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Some Remarks on the General Zeroth–Order Randić Coindex
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Abstract. Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph of order n and size m, without
isolated vertices. Denote by d1 ≥ d2 ≥ · · · ≥ dn, di = d(vi) a sequence of vertex degrees of G. The
general zeroth–order Randić index is defined as 0Rα(G) =

∑n
i=1 dαi , where α is an arbitrary real number.

The corresponding general zeroth–order Randić coindex is defined via 0Rα(G) =
∑n

i=1(n − 1 − di)dαi . Some
new bounds for the general zeroth–order Randić coindex and relationship between 0Rα(G) and 0Rα−1(G) are
obtained. For a particular values of parameter α a number of new bounds for different topological coindices
are obtained as corollaries.

1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with n vertices, m edges and a sequence
of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi). The complement of G, denoted as G, has the same
vertex set V(G), and two vertices are adjacent in G if and only if they are not adjacent in G, that is G = (V,E).
If vertices vi and v j of G are adjacent, we write i ∼ j. On the other hand, if vi and v j are adjacent in G, we
write i / j.

A topological index of a graph is a numerical quantity which is invariant under automorphisms of
the graph. Topological indices are important and useful tools in mathematical chemistry, nanomaterials,
pharmaceutical engineering, etc. used for quantifying information on molecules. Many of them are defined
as simple functions of the degrees of the vertices of (molecular) graph. Various mathematical properties of
topological indices have been investigated, as well.

In [5] a so called general zeroth–order Randić index was introduced. It is defined as

0Rα(G) =
n∑

i=1

dαi ,

where α is an arbitrary real number. It is also met under the names first general Zagreb index [6] and
variable first Zagreb index [7].
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For specific values of α, specific notations (and hence specific names) are being used. Thus, for α = 2,
one of the most popular and most extensively studied graph-based molecular structure descriptors, the
first Zagreb index [10]

M1(G) =
n∑

i=1

d2
i =

∑
i∼ j

(di + d j) ,

is obtained.
For α = 3, a so called forgotten topological index [9]

F(G) =
n∑

i=1

d3
i ,

is acquired, and for α = −1, the inverse degree index [11]

ID(G) =
n∑

i=1

1
di
=

∑
i∼ j

 1
d2

i

+
1
d2

j


is gained.

For various mathematical properties of the above topological indices one can refer to [1, 12–16] and
references cited therein.

Let vi be a vertex of the graph G and let Φ(vi) be any quantity associated to vi. In [2] the following graph
invariant has been introduced

TI(G) =
n∑

i=1

Φ(vi) ,

and in [3] it was proven that the following edge–decomposition of TI(G) is valid

TI(G) =
∑
i∼ j

(
Φ(vi)

di
+
Φ(v j)

d j

)
.

If Φ(vi) = di f (di), where f is a real function defined on the set D = {d1, d2, . . . , dn}, then

TI(G) =
∑
i∼ j

( f (di) + f (d j)) =
n∑

i=1

di f (di) . (1)

Let TI(G) be a vertex–degree based topological index defined by (1). In [1] a concept of coindices was
introduced. The corresponding coindex of TI(G), can be defined via [4]

TI(G) =
∑
i/ j

( f (di) + f (d j)) =
n∑

i=1

(n − 1 − di) f (di) . (2)

Obviously, in this case the sum runs over the edges of the complement of G.
If function f is defined on the set D = {n − 1 − d1,n − 1 − d2, . . . ,n − 1 − dn}, then according to (1) and (2)

we have that

TI(G) =
n∑

i=1

(n − 1 − di) f (n − 1 − di) , (3)

and

TI(G) =
n∑

i=1

di f (n − 1 − di) . (4)

It is not difficult to verify that according to (1), (2), (3) as well as (4), the following result holds.
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Lemma 1.1. Let TI(G) be a vertex–degree–based topological index defined as

TI(G) =
∑
i∼ j

( f (di) + f (d j)) =
n∑

i=1

di f (di) ,

where f is a real function defined on set D = {d1, d2, . . . dn}. Then we have that

TI(G) + TI(G) = (n − 1)
n∑

i=1

f (di) , (5)

and, if f is defined on the set D = {n − 1 − d1,n − 1 − d2, . . . ,n − 1 − dn}, then we have

TI(G) + TI(G) = (n − 1)
n∑

i=1

f (n − 1 − di) . (6)

Having in mind (2), the general zeroth–order Randić coindex [21] can be defined as

0Rα(G) =
∑
i/ j

(
dα−1

i + dα−1
j

)
=

n∑
i=1

(n − 1 − di)dα−1
i . (7)

We have the following corollary of Lemma 1.1.

Corollary 1.2. Let G be a simple graph without isolated vertices. Then, for any real α we have that

0Rα(G) +0Rα(G) = (n − 1)
n∑

i=1

dα−1
i , (8)

and for α ≥ 1

0Rα(G) +0Rα(G) = (n − 1)
n∑

i=1

(n − 1 − di)α−1 . (9)

The equality (8) for α ≥ 1 has been proven in [21] (see also [8]).

In this paper we establish some new bounds for the general zeroth–order Randić coindex and determine
relationship between 0Rα(G) and 0Rα−1(G). For a particular values of parameter α a number of new bounds
for different topological coindices are obtained as corollaries.

2. Preliminaries

The following analytical inequality will be frequently used in the proofs of main results of this paper
(see eg. [17]).

Let p = (pi), i, 2, . . . ,n, be a sequence of non-negative real numbers and a = (ai), i = 1, 2, . . . ,n, a sequence
of positive real numbers. Then, for any real r, r ≤ 0 or r ≥ 1, holds n∑

i=1

pi


r−1 n∑

i=1

piar
i ≥

 n∑
i=1

piai


r

. (10)

For 0 ≤ r ≤ 1, the opposite inequality holds. Equality holds if and only if either r = 0, or r = 1, or
a1 = a2 = · · · = an, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an, for some t, 1 ≤ t ≤ n − 1.
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3. Main results

In the next theorem we will determine a relationship between 0Rα(G) and 0Rα−1(G), where α is a real
number.

Theorem 3.1. Let G, G � Kn, be a simple graph of order n ≥ 3 and size m without isolated vertices. Then, for any
real α, α ≤ 1 or α ≥ 2, we have

0Rα(G) ≤ (n − 1)0Rα−1(G) −
(n(n − 1)2

− 4m(n − 1) +M1(G))α−1

((n − 1)2ID(G) + 2m − 2n(n − 1))α−2 . (11)

If in addition, G � K1,n−1, then

0Rα(G) ≥0 Rα−1(G) +
(2mn −M1(G) − n(n − 1))α−1

(n2 − 2m − (n − 1)ID(G))α−2 . (12)

If 1 ≤ α ≤ 2, the sense of inequalities reverses.
Equality in (11) holds if and only if either α = 1, or α = 2, or n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · = dt >

dt+1 = · · · = dn, for some t, 1 ≤ t ≤ n − 2.
Equality in (12) holds if and only if either α = 1, or α = 2, or n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · =

dt ≥ dt+1 = · · · = dn , 1, for some t, 1 ≤ t ≤ n − 2, or n − 1 , d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t,
2 ≤ t ≤ n − 2, or n − 1 = d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 2 ≤ t ≤ n − 2.

Proof. Based on (6) we have

(n − 1)0Rα−1(G) −0Rα(G) =
n∑

i=1

(n − 1 − di)2dα−2
i . (13)

On the other hand, for r = α − 1, α ≤ 1 or α ≥ 2, pi =
(n−1−di)2

di
, ai = di, i = 1, 2, . . . ,n, the inequality (10)

becomes  n∑
i=1

(n − 1 − di)2

di


α−2 n∑

i=1

(n − 1 − di)2dα−2
i ≥

 n∑
i=1

(n − 1 − di)2


α−1

,

that is (
(n − 1)2ID(G) + 2m − 2n(n − 1)

)α−2
n∑

i=1

(n − 1 − di)2dα−2
i ≥

(
n(n − 1)2 +M1(G) − 4m(n − 1)

)α−1
.

Since G � Kn, we have that (n − 1)2ID(G) + 2m − 2n(n − 1) , 0, which implies that

n∑
i=1

(n − 1 − di)2dα−2
i ≥

(n(n − 1)2
− 4m(n − 1) +M1(G))α−1

((n − 1)2ID(G) + 2m − 2n(n − 1))α−2 . (14)

From the above and inequality (13) we arrive at (11).
Similarly, based on (6) we have that

0Rα(G) −0Rα−1(G) =
n∑

i=1

(n − 1 − di)(di − 1)dα−2
i . (15)

For r = α − 1, α ≤ 1 or α ≥ 2, pi =
(n−1−di)(di−1)

di
, ai = di, i = 1, 2, . . . ,n, the inequality (10) transforms into n∑

i=1

(n − 1 − di)(di − 1)
di


α−2 n∑

i=1

(n − 1 − di)(di − 1)dα−2
i ≥

 n∑
i=1

(n − 1 − di)(di − 1)


α−1

,
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that is

(n2
− 2m − (n − 1)ID(G))α−2

n∑
i=1

(n − 1 − di)(di − 1)dα−2
i ≥ (2mn −M1(G) − n(n − 1))α−1 .

Since G � Kn and G � K1,n−1, we have that n2
− 2m − (n − 1)ID(G) , 0, which implies that

n∑
i=1

(n − 1 − di)(di − 1)dα−2
i ≥

(2mn −M1(G) − n(n − 1))α−1

(n2 − 2m − (n − 1)ID(G))α−2 . (16)

Now, inequality (12) is obtained from (15) and (16).
It can be easily verified that according to (10) when 1 ≤ α ≤ 2, the opposite inequalities are valid in (11)

and (12).
Equality in (14), and consequently in (11), holds if and only if α = 1, or α = 2, or n − 1 , d1 = · · · = dn, or

n − 1 = d1 = · · · = dt > dt+1 = · · · = dn, for some t, 1 ≤ t ≤ n − 2.
Equality in (16), and consequently in (12), holds if and only if eitherα = 1, orα = 2, or n−1 , d1 = · · · = dn,

or n − 1 = d1 = · · · = dt ≥ dt+1 = · · · = dn , 1, for some t, 1 ≤ t ≤ n − 2, or n − 1 , d1 = · · · = dt > dt+1 = · · · =
dn = 1, for some t, 2 ≤ t ≤ n − 2, or n − 1 = d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 2 ≤ t ≤ n − 2.

Corollary 3.2. Let G be a simple graph of order n ≥ 3 and size m without isolated vertices. If G � Kn, then

F(G) ≤ 2m(n − 1)2
− (n − 1)M1(G) −

(n(n − 1)2
− 4m(n − 1) +M1(G))2

(n − 1)2ID(G) + 2m − 2n(n − 1)
, (17)

and

F(G) ≥ 2m(n − 1) −M1(G) +
(2mn −M1(G) − n(n − 1))2

n2 − 2m − (n − 1)ID(G)
. (18)

Equality in (17) holds if and only if n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · = dt > dt+1 = · · · = dn, for some t,
1 ≤ t ≤ n − 2.

Equality in (18) holds if and only if either n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · = dt ≥ dt+1 = · · · = dn , 1,
for some t, 1 ≤ t ≤ n − 2, or n − 1 , d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 2 ≤ t ≤ n − 2, or
n − 1 = d1 = · · · = dt > dt+1 = · · · = dn = 1, for some t, 2 ≤ t ≤ n − 2.

Proof. The required inequalities are obtained from (11) and (12) for α = 3, and from

M1(G) = 2m(n − 1) −M1(G) ,

which was proven in [18].

The proofs of the following two theorems are fully analogous to that of Theorem 3.1, hence omitted.

Theorem 3.3. Let G, G � Kn, be a simple graph of order n ≥ 3 and size m without isolated vertices. If G � Kn, then
for any real α, α ≤ 0 or α ≥ 1, holds

0Rα(G) ≥
(n(n − 1) − 2m)α

((n − 1)ID(G) − n)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid.
Equality holds if and only if either α = 0, or α = 1, or n − 1 , d1 = · · · = · · · = dn, or n − 1 = d1 = · · · = dt >

dt+1 = · · · = dn, for some t, 1 ≤ t ≤ n − 2.

Theorem 3.4. Let G, G � Kn, be a simple graph of order n ≥ 3 and size m without isolated vertices. If G � Kn, then
for any real α, α ≤ 1 or α ≥ 2, holds

0Rα(G) ≥
(2m(n − 1) −M1(G))α−1

(n(n − 1) − 2m)α−2 .

When 1 ≤ α ≤ 2, the opposite inequality is valid.
Equality holds if and only if either α = 1, or α = 2, or n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · = dt > dt+1 =

· · · = dn, for some t, 1 ≤ t ≤ n − 2.
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For particular values of parameter α, the following corollaries of Theorems 3.3 and 3.4 are obtained.

Corollary 3.5. Let G, G � Kn, be a simple graph of order n ≥ 3 and size m, without izolated vertices. Then

ID(G) ≥
((n − 1)ID(G) − n)2

n(n − 1) − 2m
,

M1(G) ≥
(n(n − 1) − 2m)2

(n − 1)ID(G) − n
,

F(G) ≥
(n(n − 1) − 2m)3

((n − 1)ID(G) − n)2 ,

F(G) ≥
(2m(n − 1) −M1(G))2

n(n − 1) − 2m
.

Equalities hold if and only if n − 1 , d1 = · · · = dn, or n − 1 = d1 = · · · = dt > dt+1 = · · · = dn, for some t,
1 ≤ t ≤ n − 2.

In [19] the following inequality was proven:

M1(G) ≤ m
( 2m

n − 1
+ n − 2

)
,

with equality if and only if G � Kn or G � K1,n−1 (see [20]). Having in mind the above inequality we obtain
the following corollaries of Theorem 3.4.

Corollary 3.6. Let G be a simple graph with n ≥ 2 vertices and m edges. Then, for any real α, α ≥ 2, we have that

0Rα(G) ≥
(n(n − 1) − 2m)mα−1

(n − 1)α−1 ,

with equality if and only if G � Kn or G � K1,n−1.

Corollary 3.7. Let T be an arbitrary tree with n ≥ 2 vertices. Then for any real α, α ≥ 2, holds

0Rα(T) ≥ (n − 1)(n − 2) ,

with equality if and only if T � K1,n−1.

In the next theorem we determine the lower bound for 0Rα(G).

Theorem 3.8. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then, for any real α, α ≥ 2, holds

0Rα(G) ≥
(2m(n − 1) −M1(G))α−1

(2m)α−2 . (19)

For 1 ≤ α ≤ 2, the sense of (19) reverses. Equality holds if and only if eiher α = 1, or α = 2, or G is regular.

Proof. For TI(G) =0 Rα(G) from (4) we have that

0Rα(G) =
n∑

i=1

di(n − 1 − di)α−1 . (20)

On the other hand, for r = α − 1, α ≥ 2, pi = di, ai = n − 1 − di, i = 1, 2, . . . ,n, the inequality (10) becomes n∑
i=1

di


α−2 n∑

i=1

di(n − 1 − di)α−1
≥

 n∑
i=1

di(n − 1 − di)


α−1

,
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that is

(2m)α−2
n∑

i=1

di(n − 1 − di)α−1
≥ (2m(n − 1) −M1(G))α−1 . (21)

The inequality (19) is obtained from (20) and (21).
It can be easily proved that when 1 ≤ α ≤ 2, the opposite inequality holds in (19). Equality in (21), and

hence in (19), holds if and only if either α = 1, or α = 2, or if G is regular.

Corollary 3.9. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then, for any real α, α ≥ 2, holds

0Rα(G) ≥
m(n(n − 1) − 2m)α−1

2α−2(n − 1)α−1 .

Equality holds if and only if G � Kn.

Now we state a few inequalities of Nordhaus–Gaddum type (see [22]) which can be easily proved using
(8), (9) and (10).

Theorem 3.10. Let G be a simple graph of order n ≥ 2 and size m without isolated vertices. Then, for any real α,
α ≤ 0 or α ≥ 1, holds

0Rα(G) +0Rα(G) ≥
(n − 1)nα

ID(G)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality holds. Equality holds if and only if either α = 0, or α = 1, or G is regular.

Theorem 3.11. Let G be a simple connected graph with n ≥ 2 vertices and m edges. The, for any real α, α ≤ 1 or
α ≥ 2, holds

0Rα(G) +0Rα(G) ≥
(n − 1)(2m)α−1

nα−2 .

When 1 ≤ α ≤ 2, the opposite inequality holds. Equality holds if and only if either α = 1, or α = 2, or G is regular.

Theorem 3.12. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then, for any α, α ≥ 2, holds

0Rα(G) +0Rα(G) ≥
(n − 1)(n(n − 1) − 2m)α−1

nα−2 .

When 1 ≤ α ≤ 2 the opposite inequality holds. Equality holds if and only if either α = 1, or α = 2, or G is regular.

In the next theorem we establish a relationship between 0Rα+1(G), 0Rα(G) and 0Rα−1(G), where α is an
arbitrary real number.

Theorem 3.13. Let G be a simple graph of order n ≥ 2 and size m, without isolated vertices. Then, for any real α,
holds

0Rα+1(G) + ∆δ0Rα−1(G) ≤ (∆ + δ)0Rα(G) . (22)

Equality holds if and only if di ∈ {δ,∆}, for i = 1, 2, . . . ,n.

Proof. For all i, i = 1, 2, . . . ,n, holds

(∆ − di)(di − δ) ≥ 0 . (23)

that is
∆δ + d2

i ≤ (∆ + δ)di .
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After multiplying the above inequality by (n − 1 − di)dα−2
i , where α is an arbitrary real number, we obtain

(n − 1 − di)dαi + ∆δ(n − 1 − di)dα−2
i ≤ (∆ + δ)(n − 1 − di)dα−1

i .

Summing the above inequality over i, i = 1, 2, . . . ,n, gives
n∑

i=1

(n − 1 − di)dαi + ∆δ
n∑

i=1

(n − 1 − di)dα−2
i ≤ (∆ + δ)

n∑
i=1

(n − 1 − di)dα−1
i ,

from which the inequality (22) is obtained.
Equality in (23), and consequently in (22), holds if and only if di = ∆ or di = δ, for every i = 1, 2, . . . ,n.

For α = 1 and α = 2, we obtain the following corollary of Theorem 3.13.

Corollary 3.14. Let G be a simple graph of order n ≥ 2 and size m, without isolated vertices. Then

M1(G) ≤ (∆ + δ)(n(n − 1) − 2m) − ∆δ((n − 1)ID(G) − n) ,

and
F(G) ≤ (∆ + δ)(2m(n − 1) −M1(G)) − ∆δ(n(n − 1) − 2m) .

Equalities hold if and only if di ∈ {∆, δ}, for every i = 1, 2, . . . ,n.
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