Some Propositonerties of a Bavrin's Family of Holomorphic Functions in \mathbb{C}^{n}

Renata Długosza ${ }^{\text {a }}$, Piotr Liczberskia ${ }^{\text {a }}$, Agnieszka Sibelska ${ }^{\text {b }}$, Edyta Trybucka ${ }^{\text {c }}$
${ }^{a}$ Łódź University of Technology
${ }^{b}$ University of Łódź
${ }^{c}$ University of Rzeszów

Abstract

In the [1], [4], [3] and [2] there were examined the Bavrin's families (of holomorphic functions on bounded complete n - circular domains $\mathcal{G} \subset \mathbb{C}^{n}$) in which the Temljakov operator $\mathcal{L} f$ was presented as a product of a holomorphic function h with a positive real part and the $(0, k)-$ symmetrical part of the function $f,(k \geq 2$ is a positive integer). In [17] there was investigated the family of the above mentioned type, where the operator $\mathcal{L} \mathcal{L} f$ was presented as a product of the same function $h \in \mathcal{C}_{\mathcal{G}}$ and $(0,2)$-symmetrical part of the operator $\mathcal{L} f$. These considerations can be completed by the case of the factorization $\mathcal{L} \mathcal{L} f$ by the same function h and the $(0, k)$-symmetrical part of operator $\mathcal{L} f$. In this article we will discuss the above case. In particular, we will present some estimates of a generalization of the norm of m-homogeneous polynomials $Q_{f, m}$ in the expansion of function f and we will also give a few relations between the different Bavrin's families of the above kind.

1. Introduction

Poincare [15] pointed that the Riemann mapping theorem is false in $\mathbb{C}^{n}, n>1$. For this reason it is very natural to consider the holomorphicity in \mathbb{C}^{n} on domains from a sufficiently wide class. The results in this paper concern the bounded complete circular domains, because such domains play the same role for Taylor series in \mathbb{C}^{n} as open discs in one dimensional case.

We say that a domain $\mathcal{G} \subset \mathbb{C}^{n}, n \geq 2$, is complete n-circular if $z \lambda=\left(z_{1} \lambda_{1}, \ldots, z_{n} \lambda_{n}\right) \in \mathcal{G}$ for each $z=\left(z_{1}, \ldots, z_{n}\right) \in$ \mathcal{G} and every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \overline{U^{n}}$, where U is the unit disc $\{\zeta \in \mathbb{C}:|\zeta|<1\}$. From now, by \mathcal{G} will be denoted a nonempty bounded complete n-circular domain in \mathbb{C}^{n}.

Note that the Minkowski function $\mu_{\mathcal{G}}: \mathbb{C}^{n} \rightarrow[0, \infty)$ of the form

$$
\mu_{\mathcal{G}}(z)=\inf \left\{t>0: \frac{1}{t} z \in \mathcal{G}\right\}, \quad z \in \mathbb{C}^{n}
$$

[^0]gives the possibility to redefine the bounded n-circular domain \mathcal{G} and its boundary $\partial \mathcal{G}$ as follows:
$$
\mathcal{G}=\left\{z \in \mathbb{C}^{n}: \mu_{\mathcal{G}}(z)<1\right\}, \quad \partial \mathcal{G}=\left\{z \in \mathbb{C}^{n}: \mu_{\mathcal{G}}(z)=1\right\}
$$

By $\mathcal{H}_{\mathcal{G}}(1)$ and $\mathcal{H}_{\mathcal{G}}$, let us denote the set of all holomorphic functions $f: \mathcal{G} \longrightarrow \mathbb{C}$, normalized by $f(0)=1$ and without any normalization, respectively.
We will use the Temljakov linear operator $\mathcal{L}: \mathcal{H}_{\mathcal{G}} \longrightarrow \mathcal{H}_{\mathcal{G}}$ defined in [1] by

$$
\mathcal{L} f(z)=f(z)+D f(z)(z), z \in \mathcal{G}
$$

where $\operatorname{Df}(z)(w)$ is the value of the Frechet derivative $D f(z)$ of f at the point z on a vector $w(D f(z)$ is the row vector $\left[\frac{\partial f(z)}{\partial z_{1}}, \ldots, \frac{\partial f(z)}{\partial z_{n}}\right]$ and w is a column vector). Of course \mathcal{L} is invertible and

$$
\mathcal{L}^{-1} f(z)=\int_{0}^{1} f(z t) d t, z \in \mathcal{G}
$$

Many authors (see eg. [1], [6], [7], [8], [13], [18]) considered some Bavrin's subfamilies $\mathcal{X}_{\mathcal{G}}$ of the family $\mathcal{H}_{\mathcal{G}}(1)$. In the definition of these families the main role is played by the family $\mathcal{C}_{\mathcal{G}}$,

$$
C_{\mathcal{G}}=\left\{f \in \mathcal{H}_{\mathcal{G}}(1): \operatorname{Ref}(z)>0, \quad z \in \mathcal{G}\right\}
$$

By a Bavrin's family $\mathcal{X}_{\mathcal{G}}$ we mean a collection of functions $f \in \mathcal{H}_{\mathcal{G}}(1)$ whose the Temljakov transform $\mathcal{L} f$ has a functional factorization $\mathcal{L} f=h \cdot g$, where $h \in \mathcal{C}_{\mathcal{G}}$ and g is from a fixed subfamily of $\mathcal{H}_{\mathcal{G}}$ (1). Below, we recall the factorizations which define a few well known Bavrin's families $\mathcal{X}_{\mathcal{G}}$, like

$$
\begin{gathered}
\mathcal{M}_{\mathcal{G}}: \mathcal{L} f=h \cdot f, h \in C_{\mathcal{G}} \\
\mathcal{N}_{\mathcal{G}}: \mathcal{L}(\mathcal{L} f)=h \cdot \mathcal{L} f, h \in \mathcal{C}_{\mathcal{G}} \\
\mathcal{R}_{\mathcal{G}}: \mathcal{L} f=h \cdot \mathcal{L} \varphi, \varphi \in \mathcal{N}_{\mathcal{G}}, h \in C_{\mathcal{G}}
\end{gathered}
$$

Let us note that functions of these families were used to construct biholomorphic mappings in \mathbb{C}^{n} (see eg. [9], [11], [14]). It is known that families $\mathcal{M}_{\mathcal{G}}, \mathcal{N}_{\mathcal{G}}, \mathcal{R}_{\mathcal{G}}$ correspond with the well-known classes $S^{\star}, S^{c}, S^{c c}$ of univalent starlike, convex and close-to-convex normalized functions in the unit disc U. For instance: if f belongs to the class $\mathcal{M}_{\mathcal{G}}$, then the function

$$
F(\zeta)=\zeta f\left(\zeta \frac{z}{\mu_{\mathcal{G}}(z)}\right), \quad \zeta \in U
$$

belongs to the family S^{\star} for $z \in \mathcal{G} \backslash\{0\}$.
Bavrin showed (see e.g.[1]) that $\mathcal{N}_{\mathcal{G}} \subsetneq \mathcal{M}_{\mathcal{G}}$. He proved also the following higher dimensional version of the well-known Alexander theorem: if $f \in \mathcal{N}_{\mathcal{G}}$ than $\mathcal{L} f \in \mathcal{M}_{\mathcal{G}}$ and conversely, if $f \in \mathcal{M}_{\mathcal{G}}$ then $\mathcal{L}^{-1} f \in \mathcal{N}_{\mathcal{G}}$.
In [3] the authors defined the family $\mathcal{M}_{\mathcal{G}}^{2}$ in the following way: A function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $\mathcal{M}_{\mathcal{G}}^{2}$ if there exists a function $h \in \mathcal{C}_{\mathcal{G}}$ such that

$$
\mathcal{L} f(z)=h(z) f_{0,2}(z), \quad z \in \mathcal{G}
$$

where $f_{0,2}$ is the even part of f in the unique partition $f=f_{0,2}+f_{1,2}$ of f onto the sum of even and odd functions. In [17] the class $\mathcal{N}_{\mathcal{G}}^{2}$ was introduced as follows: A function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $\mathcal{N}_{\mathcal{G}}^{2}$ if there exists a function $h \in C_{\mathcal{G}}$ such that

$$
\mathcal{L} \mathcal{L} f(z)=h(z)(\mathcal{L} f)_{0,2}(z), \quad z \in \mathcal{G}
$$

In [2] the author investigated the family $\mathcal{M}_{\mathcal{G}^{\prime}}^{k} \quad k \in \mathbb{N}, k \geq 2$, by application a functional decomposition with respect to the group of $k^{\text {th }}$ roots of unity.
Let $k \geq 2$ be an arbitrarily fixed integer, $\varepsilon=\varepsilon_{k}=\exp \frac{2 \pi i}{k}$ and a set $\mathcal{D} \subset \mathbb{C}^{n}$ be $k-\operatorname{symmetric}(\varepsilon \mathcal{D}=\mathcal{D})$. For $j=0,1, \ldots, k-1$ we define the spaces $\mathcal{F}_{j, k}=\mathcal{F}_{j, k}(\mathcal{D})$ of functions $(j, k)-$ symmetrical, i.e., all functions $f: \mathcal{D} \rightarrow \mathbb{C}$ such that

$$
f(\varepsilon z)=\varepsilon^{j} f(z), z \in \mathcal{D}
$$

The following result from [12] was used in this and the aforementioned article:
Theorem A For every function $f: \mathcal{D} \rightarrow \mathbb{C}$ there exists exactly one sequence of functions $f_{j, k} \in \mathcal{F}_{j, k}$ $j=0,1, \ldots, k-1$, such that

$$
\begin{equation*}
f=\sum_{j=0}^{k-1} f_{j, k} \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
f_{j, k}(z)=\frac{1}{k} \sum_{l=0}^{k-1} \varepsilon^{-j l} f\left(\varepsilon^{l} z\right), z \in \mathcal{G} . \tag{2}
\end{equation*}
$$

By the uniqueness of the partition (1) the functions $f_{j, k}$ will be called (j, k) - symmetrical components of the function f. Since every bounded complete n-circular domain $\mathcal{G} \subset \mathbb{C}^{n}$ is k-symmetric set, it is obvious that $f_{0, k} \in \mathcal{H}_{\mathcal{G}}(1)$ for $f \in \mathcal{H}_{\mathcal{G}}(1)$.

We say (see [2]) that a function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $\mathcal{M}_{\mathcal{G}^{\prime}}^{k} \quad k \in \mathbb{N}, k \geq 2$, if there exists a function $h \in \mathcal{C}_{\mathcal{G}}$ such that

$$
\begin{equation*}
\mathcal{L} f(z)=h(z) f_{0, k}(z), \quad z \in \mathcal{G} \tag{3}
\end{equation*}
$$

The family $\mathcal{M}_{\mathcal{G}}^{k}$ corresponds to the well-known class $S^{* k}$ [16] of normalized univalent functions, starlike with respect to k-symmetric points.

These considerations can be completed by the case of the factorization $\mathcal{L} \mathcal{L} f$ by the same function h and the $(0, k)$-symmetrical part of operator $\mathcal{L} f$.

It is known ([2]) that for every function $f \in \mathcal{H}_{\mathcal{G}}$ (1)

$$
\begin{equation*}
(\mathcal{L} f)_{0, k}=\mathcal{L}\left(f_{0, k}\right) \tag{4}
\end{equation*}
$$

Let us define the class $\mathcal{N}_{\mathcal{G}}^{k} k \in \mathbb{N}, k \geq 2$ as a family of functions $f \in \mathcal{H}_{\mathcal{G}}(1)$ for which there exists a function $h \in C_{\mathcal{G}}$ such that

$$
\begin{equation*}
\mathcal{L} \mathcal{L} f(z)=h(z) \mathcal{L} f_{0, k}(z), z \in \mathcal{G} \tag{5}
\end{equation*}
$$

2. Main results

Between functions from the class $\mathcal{M}_{\mathcal{G}^{\prime}}^{k} \mathcal{N}_{\mathcal{G}}^{k}$ there holds the following generalization of the Alexander's relation:

Theorem 2.1. Let $k \in \mathbb{N}, k \geq 2$. If $f \in \mathcal{N}_{\mathcal{G}}^{k}$, then $\mathcal{L} f \in \mathcal{M}_{\mathcal{G}}^{k}$ and conversely, if $f \in \mathcal{M}_{\mathcal{G}}^{k}$, then $\mathcal{L}^{-1} f \in \mathcal{N}_{\mathcal{G}}^{k}$.
Proof. If $f \in \mathcal{N}_{\mathcal{G}}^{k} k \in \mathbb{N}, k \geq 2$, then $f \in \mathcal{H}_{\mathcal{G}}(1), \quad \mathcal{L} f \in \mathcal{H}_{\mathcal{G}}(1)$ and there exists $h \in C_{\mathcal{G}}$ such that the condition (5) holds, where $f_{0, k}$ is $(0, k)$-symmetrical part of f. In view of (4) the condition (5) can be written in the form

$$
\mathcal{L}(\mathcal{L} f(z))=h(z)(\mathcal{L} f)_{0, k}(z), \quad z \in \mathcal{G},
$$

therefore, by (3) $\mathcal{L} f \in \mathcal{M}_{\mathcal{G}}^{k}$.
Now, let f belongs to the class $\mathcal{M}_{\mathcal{G}}^{k}$, i.e. $f \in H_{\mathcal{G}}(1)$ and there exists $h \in \mathcal{C}_{\mathcal{G}}$ such that the condition (3) holds. Hence,

$$
\begin{gathered}
\mathcal{L}\left(\mathcal{L} \mathcal{L}^{-1} f(z)\right)=h(z) \mathcal{L} \mathcal{L}^{-1} f_{0, k}(z), \quad z \in \mathcal{G} \\
\mathcal{L} \mathcal{L}\left(\mathcal{L}^{-1} f(z)\right)=h(z) \mathcal{L}\left(\left(\mathcal{L}^{-1} f\right)_{0, k}(z)\right), \quad z \in \mathcal{G}
\end{gathered}
$$

Therefore, $\mathcal{L}^{-1} f \in \mathcal{N}_{\mathcal{G}}^{k}$. \square
Let us observe that $\mathcal{N}_{\mathcal{G}}^{k} k \in \mathbb{N}, k \geq 2$ are nonempty classes. Indeed, the function $f=1$ belongs to $\mathcal{N}_{\mathcal{G}^{\prime}}^{k}$ because it satisfies the factorization (5) with $h=1 \in C_{\mathcal{G}}$.

It is known that the constructs of functions of several complex variables are very difficult. We will give an example of non-trivial hypergeometric function belonging to the class $\mathcal{N}_{\mathcal{G}}^{k}$.

Example It is known that the function $H(a, b, c, \zeta)$ of the form

$$
\begin{equation*}
H(a, b, c, \zeta)=\sum_{v=0}^{\infty} \frac{(a)_{v}(b)_{v}}{(c)_{v}} \frac{\zeta^{v}}{v!}, a, b, c, \in \mathbb{C}, \zeta \in U \tag{6}
\end{equation*}
$$

where $(a)_{v}=a(a+1) \ldots(a+v-1), v=1,2, \ldots$ and $(a)_{0}=1$ is called the hypergeometrical function.
Let $I: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a linear operator of the form

$$
I(z)=\frac{1}{\mu_{\mathcal{G}} \widehat{(I)}} \widehat{I}(z),
$$

where

$$
\begin{equation*}
\widehat{I}(z)=\sum_{j=1}^{n} z_{j}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\mathcal{G}}(\widehat{I})=\sup _{w \in \mathbb{C}^{n} \backslash\{0\}} \frac{|\widehat{I}(w)|}{\mu_{G}(w)}=\sup _{v \in \partial \mathcal{G}}|\widehat{I}(v)| . \tag{8}
\end{equation*}
$$

The quantity $\mu_{\mathcal{G}} \widehat{(I)}$ is called a \mathcal{G}-balance of the linear functional \widehat{I}.
The \mathcal{G}-balance of the form (8) coincides with the $\Delta=\Delta(\mathcal{G})$ - characteristic of the domain \mathcal{G}, which was introduced by Bavrin (see [1]) by the formula $\Delta=\sup _{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathcal{G}}\left|\sum_{j=1}^{n} z_{j}\right|$. If \mathcal{G} is a convex bounded complete n-circular domain, then $\mu_{\mathcal{G}} \widehat{(I)}=\|\widehat{I}\|$.

To show that function

$$
\begin{equation*}
f(z)=H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, I^{k}(z)\right), z \in \mathcal{G}, k \in \mathbb{N}, k \geq 2 \tag{9}
\end{equation*}
$$

belongs to the class $\mathcal{N}_{\mathcal{G}}^{k}$, we will use the following known propositonerties of the hypergeometrical function:

Remark 2.2. If $H(a, b, c, \zeta), a, b, c, \in \mathbb{C}, \zeta \in U$, is the hypergeometrical function of the form (6), then
(i) $\zeta \frac{d}{d \zeta} H(a, b, c, \zeta)=a H(a+1, b, c, \zeta)-a H(a, b, c, \zeta)$;
(ii) $H(a, b, c, \zeta)=H(b, a, c, \zeta)$;
(iii) $H(l, b, b, \zeta)=(1-\zeta)^{-l}$.

To determine the transform $\mathcal{L} f$ of function f, let us write

$$
f(z)=T(I(z)), \quad z \in \mathcal{G}
$$

where $T: \mathcal{U} \rightarrow \mathbb{C}$ is defined in the following way:

$$
\begin{equation*}
T(\zeta)=H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right), \zeta \in U, k \in \mathbb{N}, k \geq 2 \tag{10}
\end{equation*}
$$

Now, we will find explicit form of $\mathcal{L} f$. We start with the following equality

$$
\mathcal{L} f(z)=\left.\frac{d}{d \zeta}(\zeta T(\zeta))\right|_{\zeta=I(z)}
$$

Next, in view of the form (10) of T, we have at $\zeta \in U$

$$
\begin{aligned}
\frac{d}{d \zeta}(\zeta T(\zeta)) & =H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)+\zeta \frac{d}{d \zeta}\left(H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)\right)= \\
& =H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)+\zeta \frac{d}{d \zeta^{k}} \frac{d \zeta^{k}}{d \zeta}\left(H\left(\frac{1}{k}, \frac{2}{k^{\prime}}, 1+\frac{1}{k}, \zeta^{k}\right)\right)= \\
& =H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)+k \zeta^{k} \frac{d}{d \zeta^{k}}\left(H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)\right)
\end{aligned}
$$

Thus, by propositonerty 2.2 (i), we have for $\zeta \in U$

$$
\frac{d}{d \zeta}(\zeta T(\zeta))=\left(H\left(\frac{1}{k}+1, \frac{2}{k}, 1+\frac{1}{k}, \zeta^{k}\right)\right)
$$

Hence, using propositonerty 2.2 (ii) and (iii) of H, we conclude that

$$
\frac{d}{d \zeta}(\zeta T(\zeta))=\frac{1}{\left(1-\zeta^{k}\right)^{\frac{2}{k}}}, \zeta \in U .
$$

Finally,

$$
\mathcal{L} f(z)=\frac{1}{\left(1-I^{k}(z)\right)^{\frac{2}{k}}}, \quad z \in \mathcal{G}
$$

In the paper [4] the authors showed, that function

$$
g(z)=\frac{1}{\left(1-I^{k}(z)\right)^{\frac{2}{k}}}, \quad z \in \mathcal{G}
$$

so according to the Theorem 2.1, the function of the form (9) belongs to the $\mathcal{N}_{\mathcal{G}}^{k}$.
Now, we consider an extremal problemma for the family $\mathcal{N}_{\mathcal{G}}^{k}$.

It is known that each function $f \in \mathcal{H}_{\mathcal{G}}(1)$ can be developed into series of m-homogeneous polynomials $Q_{f, m}, m \in \mathbb{N}$ of the form

$$
\begin{equation*}
f(z)=1+\sum_{m=1}^{\infty} Q_{f, m}(z), \quad z \in \mathcal{G} \tag{11}
\end{equation*}
$$

where

$$
Q_{f, m}(z)=\sum_{\alpha_{1}+\ldots+\alpha_{n}=m} c_{\alpha_{1} \ldots \alpha_{n}} z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

and the coefficients $c_{\alpha_{1} \ldots \alpha_{n}}, \alpha_{l} \in \mathbb{N} \cup\{0\}, l=1, \ldots, n$ are defined by the partial derivatives as follows:

$$
c_{\alpha_{1} \ldots \alpha_{n}}=\frac{1}{\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!} \frac{\partial^{\alpha_{1}+\ldots+\alpha_{n}} f}{\partial z_{1}^{\alpha_{1}} \ldots \partial z_{n}^{\alpha_{n}}}(0)
$$

Bearing in mind that for the considered domains $\mathcal{G}, \mu_{\mathcal{G}}$ is a seminorm in \mathbb{C}^{n} and it is a norm in \mathbb{C}^{n} in the case if \mathcal{G} is also convex, we will use a generalization $\mu_{\mathcal{G}}\left(Q_{f, m}\right)$ of the norm of m-homogeneous polynomials $Q_{f, m}$. Putting for $m \in \mathbb{N}$

$$
\mu_{\mathcal{G}}\left(Q_{f, m}\right)=\sup _{w \in \mathbb{C}^{n} \backslash\{0\}} \frac{\left|Q_{f, m}(w)\right|}{\left(\mu_{\mathcal{G}}(w)\right)^{m}}
$$

and using the m-homogeneity of $Q_{f, m}$ and the maximum principle for modulus of holomorphic functions of several variables we have

$$
\mu_{\mathcal{G}}\left(Q_{f, m}\right)=\sup _{v \in \mathcal{Z} \mathcal{G}}\left|Q_{f, m}(v)\right|=\sup _{u \in \mathcal{G}}\left|Q_{f, m}(u)\right|
$$

It is easy to see that

$$
\left|Q_{f, m}(w)\right| \leq \mu_{\mathcal{G}}\left(Q_{f, m}\right)\left(\mu_{\mathcal{G}}(w)\right)^{m}, \quad w \in \mathbb{C}^{n}, m \in \mathbb{N}
$$

and the above estimate generalizes the well-known inequality

$$
\left|Q_{f, m}(w)\right| \leq\left\|Q_{f, m}\right\| \cdot\|w\|^{m}, \quad w \in \mathbb{C}^{n}, m \in \mathbb{N}
$$

By the above considerations and in view of the fact that every complete n-circular domain is balanced, the quantities $\mu_{\mathcal{G}}(z)$ and $\mu_{\mathcal{G}}\left(Q_{f, m}\right)$ are called \mathcal{G}-balance of the point z and \mathcal{G}-balances of m-homogeneous polynomials $Q_{f, m}$, respectively.

In the next theorem we give the sharp estimates of \mathcal{G}-balances of m-homogeneous polynomials which appear in the Taylor series development of the form (11).

Theorem 2.3. If the expansion of the function $f \in \mathcal{N}_{\mathcal{G}}^{k}$ into a series of m-homogeneous polynomials $Q_{f, m}$ has the form (11) then for the \mathcal{G}-balances $\mu_{G}\left(Q_{f, m}\right)$ of polynomials $Q_{f, m}$ there hold the following sharp estimates:

$$
\mu_{\mathcal{G}}\left(Q_{f, m}\right) \leq\left\{\begin{array}{l}
\frac{2}{m(m+1)} \prod_{p=1}^{\frac{m}{k}-1}\left(1+\frac{2}{p k}\right) \text { for } m=k, 2 k, 3 k, \ldots \tag{12}\\
\frac{2}{(m+1)^{2}} \prod_{p=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\left(1+\frac{2}{p k}\right) \text { for remaining } m \in \mathbb{N}
\end{array}\right.
$$

where $\lfloor q\rfloor$ - means the integral part of the number q.
We agree, as usual, that the product $\prod_{l=l_{1}}^{l_{2}} a_{l}$ is equal to 1 for $l_{2}<l_{1}$.

Proof. Let $f \in \mathcal{N}_{\mathcal{G}}^{k}$ be arbitrarily fixed. Then from the generalization of Alexander's theorem (see Theorem 2.1) $\mathcal{L} f \in \mathcal{M}_{\mathcal{G}}^{k}$. If f has the form (11), then

$$
\mathcal{L} f(z)=1+\sum_{m=1}^{\infty}(m+1) Q_{f, m}(z), \quad z \in \mathcal{G}
$$

Hence, we have

$$
\begin{equation*}
\mu_{\mathcal{G}}\left(Q_{\mathcal{L} f, m}\right)=\sup _{z \in \mathcal{G}}\left|Q_{\mathcal{L} f, m}(z)\right|=\sup _{z \in \mathcal{G}}\left|(m+1) Q_{f, m}(z)\right|=(m+1) \mu_{\mathcal{G}}\left(Q_{f, m}\right) \tag{13}
\end{equation*}
$$

It is known ([4]) that for $g \in \mathcal{M}_{\mathcal{G}^{\prime}}^{k}$, there hold the following sharp estimates of the \mathcal{G}-balances $\mu_{\mathcal{G}}\left(Q_{g, m}\right)$ of polynomials $Q_{g, m}$:

$$
\mu_{\mathcal{G}}\left(Q_{g, m}\right) \leq\left\{\begin{array}{l}
\frac{2}{m} \prod_{p=1}^{\frac{m}{k}-1}\left(1+\frac{2}{p k}\right) \text { for } m=k, 2 k, 3 k, \ldots \tag{14}\\
\frac{2}{m+1} \prod_{p=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\left(1+\frac{2}{p k}\right) \text { for remaining } m \in \mathbb{N}
\end{array}\right.
$$

In view of (13) and (14) the proof is complete.
The next lemmama will show the connection between the families $\mathcal{N}_{\mathcal{G}}^{k}$ and $\mathcal{M}_{\mathcal{G}}$.
Lemma 2.4. Let $k \in \mathbb{N}, k \geq 2$. For every function $f \in \mathcal{N}_{\mathcal{G}}^{k}$ its $(0, k)$-symmetrical part $f_{0, k}$ belongs to $\mathcal{N}_{\mathcal{G}}$. Moreover, $f_{0, k} \in \mathcal{N}_{\mathcal{G}}^{k}$.

Proof. Let $f \in \mathcal{N}_{\mathcal{G}}^{k}$ and let z be arbitrarily fixed. There exists the function $h \in C_{\mathcal{G}}$ such that (5) holds. In view of the propositonerties of \mathcal{G} we have $f_{0, k} \in \mathcal{H}_{\mathcal{G}}(1)$ and

$$
f_{0, k}\left(\varepsilon^{l} z\right)=f_{0, k}(z)
$$

Hence, we obtain the system of equations of the form

$$
\mathcal{L} \mathcal{L} f\left(\varepsilon^{l} z\right)=h\left(\varepsilon^{l} z\right) \mathcal{L} f_{0, k}(z), \quad z \in \mathcal{G}, \quad l=0,1, \ldots, k-1
$$

Summing up the above equalities, we have

$$
\frac{1}{k} \sum_{l=0}^{k-1} \mathcal{L} \mathcal{L} f\left(\varepsilon^{l} z\right)=\mathcal{L} f_{0, k}(z) \frac{1}{k} \sum_{l=0}^{k-1} h\left(\varepsilon^{l} z\right)
$$

and according to theorem A

$$
(\mathcal{L} \mathcal{L} f)_{0, k}(z)=h_{0, k}(z) \mathcal{L} f_{0, k}(z)
$$

From (4) we obtain

$$
(\mathcal{L} \mathcal{L} f)_{0, k}(z)=\mathcal{L} \mathcal{L}\left(f_{0, k}(z)\right)
$$

and

$$
\mathcal{L} \mathcal{L}\left(f_{0, k}(z)\right)=h_{0, k}(z) \mathcal{L} f_{0, k}(z)
$$

Note that if $h \in C_{\mathcal{G}}$, then $h_{0, k} \in C_{\mathcal{G}}$, so $f_{0, k}$ fulfils the condition defining the family $\mathcal{N}_{\mathcal{G}}$.

Since $f_{0, k}$ is $(0, k)$-symmetrical part of f and $\mathcal{L} f_{0, k}$ is a $(0, k)$-symmetrical part of $\mathcal{L} f$ then the condition $\left(\mathcal{L} f_{0, k}(z)\right)_{0, k}=\mathcal{L} f_{0, k}(z)$ holds and by (4) there exists the function $h \in C_{\mathcal{G}}$ such that

$$
\mathcal{L} \mathcal{L} f_{0, k}(z)=h(z) \mathcal{L}\left(f_{0, k}(z)\right)_{0, k}
$$

Hence, $f_{0, k} \in \mathcal{N}_{\mathcal{G}}^{k}$. \square
In the proof of next theorem, we will use the following result form the paper [10]:
Theorem B Let $\mathcal{G} \subset \mathbb{C}^{n}$ be a bounded complete n-circular domain. Let us assume that $F \in H_{\mathcal{G}}(1), H \in \mathcal{M}_{\mathcal{G}}$ and ρ is a relation defined as follows

$$
\begin{equation*}
F \rho H \Longleftrightarrow \operatorname{Re} \frac{F(z)}{H(z)}>0, \quad z \in \mathcal{G} . \tag{15}
\end{equation*}
$$

If $(\mathcal{L} F) \rho(\mathcal{L} H)$, then $F \rho H$.
Theorem 2.5. For every $k \in \mathbb{N}, k \geq 2$ there holds the inclusion

$$
N_{\mathcal{G}}^{k} \subsetneq \mathcal{M}_{\mathcal{G}}^{k}
$$

Proof. Since, the relation $N_{\mathcal{G}}^{2} \subsetneq \mathcal{M}_{\mathcal{G}}^{2}$ is true (see [17]), we can assume that $k>2$.
First, we will prove that $N_{\mathcal{G}}^{k} \subset \mathcal{M}_{\mathcal{G}}^{k}$. Let f belongs to $N_{\mathcal{G}}^{k}$. It means that $f \in \mathcal{H}_{\mathcal{G}}(1)$ and $\mathcal{L} f \in \mathcal{H}_{\mathcal{G}}(1)$ and (see the lemmama 2.4) $f_{0, k} \in N_{\mathcal{G}}$, so $f_{0, k} \in M_{\mathcal{G}}$. Let as put $F=\mathcal{L} f$ and $H=f_{0, k}$. The condition (5) is equivalent to inequality $\operatorname{Re} \frac{\mathcal{L L} f(z)}{\mathcal{L} f_{0, k}(z)}>0$, so in the terminology of Theorem $B, \mathcal{L} F \rho \mathcal{L} H$. Hence, we have that $F \rho H$, which is equivalent to the condition $\operatorname{Re} \frac{\mathcal{L f (z)}}{f_{0, k}(z)}>0, z \in \mathcal{G}$. It gives that $f \in M_{\mathcal{G}}^{k}$.
Now, we will show that $N_{\mathcal{G}}^{k} \neq \mathcal{M}_{\mathcal{G}}^{k}$. For this purpose, let us remind that for the function $f \in N_{\mathcal{G}}^{k}$ there hold the sharp estimates $\mu_{\mathcal{G}}\left(Q_{f, m}\right)$ given by (12), while for function $f \in M_{\mathcal{G}}^{k}$ these estimates are presented in the formula (14). Therefore, the function $f \in M_{\mathcal{G}}^{k}$ that meets equality (14) does not belong to $N_{\mathcal{G}}^{k}$.

Next results concern the topological propositonerties of the family $\mathcal{N}_{\mathcal{G}}^{k}$.
Theorem 2.6. The family $\mathcal{N}_{\mathcal{G}}^{k}$ is not convex for any $k \in \mathbb{N}, k \geq 2$.
Proof. Let us consider the mapping $f=\frac{1}{2}\left(f_{1}+f_{2}\right)$, where

$$
\begin{aligned}
f_{1}(z)=H\left(\frac{1}{k}, \frac{2}{k}, 1+\frac{1}{k}, I^{k}(z)\right), & z \in \mathcal{G} \\
f_{2}(z)=f_{1}(\sqrt[k]{-1} z), & z \in \mathcal{G}
\end{aligned}
$$

(in both above formulas the branches of the power function $x^{\frac{1}{k}}$ are such that $1^{\frac{1}{k}}=1$ and the root is arbitrarily fixed) In view of the earlier consideration, the functions $f_{1}, f_{2} \in \mathcal{N}_{\mathcal{G}}^{k}$.
Now, we will show that f does not belong to the family $\mathcal{N}_{\mathcal{G}}^{k}$. To this aim, we will show that $\mathcal{L} f$ does not belong to the family $\mathcal{M}_{\mathcal{G}}^{k}$.
We have

$$
\begin{array}{ll}
f_{1}(z)=\mathcal{L}^{-1}\left[\frac{1}{\left(1-I^{k}(z)\right)^{\frac{2}{k}}}\right], & z \in \mathcal{G} \\
f_{2}(z)=\mathcal{L}^{-1}\left[\frac{1}{\left(1+I^{k}(z)\right)^{\frac{2}{k}}}\right], & z \in \mathcal{G}
\end{array}
$$

hence

$$
\mathcal{L} f(z)=\frac{1}{2}\left[\left(1-z^{k}\right)^{-\frac{2}{k}}+\left(1+z^{k}\right)^{-\frac{2}{k}}\right], z \in \mathcal{G}
$$

and

$$
\frac{\mathcal{L} f(z)}{f_{0, k}(z)}=\frac{1}{1-z^{2 k}} \frac{\left(1+z^{k}\right)^{\frac{2}{k}+2}+\left(1-z^{k}\right)^{\frac{2}{k}+2}}{\left(1+z^{k}\right)^{\frac{2}{k}}+\left(1-z^{k}\right)^{\frac{2}{k}}}, z \in \mathcal{G}
$$

Denoting by a an elemmaent of $\sqrt[k]{i}$, with $\operatorname{Arga}\left(0, \frac{\pi}{2}\right)$, we get the continuity $\frac{\mathcal{L f}}{f_{0, k}}$ at a point $\widehat{z}=(a, 0, \ldots, 0) \in \partial \mathcal{G}$. We will also show that

$$
\operatorname{Re} \frac{\mathcal{L} f(z)}{f_{0, k}(z)}<0 .
$$

Since

$$
\operatorname{Re} \frac{\mathcal{L} f(z)}{f_{0, k}(z)}=-\operatorname{Im} \frac{i^{\frac{2}{k}}-1}{i^{\frac{2}{k}}+1}
$$

we use the fact that the homography $\frac{\zeta-1}{\zeta+1}$ transforms the unit circle onto the imaginary axis, wherein the upper semicircle onto the upper semiaxis. The above propositonerty gives the equality

$$
\frac{i^{\frac{2}{k}}-1}{i^{\frac{2}{k}}+1}=b i, b>0
$$

because the point $i^{\frac{2}{k}}=a^{2}$ belongs to the upper unit semicircle.
Therefore, $\operatorname{Re} \frac{\mathcal{L f}}{f_{0, k}}$ is negative at the point $\widehat{z} \in \partial \mathcal{G}$. Hence, from continuity of the functions $\operatorname{Re} \frac{\mathcal{L f}}{f_{0, k}}$ at the point \widehat{z}, we obtain that $\operatorname{Re} \frac{\mathcal{L f}}{f_{0, k}}$ is negative also in some points $z \in \mathcal{G}$ close to the above point $\widehat{z} \in \partial \mathcal{G}$. Summing up, we proved that $\mathcal{L} f \notin \mathcal{M}_{\mathcal{G}}^{k}$. Hence, f does not belong to the family $\mathcal{N}_{\mathcal{G}^{\prime}}^{k} k \geq 2$. Therefore, $\mathcal{N}_{\mathcal{G}}^{k}$ is not convex.

Now, we give a topological propositonerty of the family $\mathcal{N}_{\mathcal{G}^{\prime}}^{k} k \geq 2$ in the space $\mathcal{H}_{\mathcal{G}}$ of holomorphic mappings $f: \mathcal{G} \longrightarrow \mathbb{C}^{n}$ with a topology introduced by the closure operation.

We say, as usual, that a mapping f belongs to the closure \bar{Y} of a set $Y \subset \mathcal{H}_{\mathcal{G}}$ if there exists a sequence of mappings $f_{v} \in Y$ convergent to f almost uniformly in \mathcal{G}, i.e., convergent uniformly on every compact subset of \mathcal{G}. Of course, it sufficies to guarantee the uniform convergence on every domain $\overline{r \mathcal{G}} \subset \mathcal{G}, r \in(0,1)$.

The announced topological propositonerty of the family $\mathcal{N}_{\mathcal{G}^{\prime}}^{k} k \geq 2$, we present in the following:
Theorem 2.7. The family $N_{\mathcal{G}^{\prime}}^{k}, k \geq 2$, is a path connected set in $H_{\mathcal{G}}$ with a topology given by the closure operation. Hence, $N_{\mathcal{G}^{\prime}}^{k}, k \geq 2$, is also connected.

Proof. There is enough to use the fact that $\mathcal{N}_{\mathcal{G}}^{k}$ is a subset of $\mathcal{M}_{\mathcal{G}}^{k}$ and estimates $\mu_{\mathcal{G}}\left(Q_{f, m}\right) \leq 1, m \in \mathbb{N}$ in the family $\mathcal{M}_{\mathcal{G}}^{k}$ and the proof of the path - connectness is similar to the investigations in [4].

References

[1] I. I. Bavrin, A class of regular bounded functions in the case of several complex variables and extreme problems in that class, Moskov Oblast. Ped. Inst., Moscow (1976), 1-96, (in Russian).
[2] R. Długosz, Embedding theorems for holomorphic functions of several complex variables, J. Appl. Anal., 19, (2013), 153-165.
[3] R. Długosz, E. Leś,Embedding theorems and extremal problems for holomorphic functions on circular domains of \mathbb{C}^{n} Complex Var. Elliptic Equ., 59(6)(2014), 883-899.
[4] R. Długosz, P. Liczberski, An application of hypergeometric functions to a construction in several complex variables, J. Anal. Math., (2019) 707-721.
[5] R. Długosz, E. Leś, A. Sibelska, A new inclusion for Bavrin's families of holomorphic functions in bounded comlete n-circular domains, Math.Slovaca, 66(4) (2016), 1-7.
[6] K. Dobrowolska, P. Liczberski, On some differential inequalities for holomorphic functions of many variables, Demonstratio Math., 14, (1981), 383-398.
[7] I. Dziubiń ski, R. Sitarski, On classes of holomorphic functions of many variables starlike and convex on some hypersurfaces, Demonstratio Math. 13, (1980), 619-632.
[8] S. Fukui, On the estimates of coefficients of analytic functions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10, (1969), $216-218$.
[9] H. Hamada, T. Honda, G. Kohr, Parabolic stralike mappings in several complex variables, Manuscr. Math. 123, (2007), 301-324.
[10] E. Leś-Bomba, P. Liczberski, On some family of holomorphic functions of several complex variables, Sci. Bull. of Chelm, Sec. of Math. and Computer Sci., 2 (2007), 7-16.
[11] P. Liczberski, On the subordination of holomorphic mappings in \mathbb{C}^{n}, Demonstratio Math., 2 (1986), 293-301.
[12] P. Liczberski, J. Połubinski, On (j,k)-symmetrical functions, Mathematica Bohemica 120 (1995), 13-28.
[13] A. Marchlewska, On certain subclasses of Bavrin's families of holomorphic maps of two complex variables, Proc. of the V Environ. Math. Conf. Rzeszów-Lublin-Lesko, Lublin Catholic Univ. Press (1999), 99-106.
[14] J. A. Pfaltzgraff, T. J. Suffridge, An extension theorem and linear invariant families generated by starlike maps, Ann. UMCS Sect. Math. 53, (1999), 193-207.
[15] H. Poincare, Les fonctions analityques de deux variables at la representation conforme, Rend. Circ. Mat. Palermo, 23 (1907), 185-220.
[16] K. Sakaguchi, On certain univalent mappings, J. Math.Soc. Japan 11(1959), 72-75.
[17] A. Sibelska, On the class $\mathcal{N}_{\mathcal{G}}^{\mathcal{S}}$ of the Bavrin type of holomorphic functions of several complex variables, Bull. Soc. Sci. Lett. de Łódź, 66(3) (2016), 87-100.
[18] J. Stankiewicz, Functions of two complex variables regular in halfspace, Folia Sci. Univ. Tech. Rzeszow Math. 19, (1996), $107-116$.

[^0]: 2020 Mathematics Subject Classification. 32A30; 30C45
 Keywords. holomorphic functions of several complex variables, complete n-circular domains, the Minkowski function, the Temljakov operator, Bavrin's families, \mathcal{G}-balance of k-homogeneous polynomials

 Received: 16 November 2018; Accepted: 13 February 2020
 Communicated by Miodrag Mateljević
 Email addresses: renata.dlugosz@p.lodz.pl (Renata Długosz), piotr.liczberski@p.lodz.pl (Piotr Liczberski), agnieszka.sibelska@wmii.uni.lodz.pl (Agnieszka Sibelska), eles@ur.edu.pl (Edyta Trybucka)

