T1x ⊕ T2y,

for all x in X and y in Y. This operator is called a direct sum of operators T1 and T2. It is denoted by T1 ⊕ T2.
Closed range is preserved by operation ⊕. In fact, we have the following result.

Proposition 4.5. Let Ti ∈ B(Xi,Yi) for i = 1, 2. Let T1 and T2 be closed range operators, then T1 ⊕ T2 has closed
range.

Proof. There exist constants ci > 0, (i=1,2) such that for given x1i ∈ Xi, there exists x2i ∈ Xi such that
Tix1i = Tix2i and ∥x2i∥ ≤ ci∥Tix1i∥. Therefore, ∥(x21, x22)∥ ≤ max{c1, c2}∥(T1 ⊕ T2)(x11, x12)∥. Consequently,
R(T1 ⊕ T2) is closed.
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4.2. Weyl and Browder Operators
An operator T ∈ B(X) is called Weyl operator if T is a Fredholm operator with null index. An operator

T ∈ B(X) is called a Browder operator if it is a Fredholm operator of finite ascent and descent.

Theorem 4.6. Let T,S ∈ B(X,Y) and let T , 0. For all f ∈ Y∗ and x ∈ X, let k1| f (Tx)| ≤ | f (Sx)| ≤ k2| f (Tx)| for
some k1, k2 > 0, then the operator S is a:

(i) Fredholm operator if and only if T is Fredholm operator.

(ii) Weyl operator if and only if T is Weyl operator.

(iii) Browder operator if and only if T is Browder operator.

(iv) compact operator if and only if T is compact.

(v) invertible operator if and only if T is invertible.

Proof. According to Theorem 2.7 in [6], S = αT for some scalar α. We show that α , 0. Since T , 0, therefore,
Tx , 0 for some x ∈ X. Then, there exists f ∈ Y∗ such that f (Tx) , 0. Hence, Sx , 0. Consequently, α , 0.
On the other hand, N(T) = N(S), R(T) = R(S), ascent T = ascent S and descent T = descent S.

(i) Let S be a Fredholm operator, then both nul T = nul S and de f T = de f S are finite. Therefore, both
nul T and de f T are finite. Consequently, T is Fredholm operator. conversely, Let T be Fredholm
operator. Then, both nul S = nul T and de f S = de f T are finite. Therefore, both nul S and de f S are
finite. Consequently, S is Fredholm operator.

(ii) Let S be a Weyl operator. Then S is Fredholm operator of index zero. Therefore, T is a Fredholm
operator. Also, ind T = nul T−de f T = nul S−de f S = ind S = 0. Consequently, T is a Weyl operator.
Conversely, let T be a Weyl operator. Then T is a Fredholm operator of index zero. Therefore, S is a
Fredholm operator. Also, ind S = nul S − de f S = nul T − de f T = ind T = 0. Consequently, S is a
Weyl operator.

(iii) Let S be a Browder operator. Then S is a Fredholm operator of finite ascent and descent. Therefore, T
is a Fredholm of finite ascent and descent. In other words, T is a Browder operator. Conversely, Let
T be a Browder operator. Then T is a Fredholm operator of finite ascent and descent. Therefore, S a
is Fredholm operator of finite ascent and descent. In other words, S is a Browder operator.

(iv) This is trivial.

(v) Let S be an invertible operator. Then T is an invertible operator and T−1 = αS−1. Conversely, Let T be
an invertible operator. Then S is an invertible operator and S−1 = α−1T−1.

4.3. Closed Range of Pseudo-Inverse Operators
Let T ∈ B(X,Y). Recall that, a pseudo-inverse of T is an operator S ∈ B(Y,X) such that TST = T.
The next proposition tells us about direct sum of pseudo-inverse operators.

Proposition 4.7. Let Ti ∈ B(Xi,Yi). Let Si ∈ B(Yi,Xi) be pseudo-inverses of Ti, (i = 1, 2). Then S1 ⊕ S2 is a
pseudo-inverse of T1 ⊕ T2.

Proof. Let x1 ∈ X1 and x2 ∈ X2. Then,

(T1 ⊕ T2)(S1 ⊕ S2)(T1 ⊕ T2)(x1, x2) =(T1 ⊕ T2)(S1 ⊕ S2)(T1x1,T2x2)
=(T1 ⊕ T2)(S1T1x1,S2T2x2)
=(T1S1T1x1,T2S2T2x2)
=(T1x1,T2x2)
=(T1 ⊕ T2)(x1, x2),

as desired.
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A pseudo-inverse operator of a Fredholm operator is again a Fredholm operator, and the compactness of
a pseudo-inverse operator implies the compactness of the operator. We prove this in the next Proposition.

Proposition 4.8. Let T ∈ B(X,Y) and let S ∈ B(Y,X) be pseudo-inverse of T. Then

(i) If T is a Fredholm operator, then so is S,

(ii) If S is a compact operator, then so is T.

Proof. (i) If T is a Fredholm operator, then so is TST. Therefore, TS is a Fredholm operator and then so
is S.

(ii) If S is a compact operator, then so is TST and then so is T.

Pseudo-inverse operators of Fredholm type operators are also Fredholm type operators, and a similar
result is valid is valid for Weyl type operators and for invertible operators. More precisely, we have the
following result.

Theorem 4.9. Let T ∈ B(X) and let S ∈ B(X) be pseudo-inverse of T. Then

(i) If T is a Freholm operator, then so is S.

(ii) If T is a Weyl operator, then so is S.

(iii) If T is a invertible operator, then so is S and S = T−1.

Proof. (i) It follows from the previous proposition.

(ii) Let T be a Weyl operator. Then S is a Fredholm operator. Also

0 = ind T = ind T + ind S + ind T = ind S.

Therefore, ind S = 0. Consequently, S is a Weyl operator.

(iii) Let T be a invertible operator. Then TS = I and ST = I. Therefore, S is a invertible operator and
S = T−1.

Proposition 4.10. Let T ∈ B(H) and let S ∈ B(H) be a pseudo-inverse of T. Then

(i) S∗ is a pseudo-inverse of T∗.

(ii) If T is unitary operator, then so is S.

Proof. (i) Let TST = T . Then T∗S∗T∗ = (TST)∗ = T∗. Therefore, S∗ is a pseudo-inverse of T∗.

(ii) Let T be a unitary operator, then T is invertible and S = T∗. Therefore, SS∗ = S∗S = I. Consequently, S
is a unitary operator.
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