Filomat 36:6 (2022), 2073–2082 https://doi.org/10.2298/FIL2206073D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Propositonerties of a Bavrin's Family of Holomorphic Functions in \mathbb{C}^n

Renata Długosz^a, Piotr Liczberski^a, Agnieszka Sibelska^b, Edyta Trybucka^c

^aŁódź University of Technology ^bUniversity of Łódź ^cUniversity of Rzeszów

Abstract. In the [1], [4], [3] and [2] there were examined the Bavrin's families (of holomorphic functions on bounded complete n- circular domains $\mathcal{G} \subset \mathbb{C}^n$) in which the Temljakov operator $\mathcal{L}f$ was presented as a product of a holomorphic function h with a positive real part and the (0, k)-symmetrical part of the function f, ($k \ge 2$ is a positive integer). In [17] there was investigated the family of the above mentioned type, where the operator $\mathcal{L}\mathcal{L}f$ was presented as a product of the same function $h \in C_{\mathcal{G}}$ and (0, 2)-symmetrical part of the operator $\mathcal{L}f$.

These considerations can be completed by the case of the factorization $\mathcal{LL}f$ by the same function h and the (0,k)-symmetrical part of operator $\mathcal{L}f$. In this article we will discuss the above case. In particular, we will present some estimates of a generalization of the norm of *m*-homogeneous polynomials $Q_{f,m}$ in the expansion of function f and we will also give a few relations between the different Bavrin's families of the above kind.

1. Introduction

Poincare [15] pointed that the Riemann mapping theorem is false in \mathbb{C}^n , n > 1. For this reason it is very natural to consider the holomorphicity in \mathbb{C}^n on domains from a sufficiently wide class. The results in this paper concern the bounded complete circular domains, because such domains play the same role for Taylor series in \mathbb{C}^n as open discs in one dimensional case.

We say that a domain $\mathcal{G} \subset \mathbb{C}^n$, $n \ge 2$, is complete n-circular if $z\lambda = (z_1\lambda_1, ..., z_n\lambda_n) \in \mathcal{G}$ for each $z = (z_1, ..., z_n) \in \mathcal{G}$ and every $\lambda = (\lambda_1, ..., \lambda_n) \in \overline{U^n}$, where U is the unit disc { $\zeta \in \mathbb{C} : |\zeta| < 1$ }. From now, by \mathcal{G} will be denoted a nonempty bounded complete n-circular domain in \mathbb{C}^n .

Note that the Minkowski function $\mu_{\mathcal{G}} : \mathbb{C}^n \to [0, \infty)$ of the form

$$\mu_{\mathcal{G}}(z) = \inf\{t > 0 \colon \frac{1}{t}z \in \mathcal{G}\}, \quad z \in \mathbb{C}^n,$$

²⁰²⁰ Mathematics Subject Classification. 32A30; 30C45

Keywords. holomorphic functions of several complex variables, complete n-circular domains, the Minkowski function, the Temljakov operator, Bavrin's families, *G*-balance of k-homogeneous polynomials

Received: 16 November 2018; Accepted: 13 February 2020

Communicated by Miodrag Mateljević

Email addresses: renata.dlugosz@.lodz.pl (Renata Długosz), piotr.liczberski@p.lodz.pl (Piotr Liczberski),

agnieszka.sibelska@wmii.uni.lodz.pl (Agnieszka Sibelska), eles@ur.edu.pl (Edyta Trybucka)

gives the possibility to redefine the bounded *n*-circular domain G and its boundary ∂G as follows:

$$\mathcal{G} = \{ z \in \mathbb{C}^n \colon \mu_{\mathcal{G}}(z) < 1 \}, \ \partial \mathcal{G} = \{ z \in \mathbb{C}^n : \mu_{\mathcal{G}}(z) = 1 \}.$$

By $\mathcal{H}_{\mathcal{G}}(1)$ and $\mathcal{H}_{\mathcal{G}}$, let us denote the set of all holomorphic functions $f : \mathcal{G} \longrightarrow \mathbb{C}$, normalized by f(0) = 1 and without any normalization, respectively.

We will use the Temljakov linear operator $\mathcal{L} : \mathcal{H}_{\mathcal{G}} \longrightarrow \mathcal{H}_{\mathcal{G}}$ defined in [1] by

$$\mathcal{L}f(z) = f(z) + Df(z)(z), \ z \in \mathcal{G},$$

where Df(z)(w) is the value of the Frechet derivative Df(z) of f at the point z on a vector w(Df(z) is the row vector $\left[\frac{\partial f(z)}{\partial z_1}, \dots, \frac{\partial f(z)}{\partial z_n}\right]$ and w is a column vector). Of course \mathcal{L} is invertible and

$$\mathcal{L}^{-1}f(z) = \int_{0}^{1} f(zt)dt, z \in \mathcal{G}.$$

Many authors (see eg. [1], [6], [7], [8], [13], [18]) considered some Bavrin's subfamilies X_G of the family $\mathcal{H}_G(1)$. In the definition of these families the main role is played by the family C_G ,

$$C_{\mathcal{G}} = \{ f \in \mathcal{H}_{\mathcal{G}}(1) : Ref(z) > 0, \ z \in \mathcal{G} \}.$$

By a Bavrin's family $X_{\mathcal{G}}$ we mean a collection of functions $f \in \mathcal{H}_{\mathcal{G}}(1)$ whose the Temljakov transform $\mathcal{L}f$ has a functional factorization $\mathcal{L}f = h \cdot g$, where $h \in C_{\mathcal{G}}$ and g is from a fixed subfamily of $\mathcal{H}_{\mathcal{G}}(1)$. Below, we recall the factorizations which define a few well known Bavrin's families $X_{\mathcal{G}}$, like

$$\mathcal{M}_{\mathcal{G}}: \quad \mathcal{L}f = h \cdot f, \quad h \in C_{\mathcal{G}},$$
$$\mathcal{N}_{\mathcal{G}}: \quad \mathcal{L}(\mathcal{L}f) = h \cdot \mathcal{L}f, \quad h \in C_{\mathcal{G}},$$
$$\mathcal{R}_{\mathcal{G}}: \quad \mathcal{L}f = h \cdot \mathcal{L}\varphi, \quad \varphi \in \mathcal{N}_{\mathcal{G}}, \quad h \in C_{\mathcal{G}}.$$

Let us note that functions of these families were used to construct biholomorphic mappings in \mathbb{C}^n (see eg. [9], [11], [14]). It is known that families \mathcal{M}_G , \mathcal{N}_G , \mathcal{R}_G correspond with the well-known classes S^* , S^c , S^{cc} of univalent starlike, convex and close-to-convex normalized functions in the unit disc U. For instance: if f belongs to the class \mathcal{M}_G , then the function

$$F(\zeta) = \zeta f\left(\zeta \frac{z}{\mu_{\mathcal{G}}(z)}\right), \ \zeta \in U$$

belongs to the family S^* for $z \in \mathcal{G} \setminus \{0\}$.

Bavrin showed (see e.g.[1]) that $N_{\mathcal{G}} \subsetneq \mathcal{M}_{\mathcal{G}}$. He proved also the following higher dimensional version of the well-known Alexander theorem: if $f \in \mathcal{N}_{\mathcal{G}}$ than $\mathcal{L}f \in \mathcal{M}_{\mathcal{G}}$ and conversely, if $f \in \mathcal{M}_{\mathcal{G}}$ then $\mathcal{L}^{-1}f \in \mathcal{N}_{\mathcal{G}}$.

In [3] the authors defined the family $\mathcal{M}_{\mathcal{G}}^2$ in the following way: A function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $\mathcal{M}_{\mathcal{G}}^2$ if there exists a function $h \in C_{\mathcal{G}}$ such that

$$\mathcal{L}f(z) = h(z)f_{0,2}(z), \ z \in \mathcal{G},$$

where $f_{0,2}$ is the even part of f in the unique partition $f = f_{0,2} + f_{1,2}$ of f onto the sum of even and odd functions. In [17] the class $N_{\mathcal{G}}^2$ was introduced as follows: A function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $N_{\mathcal{G}}^2$ if there exists a function $h \in C_{\mathcal{G}}$ such that

2074

$$\mathcal{LL}f(z) = h(z) \left(\mathcal{L}f\right)_{0,2}(z), \ z \in \mathcal{G}.$$

In [2] the author investigated the family $\mathcal{M}_{\mathcal{G}}^k$, $k \in \mathbb{N}$, $k \ge 2$, by application a functional decomposition with respect to the group of k^{th} roots of unity.

Let $k \ge 2$ be an arbitrarily fixed integer, $\varepsilon = \varepsilon_k = \exp \frac{2\pi i}{k}$ and a set $\mathcal{D} \subset \mathbb{C}^n$ be k – symmetric ($\varepsilon \mathcal{D} = \mathcal{D}$). For j = 0, 1, ..., k - 1 we define the spaces $\mathcal{F}_{j,k} = \mathcal{F}_{j,k}(\mathcal{D})$ of functions (j,k) – symmetrical, i.e., all functions $f: \mathcal{D} \to \mathbb{C}$ such that

$$f(\varepsilon z) = \varepsilon^{j} f(z), z \in \mathcal{D}.$$

The following result from [12] was used in this and the aforementioned article:

Theorem A For every function $f: \mathcal{D} \to \mathbb{C}$ there exists exactly one sequence of functions $f_{j,k} \in \mathcal{F}_{j,k}$, j = 0, 1, ..., k - 1, such that

$$f = \sum_{j=0}^{k-1} f_{j,k}$$
(1)

Moreover,

$$f_{j,k}(z) = \frac{1}{k} \sum_{l=0}^{k-1} \varepsilon^{-jl} f\left(\varepsilon^l z\right), \ z \in \mathcal{G}.$$
(2)

By the uniqueness of the partition (1) the functions $f_{j,k}$ will be called (j,k) – symmetrical components of the function f. Since every bounded complete *n*-circular domain $\mathcal{G} \subset \mathbb{C}^n$ is *k*-symmetric set, it is obvious that $f_{0,k} \in \mathcal{H}_{\mathcal{G}}(1)$ for $f \in \mathcal{H}_{\mathcal{G}}(1)$.

We say (see [2]) that a function $f \in \mathcal{H}_{\mathcal{G}}(1)$ belongs to $\mathcal{M}_{\mathcal{G}}^k$, $k \in \mathbb{N}$, $k \ge 2$, if there exists a function $h \in C_{\mathcal{G}}$ such that

$$\mathcal{L}f(z) = h(z)f_{0,k}(z), \quad z \in \mathcal{G}.$$
(3)

The family $\mathcal{M}_{\mathcal{G}}^k$ corresponds to the well-known class S^{*k} [16] of normalized univalent functions, starlike with respect to *k*-symmetric points.

These considerations can be completed by the case of the factorization $\mathcal{LL}f$ by the same function h and the (0, k)-symmetrical part of operator $\mathcal{L}f$.

It is known ([2]) that for every function $f \in \mathcal{H}_{\mathcal{G}}(1)$

$$(\mathcal{L}f)_{0,k} = \mathcal{L}(f_{0,k}). \tag{4}$$

Let us define the class \mathcal{N}_{G}^{k} $k \in \mathbb{N}$, $k \ge 2$ as a family of functions $f \in \mathcal{H}_{G}(1)$ for which there exists a function

 $h \in C_G$ such that

$$\mathcal{LL}f(z) = h(z)\mathcal{L}f_{0,k}(z), \ z \in \mathcal{G}.$$
(5)

2. Main results

Between functions from the class $\mathcal{M}_{\mathcal{G}'}^k \mathcal{N}_{\mathcal{G}}^k$ there holds the following generalization of the Alexander's relation:

2075

Theorem 2.1. Let $k \in \mathbb{N}$, $k \ge 2$. If $f \in \mathcal{N}_{G}^{k}$, then $\mathcal{L}f \in \mathcal{M}_{G}^{k}$ and conversely, if $f \in \mathcal{M}_{G}^{k}$, then $\mathcal{L}^{-1}f \in \mathcal{N}_{G}^{k}$.

Proof. If $f \in \mathcal{N}_{\mathcal{G}}^k k \in \mathbb{N}$, $k \ge 2$, then $f \in \mathcal{H}_{\mathcal{G}}(1)$, $\mathcal{L}f \in \mathcal{H}_{\mathcal{G}}(1)$ and there exists $h \in C_{\mathcal{G}}$ such that the condition (5) holds, where $f_{0,k}$ is (0, k)-symmetrical part of f. In view of (4) the condition (5) can be written in the form

$$\mathcal{L}(\mathcal{L}f(z)) = h(z) \left(\mathcal{L}f\right)_{0,k}(z), \quad z \in \mathcal{G},$$

therefore, by (3) $\mathcal{L}f \in \mathcal{M}_{G}^{k}$.

Now, let *f* belongs to the class $\mathcal{M}_{\mathcal{G}}^k$, i.e. $f \in H_{\mathcal{G}}(1)$ and there exists $h \in C_{\mathcal{G}}$ such that the condition (3) holds. Hence,

$$\mathcal{L}(\mathcal{L}\mathcal{L}^{-1}f(z)) = h(z)\mathcal{L}\mathcal{L}^{-1}f_{0,k}(z), \quad z \in \mathcal{G},$$
$$\mathcal{L}\mathcal{L}(\mathcal{L}^{-1}f(z)) = h(z)\mathcal{L}((\mathcal{L}^{-1}f)_{0,k}(z)), \quad z \in \mathcal{G}.$$

Therefore, $\mathcal{L}^{-1}f \in \mathcal{N}_{G}^{k}$. \Box

Let us observe that $N_{\mathcal{G}}^k \ k \in \mathbb{N}$, $k \ge 2$ are nonempty classes. Indeed, the function f = 1 belongs to $N_{\mathcal{G}'}^k$ because it satisfies the factorization (5) with $h = 1 \in C_{\mathcal{G}}$.

It is known that the constructs of functions of several complex variables are very difficult. We will give an example of non-trivial hypergeometric function belonging to the class N_G^k .

Example It is known that the function $H(a, b, c, \zeta)$ of the form

$$H(a, b, c, \zeta) = \sum_{\nu=0}^{\infty} \frac{(a)_{\nu} (b)_{\nu}}{(c)_{\nu}} \frac{\zeta^{\nu}}{\nu!}, \ a, b, c, \in \mathbb{C}, \ \zeta \in U,$$
(6)

where $(a)_{\nu} = a(a + 1)...(a + \nu - 1), \nu = 1, 2, ...$ and $(a)_0 = 1$ is called the hypergeometrical function.

Let $I : \mathbb{C}^n \to \mathbb{C}$ be a linear operator of the form

$$I(z) = \frac{1}{\mu_{\mathcal{G}}(\widehat{I})}\widehat{I}(z),$$

where

$$\widehat{I}(z) = \sum_{j=1}^{n} z_j, \ z = (z_1, ..., z_n) \in \mathbb{C}^n.$$
(7)

and

$$\mu_{\mathcal{G}}(\widehat{I}) = \sup_{w \in \mathbb{C}^n \setminus \{0\}} \frac{\left|\widehat{I}(w)\right|}{\mu_{\mathcal{G}}(w)} = \sup_{v \in \partial \mathcal{G}} \left|\widehat{I}(v)\right|.$$
(8)

The quantity $\mu_{\mathcal{G}}(\widehat{I})$ is called a \mathcal{G} -balance of the linear functional \widehat{I} .

The *G*-balance of the form (8) coincides with the $\Delta = \Delta(\mathcal{G})$ - characteristic of the domain \mathcal{G} , which was introduced by Bavrin (see [1]) by the formula $\Delta = \sup_{z=(z_1, z_2, ..., z_n) \in \mathcal{G}} \left| \sum_{j=1}^n z_j \right|$. If \mathcal{G} is a convex bounded complete *n*-circular domain, then $\mu_{\mathcal{G}}(\widehat{I}) = \|\widehat{I}\|$.

To show that function

$$f(z) = H(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, I^{k}(z)), \ z \in \mathcal{G}, \ k \in \mathbb{N}, k \ge 2$$
(9)

belongs to the class $N_{G'}^k$ we will use the following known propositonerties of the hypergeometrical function:

Remark 2.2. If $H(a, b, c, \zeta)$, $a, b, c, \in \mathbb{C}$, $\zeta \in U$, is the hypergeometrical function of the form (6), then

- $(i) \ \zeta \tfrac{d}{d\zeta} H(a,b,c,\zeta) = a H(a+1,b,c,\zeta) a H(a,b,c,\zeta);$
- (ii) $H(a, b, c, \zeta) = H(b, a, c, \zeta);$
- (*iii*) $H(l, b, b, \zeta) = (1 \zeta)^{-l}$.

To determine the transform $\mathcal{L}f$ of function f, let us write

$$f(z) = T(I(z)), \ z \in \mathcal{G},$$

where $T : \mathcal{U} \to \mathbb{C}$ is defined in the following way:

$$T(\zeta) = H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^k\right), \ \zeta \in U, \ k \in \mathbb{N}, k \ge 2.$$

$$(10)$$

Now, we will find explicit form of $\mathcal{L}f$. We start with the following equality

$$\mathcal{L}f(z) = \frac{d}{d\zeta} \left(\zeta T(\zeta) \right)|_{\zeta = I(z)}.$$

Next, in view of the form (10) of *T*, we have at $\zeta \in U$

$$\begin{aligned} \frac{d}{d\zeta} \left(\zeta T \left(\zeta \right) \right) &= H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) + \zeta \frac{d}{d\zeta} \left(H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) \right) = \\ &= H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) + \zeta \frac{d}{d\zeta^{k}} \frac{d\zeta^{k}}{d\zeta} \left(H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) \right) = \\ &= H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) + k\zeta^{k} \frac{d}{d\zeta^{k}} \left(H\left(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, \zeta^{k}\right) \right). \end{aligned}$$

Thus, by propositonerty 2.2 (i), we have for $\zeta \in U$

$$\frac{d}{d\zeta}\left(\zeta T\left(\zeta\right)\right) = \left(H\left(\frac{1}{k}+1,\frac{2}{k},1+\frac{1}{k},\zeta^{k}\right)\right).$$

Hence, using propositonerty 2.2 (ii) and (iii) of H, we conclude that

$$\frac{d}{d\zeta}\left(\zeta T\left(\zeta\right)\right) = \frac{1}{\left(1-\zeta^{k}\right)^{\frac{2}{k}}}, \ \zeta \in U.$$

Finally,

$$\mathcal{L}f(z) = \frac{1}{\left(1 - I^{k}(z)\right)^{\frac{2}{k}}}, \ z \in \mathcal{G}.$$

In the paper [4] the authors showed, that function

$$g(z) = \frac{1}{(1 - I^k(z))^{\frac{2}{k}}}, \ z \in \mathcal{G},$$

so according to the Theorem 2.1, the function of the form (9) belongs to the N_{g}^{k} .

Now, we consider an extremal problemma for the family $\mathcal{N}_{\mathcal{G}}^k$.

It is known that each function $f \in \mathcal{H}_{\mathcal{G}}(1)$ can be developed into series of *m*-homogeneous polynomials $Q_{f,m}$, $m \in \mathbb{N}$ of the form

$$f(z) = 1 + \sum_{m=1}^{\infty} Q_{f,m}(z), \quad z \in \mathcal{G}$$

$$\tag{11}$$

where

$$Q_{f,m}(z) = \sum_{\alpha_1 + \ldots + \alpha_n = m} c_{\alpha_1 \ldots \alpha_n} z_1^{\alpha_1} \ldots z_n^{\alpha_n}, \qquad z = (z_1, \ldots, z_n) \in \mathbb{C}^n,$$

and the coefficients $c_{\alpha_1...\alpha_n}$, $\alpha_l \in \mathbb{N} \cup \{0\}$, l = 1, ..., n are defined by the partial derivatives as follows:

$$c_{\alpha_1\dots\alpha_n} = \frac{1}{\alpha_1! \cdot \dots \cdot \alpha_n!} \frac{\partial^{\alpha_1+\dots+\alpha_n} f}{\partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}}(0)$$

Bearing in mind that for the considered domains \mathcal{G} , $\mu_{\mathcal{G}}$ is a seminorm in \mathbb{C}^n and it is a norm in \mathbb{C}^n in the case if \mathcal{G} is also convex, we will use a generalization $\mu_{\mathcal{G}}(Q_{f,m})$ of the norm of *m*-homogeneous polynomials $Q_{f,m}$. Putting for $m \in \mathbb{N}$

$$\mu_{\mathcal{G}}(Q_{f,m}) = \sup_{w \in \mathbb{C}^n \setminus \{0\}} \frac{\left|Q_{f,m}(w)\right|}{(\mu_{\mathcal{G}}(w))^m}$$

and using the *m*-homogeneity of $Q_{f,m}$ and the maximum principle for modulus of holomorphic functions of several variables we have

$$\mu_{\mathcal{G}}(Q_{f,m}) = \sup_{\nu \in \partial \mathcal{G}} |Q_{f,m}(\nu)| = \sup_{u \in \mathcal{G}} |Q_{f,m}(u)|$$

It is easy to see that

$$Q_{f,m}(w) \leq \mu_{\mathcal{G}}(Q_{f,m})(\mu_{\mathcal{G}}(w))^m, \quad w \in \mathbb{C}^n, \ m \in \mathbb{N},$$

and the above estimate generalizes the well-known inequality

$$|Q_{f,m}(w)| \le ||Q_{f,m}|| \cdot ||w||^m, \quad w \in \mathbb{C}^n, \ m \in \mathbb{N}.$$

By the above considerations and in view of the fact that every complete *n*-circular domain is balanced, the quantities $\mu_{\mathcal{G}}(z)$ and $\mu_{\mathcal{G}}(Q_{f,m})$ are called \mathcal{G} -balance of the point *z* and \mathcal{G} -balances of m-homogeneous polynomials $Q_{f,m}$, respectively.

In the next theorem we give the sharp estimates of G-balances of m-homogeneous polynomials which appear in the Taylor series development of the form (11).

Theorem 2.3. If the expansion of the function $f \in N_{\mathcal{G}}^k$ into a series of m-homogeneous polynomials $Q_{f,m}$ has the form (11) then for the \mathcal{G} -balances $\mu_G(Q_{f,m})$ of polynomials $Q_{f,m}$ there hold the following sharp estimates:

$$\mu_{\mathcal{G}}(Q_{f,m}) \leq \begin{cases} \frac{2}{m(m+1)} \prod_{p=1}^{m-1} \left(1 + \frac{2}{pk}\right) \text{ for } m = k, 2k, 3k, \dots \\ \frac{2}{(m+1)^2} \prod_{p=1}^{\lfloor \frac{m}{k} \rfloor} \left(1 + \frac{2}{pk}\right) \text{ for remaining } m \in \mathbb{N} \end{cases}$$

$$(12)$$

where $\lfloor q \rfloor$ – means the integral part of the number q.

We agree, as usual, that the product $\prod_{l=l_1}^{l_2} a_l$ is equal to 1 for $l_2 < l_1$.

2079

Proof. Let $f \in \mathcal{N}_{\mathcal{G}}^k$ be arbitrarily fixed. Then from the generalization of Alexander's theorem (see Theorem 2.1) $\mathcal{L}f \in \mathcal{M}_{\mathcal{G}}^k$. If f has the form (11), then

$$\mathcal{L}f(z) = 1 + \sum_{m=1}^{\infty} (m+1) Q_{f,m}(z), \quad z \in \mathcal{G}.$$

Hence, we have

$$\mu_{\mathcal{G}}(Q_{\mathcal{L}f,\,m}) = \sup_{z \in \mathcal{G}} \left| Q_{\mathcal{L}f,\,m}(z) \right| = \sup_{z \in \mathcal{G}} \left| (m+1) \, Q_{f,\,m}(z) \right| = (m+1) \, \mu_{\mathcal{G}}(Q_{f,\,m}) \,. \tag{13}$$

It is known ([4]) that for $g \in \mathcal{M}_{\mathcal{G}'}^k$ there hold the following sharp estimates of the \mathcal{G} -balances $\mu_G(Q_{g,m})$ of polynomials $Q_{g,m}$:

$$\mu_{\mathcal{G}}(Q_{g,m}) \leq \begin{cases} \frac{2}{m} \prod_{p=1}^{\frac{m}{k}-1} \left(1 + \frac{2}{pk}\right) \text{ for } m = k, 2k, 3k, \dots \\ \frac{2}{m+1} \prod_{p=1}^{\lfloor \frac{m}{k} \rfloor} \left(1 + \frac{2}{pk}\right) \text{ for remaining } m \in \mathbb{N} \end{cases}$$

$$(14)$$

In view of (13) and (14) the proof is complete. \Box

The next lemmama will show the connection between the families $\mathcal{N}_{\mathcal{G}}^k$ and $\mathcal{M}_{\mathcal{G}}$.

Lemma 2.4. Let $k \in \mathbb{N}$, $k \ge 2$. For every function $f \in \mathcal{N}_{\mathcal{G}}^k$ its (0, k)-symmetrical part $f_{0,k}$ belongs to $\mathcal{N}_{\mathcal{G}}$. Moreover, $f_{0,k} \in \mathcal{N}_{\mathcal{G}}^k$.

Proof. Let $f \in \mathcal{N}_{\mathcal{G}}^k$ and let z be arbitrarily fixed. There exists the function $h \in C_{\mathcal{G}}$ such that (5) holds. In view of the propositonerties of \mathcal{G} we have $f_{0,k} \in \mathcal{H}_{\mathcal{G}}(1)$ and

$$f_{0,k}\left(\varepsilon^l z\right) = f_{0,k}\left(z\right).$$

Hence, we obtain the system of equations of the form

$$\mathcal{LL}f(\varepsilon^{l}z) = h(\varepsilon^{l}z)\mathcal{L}f_{0,k}(z), \quad z \in \mathcal{G}, \quad l = 0, 1, ..., k - 1.$$

Summing up the above equalities, we have

$$\frac{1}{k}\sum_{l=0}^{k-1}\mathcal{L}\mathcal{L}f(\varepsilon^{l}z) = \mathcal{L}f_{0,k}(z)\frac{1}{k}\sum_{l=0}^{k-1}h(\varepsilon^{l}z)$$

and according to theorem A

$$(\mathcal{L}\mathcal{L}f)_{0,k}(z) = h_{0,k}(z) \,\mathcal{L}f_{0,k}(z).$$

From (4) we obtain

$$(\mathcal{L}\mathcal{L}f)_{0,k}(z) = \mathcal{L}\mathcal{L}(f_{0,k}(z))$$

and

$$\mathcal{LL}(f_{0,k}(z)) = h_{0,k}(z) \,\mathcal{L}f_{0,k}(z)$$

Note that if $h \in C_{\mathcal{G}}$, then $h_{0,k} \in C_{\mathcal{G}}$, so $f_{0,k}$ fulfils the condition defining the family $\mathcal{N}_{\mathcal{G}}$.

Since $f_{0,k}$ is (0,k)-symmetrical part of f and $\mathcal{L}f_{0,k}$ is a (0,k)-symmetrical part of $\mathcal{L}f$ then the condition $(\mathcal{L}f_{0,k}(z))_{0,k} = \mathcal{L}f_{0,k}(z)$ holds and by (4) there exists the function $h \in C_{\mathcal{G}}$ such that

$$\mathcal{LL}f_{0,k}(z) = h(z)\mathcal{L}(f_{0,k}(z))_{0,k}$$

Hence, $f_{0,k} \in \mathcal{N}_G^k$. \Box

In the proof of next theorem, we will use the following result form the paper [10]:

Theorem B Let $\mathcal{G} \subset \mathbb{C}^n$ be a bounded complete *n*-circular domain. Let us assume that $F \in H_{\mathcal{G}}(1)$, $H \in \mathcal{M}_{\mathcal{G}}$ and ρ is a relation defined as follows

$$F\rho H \iff \operatorname{Re} \frac{F(z)}{H(z)} > 0, \quad z \in \mathcal{G}.$$
 (15)

If $(\mathcal{L}F)\rho(\mathcal{L}H)$, then $F\rho H$.

Theorem 2.5. For every $k \in \mathbb{N}$, $k \ge 2$ there holds the inclusion

$$N_{\mathcal{G}}^k \subsetneq \mathcal{M}_{\mathcal{G}}^k$$

Proof. Since, the relation $N_{\mathcal{G}}^2 \subsetneq \mathcal{M}_{\mathcal{G}}^2$ is true (see [17]), we can assume that k > 2. First, we will prove that $N_{\mathcal{G}}^k \subset \mathcal{M}_{\mathcal{G}}^k$. Let f belongs to $N_{\mathcal{G}}^k$. It means that $f \in \mathcal{H}_{\mathcal{G}}(1)$ and $\mathcal{L}f \in \mathcal{H}_{\mathcal{G}}(1)$ and (see the lemmama 2.4) $f_{0,k} \in N_{\mathcal{G}}$, so $f_{0,k} \in M_{\mathcal{G}}$. Let as put $F = \mathcal{L}f$ and $H = f_{0,k}$. The condition (5) is equivalent to inequality $\operatorname{Re} \frac{\mathcal{L}\mathcal{L}f(z)}{\mathcal{L}f_{0,k}(z)} > 0$, so in the terminology of Theorem B, $\mathcal{L}F\rho\mathcal{L}H$. Hence, we have that $F\rho H$, which is equivalent to the condition $\operatorname{Re} \frac{\mathcal{L}f(z)}{f_{0,k}(z)} > 0, z \in \mathcal{G}$. It gives that $f \in M_{\mathcal{G}}^k$.

Now, we will show that $N_G^k \neq M_G^k$. For this purpose, let us remind that for the function $f \in N_G^k$ there hold the sharp estimates $\mu_{\mathcal{G}}(Q_{f,m})$ given by (12), while for function $f \in M_{\mathcal{G}}^k$ these estimates are presented in the formula (14). Therefore, the function $f \in M_G^k$ that meets equality (14) does not belong to N_G^k .

Next results concern the topological propositonerties of the family \mathcal{N}_{G}^{k} .

Theorem 2.6. The family \mathcal{N}_{G}^{k} is not convex for any $k \in \mathbb{N}$, $k \geq 2$.

Proof. Let us consider the mapping $f = \frac{1}{2}(f_1 + f_2)$, where

$$f_1(z) = H(\frac{1}{k}, \frac{2}{k}, 1 + \frac{1}{k}, I^k(z)), \quad z \in \mathcal{G},$$

$$f_2(z) = f_1(\sqrt[k]{-1}z), \quad z \in \mathcal{G}.$$

(in both above formulas the branches of the power function $x^{\frac{1}{k}}$ are such that $1^{\frac{1}{k}} = 1$ and the root is arbitrarily fixed) In view of the earlier consideration, the functions $f_1, f_2 \in N_G^k$.

Now, we will show that f does not belong to the family $\mathcal{N}_{\mathcal{G}}^k$. To this aim, we will show that $\mathcal{L}f$ does not belong to the family \mathcal{M}_{G}^{k} .

We have

$$f_{1}(z) = \mathcal{L}^{-1}\left[\frac{1}{\left(1-I^{k}(z)\right)^{\frac{2}{k}}}\right], \quad z \in \mathcal{G},$$
$$f_{2}(z) = \mathcal{L}^{-1}\left[\frac{1}{\left(1+I^{k}(z)\right)^{\frac{2}{k}}}\right], \quad z \in \mathcal{G},$$

hence

$$\mathcal{L}f(z) = \frac{1}{2} \left[\left(1 - z^k \right)^{-\frac{2}{k}} + \left(1 + z^k \right)^{-\frac{2}{k}} \right], \ z \in \mathcal{G}$$

and

$$\frac{\mathcal{L}f(z)}{f_{0,k}(z)} = \frac{1}{1-z^{2k}} \frac{\left(1+z^k\right)^{\frac{2}{k}+2} + \left(1-z^k\right)^{\frac{2}{k}+2}}{\left(1+z^k\right)^{\frac{2}{k}} + \left(1-z^k\right)^{\frac{2}{k}}}, \ z \in \mathcal{G}.$$

Denoting by *a* an elemmaent of $\sqrt[k]{i}$, with $Arga \in (0, \frac{\pi}{2})$, we get the continuity $\frac{\mathcal{L}f}{f_{0,k}}$ at a point $\widehat{z} = (a, 0, ..., 0) \in \partial \mathcal{G}$. We will also show that

$$\operatorname{Re}\frac{\mathcal{L}f(\widehat{z})}{f_{0,k}\left(\widehat{z}\right)}<0.$$

Since

$$\operatorname{Re}\frac{\mathcal{L}f(\widehat{z})}{f_{0,k}(\widehat{z})} = -\operatorname{Im}\frac{i^{\frac{2}{k}}-1}{i^{\frac{2}{k}}+1},$$

we use the fact that the homography $\frac{\zeta-1}{\zeta+1}$ transforms the unit circle onto the imaginary axis, wherein the upper semicircle onto the upper semiaxis. The above propositonerty gives the equality

$$\frac{i^{\frac{2}{k}} - 1}{i^{\frac{2}{k}} + 1} = bi, b > 0$$

because the point $i^{\frac{2}{k}} = a^2$ belongs to the upper unit semicircle.

Therefore, Re $\frac{\mathcal{L}f}{f_{0,k}}$ is negative at the point $\widehat{z} \in \partial \mathcal{G}$. Hence, from continuity of the functions Re $\frac{\mathcal{L}f}{f_{0,k}}$ at the point \widehat{z} , we obtain that Re $\frac{\mathcal{L}f}{f_{0,k}}$ is negative also in some points $z \in \mathcal{G}$ close to the above point $\widehat{z} \in \partial \mathcal{G}$. Summing up, we proved that $\mathcal{L}f \notin \mathcal{M}_{\mathcal{G}}^k$. Hence, f does not belong to the family $\mathcal{N}_{\mathcal{G}}^k$, $k \ge 2$. Therefore, $\mathcal{N}_{\mathcal{G}}^k$ is not convex. \Box

Now, we give a topological propositonerty of the family $\mathcal{N}_{G'}^k$, $k \ge 2$ in the space \mathcal{H}_G of holomorphic mappings $f: \mathcal{G} \longrightarrow \mathbb{C}^n$ with a topology introduced by the closure operation.

We say, as usual, that a mapping f belongs to the closure \overline{Y} of a set $Y \subset \mathcal{H}_{\mathcal{G}}$ if there exists a sequence of mappings $f_{\nu} \in Y$ convergent to f almost uniformly in \mathcal{G} , i.e., convergent uniformly on every compact subset of \mathcal{G} . Of course, it sufficies to guarantee the uniform convergence on every domain $\overline{r\mathcal{G}} \subset \mathcal{G}, r \in (0, 1)$.

The announced topological propositonerty of the family $N_{G'}^k k \ge 2$, we present in the following:

Theorem 2.7. The family $N_{\mathcal{G}}^k$, $k \ge 2$, is a path connected set in $H_{\mathcal{G}}$ with a topology given by the closure operation. *Hence,* $N_{\mathcal{G}}^k$, $k \ge 2$, is also connected.

Proof. There is enough to use the fact that $\mathcal{N}_{\mathcal{G}}^k$ is a subset of $\mathcal{M}_{\mathcal{G}}^k$ and estimates $\mu_{\mathcal{G}}(Q_{f,m}) \leq 1$, $m \in \mathbb{N}$ in the family $\mathcal{M}_{\mathcal{G}}^k$ and the proof of the path - connectness is similar to the investigations in [4]. \Box

References

2081

I. I. Bavrin, A class of regular bounded functions in the case of several complex variables and extreme problems in that class, Moskov Oblast. Ped. Inst., Moscow (1976), 1–96, (in Russian).

^[2] R. Długosz, Embedding theorems for holomorphic functions of several complex variables, J. Appl. Anal., 19, (2013), 153–165.

^[3] R. Długosz, E. Leś, Embedding theorems and extremal problems for holomorphic functions on circular domains of \mathbb{C}^n Complex Var. Elliptic Equ., 59(6)(2014), 883–899.

- [4] R. Długosz, P. Liczberski, An application of hypergeometric functions to a construction in several complex variables, J. Anal. Math., (2019) 707–721.
- [5] R. Długosz, E. Leś, A. Sibelska, A new inclusion for Bavrin's families of holomorphic functions in bounded comlete n-circular domains, Math.Slovaca, 66(4) (2016), 1–7.
- [6] K. Dobrowolska, P. Liczberski, On some differential inequalities for holomorphic functions of many variables, Demonstratio Math., 14, (1981), 383–398.
- [7] I. Dziubiń ski, R. Sitarski, On classes of holomorphic functions of many variables starlike and convex on some hypersurfaces, Demonstratio Math. 13, (1980), 619–632.
- [8] S. Fukui, On the estimates of coefficients of analytic functions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10, (1969), 216–218.
- [9] H. Hamada, T. Honda, G. Kohr, Parabolic stralike mappings in several complex variables, Manuscr. Math. 123, (2007), 301–324. [10] E. Leś-Bomba, P. Liczberski, On some family of holomorphic functions of several complex variables, Sci. Bull. of Chelm, Sec. of
- Math. and Computer Sci., 2 (2007), 7–16. [11] P. Liczberski, On the subordination of holomorphic mappings in \mathbb{C}^n , Demonstratio Math., 2 (1986), 293–301.
- [12] P. Liczberski, J. Połubinski, On (j,k)-symmetrical functions, Mathematica Bohemica 120 (1995), 13–28.
- [13] A. Marchlewska, On certain subclasses of Bavrin's families of holomorphic maps of two complex variables, Proc. of the V Environ. Math. Conf. Rzeszów-Lublin-Lesko, Lublin Catholic Univ. Press (1999), 99–106.
- [14] J. A. Pfaltzgraff, T. J. Suffridge, An extension theorem and linear invariant families generated by starlike maps, Ann. UMCS Sect. Math. 53, (1999), 193–207.
- [15] H. Poincare, Les fonctions analityques de deux variables at la representation conforme, Rend. Circ. Mat. Palermo, 23 (1907), 185–220.
- [16] K. Sakaguchi, On certain univalent mappings, J. Math.Soc. Japan 11(1959), 72–75.
- [17] A. Sibelska, On the class N_{G}^{S} of the Bavrin type of holomorphic functions of several complex variables, Bull. Soc. Sci. Lett. de Łódź, 66(3) (2016), 87–100.
- [18] J. Stankiewicz, Functions of two complex variables regular in halfspace, Folia Sci. Univ. Tech. Rzeszow Math. 19, (1996), 107–116.