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Abstract. By using the Darboux frame
{
ξ, ζ, η

}
of a non-null curve lying on a timelike surface in Minkowski

3-space, where ξ is the unit tangent vector of the curve, η is the unit spacelike normal vector field restricted
to the curve and ζ = ±η× ξ, we define relatively normal-slant helices as the curves satisfying the condition
that the scalar product of the fixed vector spanning their axis and the non-constant vector field ζ is constant.
We give the necessary and sufficient conditions for non-null curves lying on a timelike surface to be
relatively normal-slant helices. We consider the special cases when non-null relatively-normal slant helices
are geodesic curves, asymptotic curves, or lines of the principal curvature. We show that an asymptotic
spacelike hyperbolic helix lying on the principal normal surface over the helix and a geodesic spacelike
general helix lying on the timelike cylindrical ruled surface, are some examples of non-null relatively
normal-slant helices in E3

1.

1. Introduction

Researchers are very interested in helices since they have an important role not only in differential
geometry but also in Computer Aided Geometric Design ([35]) and nature (medical sciences, engineering,
biology, etc.). Namely, helices exist extensively in the structure of proteins, in particular as α-helix, and
there is a lot of research on it ([5, 23, 29, 31]). Moreover, helices have been used in physics for studying
different shapes of springs and helical gears as well as elastic rods ([11, 14]). The helix curve or helical
structures can be found in fractal geometry ([28, 31]).

In Euclidean space E3, a regular curve whose tangent vector T makes a constant angle with a fixed
direction, is called a general helix (or the curve of the constant slope) ([30]). It is well known that a regular
curve α with the first curvature κ , 0 and second curvature τ in E3 is the general helix if and only if it
has a constant conical curvature τκ . The slant helix is a curve whose the principal normal vector N makes a
constant angle with a fixed direction and has the property that the geodesic curvature

k1 =
κ2

( κ2 + τ2)
3
2

(
τ
κ

)′
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of the spherical image of its principal normal indicatrix is a constant function ([12]). There is a nice relation
between slant helices and general helices. Namely, slant helices are the successor curves of general helices
([20]). They can be found on general Hopf cylinders ([3, 18]) and helix surfaces ([18]). For the resent
characterizations of the mentioned helices in different spaces, we refer to [2, 9, 12, 15, 19, 20, 24, 32]. Ali and
Lopez gave some new characterizations of the slant helices in Minkowski 3-space ([1]). Also, several kinds
of helices have been introduced and characterized by many researchers in [2, 8, 10, 16, 21, 26, 27, 33, 34].

General and slant helices also appear on the surfaces as special curves. For example, it is shown in [7]
that geodesic isophotic curves are the slant helices. Also, asymptotic isophotic curves are the general helices.
In Minkowski space E3

1, the spacelike, the timelike, and the null Cartan isophotic curves are characterized
in [6, 22]. Macit and Düldül [19] have defined a relatively normal-slant helix lying on a surface in Euclidean
space E3 as a curve with the Darboux frame {T,V,U} whose vector field V makes a constant angle with a
fixed vector. However, there are no references related with the relatively normal-slant helices in Minkowski
space E3

1 yet.
In this paper, we define a non-null relatively normal-slant helix lying on a timelike surface in Minkowski

3-space E3
1 with the Darboux frame

{
ξ, ζ, η

}
as the spacelike, or the timelike curve with non-null principal

normal having a property that the scalar product of its fixed axis and the vector field ζ is constant. First,
we show that there are three relations between the Darboux frame and the Frenet frame of α. We give the
necessary and sufficient conditions for the spacelike and the timelike curves lying on the timelike surface
with the non-null principal normal, to be a relatively normal-slant helix in terms of their geodesic curvature,
normal curvature, and geodesic torsion. We obtain parameter equations of their axes and also consider
the special cases when relatively-normal slant helices are geodesic curves, asymptotic curves, or lines of
the principal curvature. We obtain the next relation between relatively-normal slant helices and isophote
curves - a non-null relatively-normal slant helix that is a line of principal curvature, is an isophote curve
with respect to the same axis. On the other hand, every non-null geodesic relatively normal-slant helix
is a silhouette curve with respect to the same axis. In particular, we prove that a non-null curve with the
spacelike principal normal is a geodesic relatively normal-slant helix if and only if it is the general helix.
Finally, we show that an asymptotic spacelike hyperbolic helix lying on the principal normal surface over
the helix and a geodesic spacelike general helix lying on the timelike cylindrical ruled surface, are some
examples of non-null relatively normal-slant helices in E3

1.

2. Preliminaries

Minkowski space E3
1 is the real vector space E3 endowed with an indefinite flat metric ⟨· , ·⟩ given by〈

x, y
〉
= −x1y1 + x2y2 + x3y3,

for any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1. An arbitrary vector x ∈ E3

1 can be spacelike,
timelike, or null (lightlike), if ⟨x, x⟩ > 0,⟨x, x⟩ < 0, or ⟨x, x⟩ = 0 and x , 0 respectively. In particular, the vector
x = 0 is said to be spacelike. The norm (length) of a non-null vector x ∈ E3

1 is given by ∥x∥ =
√
|⟨x, x⟩|. If

∥x∥ = 1, the vector x is called unit.
The vector product of two vectors u = (u1,u2,u3) and v = (v1, v2, v3) in E3

1 is defined by ([36])

u × v =

∣∣∣∣∣∣∣∣
−e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣∣ , (1)

where {e1, e2, e3} is the canonical basis of E3
1.

Lemma 2.1. Let u, v, and w be the vectors in E3
1. Then:

(i) ⟨u × v, w⟩ = det(u, v, w),
(ii) u × (v × w) = − ⟨u, w⟩ v + ⟨u, v⟩w,

(iii) ⟨u × v, u × v⟩ = − ⟨u, u⟩ ⟨ v, v⟩ + ⟨u, v⟩2.
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An arbitrary curve α : I → E3
1 can be the spacelike, the timelike, or the null (lightlike), if all of its velocity

vectors α′ are spacelike, timelike, or null, respectively ([17, 25]).
The Frenet formulae of a unit speed spacelike or timelike curve αwith a spacelike or a timelike principal

normal N in E3
1 read ([17]) T′(s)

N′(s)
B′(s)

 =
 0 ϵ1κ(s) 0
−ϵ0κ(s) 0 −ϵ0ϵ1τ(s)

0 −ϵ1τ(s) 0


 T(s)

N(s)
B(s)

 , (2)

where κ(s) and τ(s) are the first curvature and the second curvature of α, respectively and it holds

⟨T,T⟩ = ϵ0 = ±1, ⟨N,N⟩ = ϵ1 = ±1, ⟨B,B⟩ = −ϵ0ϵ1, (3)

T ×N = −ϵ0ϵ1B, N × B = ϵ0T, B × T = ϵ1N. (4)

Definition 2.2. A surface M in Minkowski space E3
1 is called timelike (resp. spacelike) if the induced metric on the

surface M is a Lorentzian (resp. positive definite Riemannian) metric.

A spacelike or timelike surface in Minkowski 3-space is also called a non-degenerate surface.

Lemma 2.3. Let M be a timelike surface in E3
1 and α : I → E3

1 an arbitrary curve lying on M with the geodesic
curvature k1, normal curvature kn and geodesic torsion τ1. Then the following statements hold:
(i) α is a geodesic curve on M if and only if k1 = 0;
(ii) α is an asymptotic curve on M if and only if kn = 0;
(iii) α is a line of principal curvature on M if and only if τ1 = 0.

Definition 2.4. Isophote curve in Minkowski space E3
1 is a non-null or a null curve lying on the surface and having

a property that the scalar product of the surface’s normal along that curve and a constant vector spanning its axis is
constant.

The special isophote curve, along which the surface’s normal is orthogonal to its axis, is called the
silhouette curve. Throughout the next sections, let R0 denote R\{0}.

3. Darboux frame of a non-null curve lying on a timelike surface in E3
1

In this section, we define the Darboux frame of a non-null curve with a non-null principal normal
lying on a timelike surface in Minkowski 3-space. We also show that there are three relations between the
Darboux frame and the Frenet frame. In relation to that, let M be a timelike surface in Minkowski space E3

1
with parametrization

X : U ⊆ E2
−→ E3, X (u, t) = (x1 (u, t) , x2 (u, t) , x3 (u, t)) . (5)

Denote by

n(u, t) =
Xu × Xt

||Xu × Xt||
(6)

a unit spacelike normal vector field of M and by α : I ⊂ R→M a non-null curve with a non-null principal
normal N lying on M. The Darboux frame of α is positively oriented an orthonormal frame

{
ξ , ζ , η

}
,

consisting of the tangential vector field T = ξ, the unit spacelike normal vector field η = n|α and a unit
vector field ζ = ±η × ξ, where the sign + or − is chosen in such way that det(ξ , ζ , η) = [ξ , ζ , η ] = 1. The
Darboux’s frame equations of α read ξ

′(s)
ζ′(s)
η′(s)

 =
 0 −ϵ0k1(s) kn(s)
−ϵ0k1(s) 0 τ1(s)
−ϵ0kn(s) ϵ0τ1(s) 0


 ξ(s)
ζ(s)
η(s)

 , (7)
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where kn(s), k1(s) and τ1(s) are the normal curvature, the geodesic curvature, and the geodesic torsion of α
respectively, defined by

kn ( s) =
〈
η ( s) , ξ′ ( s)

〉
, k1(s) = ⟨ζ (s) , ξ′ ( s)⟩ , τ1(s) =

〈
η ( s) , ζ′ ( s)

〉
. (8)

The Darboux frame of α satisfies the relations

⟨ξ , ξ⟩ = ϵ0 = ±1, ⟨ζ , ζ⟩ = −ϵ0,
〈
η , η

〉
= 1, (9)

ξ × ζ = η , ζ × η = ϵ0ξ , η × ξ = −ϵ0ζ . (10)

We show that there are three relations between the Darboux frame and the Frenet frame of α:

(i) If α is a timelike curve, the Frenet frame and Darboux frame are related by the Euclidean rotation in
the spacelike normal plane T⊥ of α, given by ξζ

η

 =
 1 0 0

0 cosθ − sinθ
0 sinθ cosθ


 T

N
B

 , (11)

where θ(s) = ∠(ζ ,N) is an angle between two spacelike vectors. By using relations (2), (7), and (11), we get

k1 = κ cosθ , kn = κ sinθ , τ1 = τ − θ′. (12)

(ii) If α is a spacelike curve with the timelike principal normal N, the Frenet frame and Darboux frame are
related by the hyperbolic rotation in the timelike normal plane T⊥ of α, given by ξζ

η

 =
 1 0 0

0 coshθ sinhθ
0 sinhθ coshθ


 T

N
B

 , (13)

where θ(s) = ∠(ζ ,N) is an angle between two timelike vectors. Now relations (2), (7), and (13) give

k1 = κ coshθ , kn = κ sinhθ , τ1 = τ + θ′. (14)

(iii) If α is a spacelike curve with the spacelike principal normal N, the Frenet frame, and Darboux
frame are related by the composition of the hyperbolic rotation for an angle −θ and symmetry with
respect to the null straight line x1 = −x2, given by

 ξζ
η

 =
 1 0 0

0 cosh(−θ ) sinh(−θ)
0 sinh(−θ ) cosh(−θ)


 1 0 0

0 0 1
0 −1 0


 T

N
B

 , (15)

where θ(s) = ∠(η ,N) is an angle between a timelike and a spacelike vector. In this case, relations (2), (7),
and (15) imply

k1 = κ sinhθ , kn = −κ coshθ , τ1 = τ − θ′. (16)

Theorem 3.1. Letα be a spacelike or a timelike curve with a spacelike or a timelike principal normal and the curvatures
k1, kn and τ1 lying on the timelike surface M in E3

1. Then the following statements hold:
(i) If kn = k1 = 0, then α is the straight line;
(ii) If kn = τ1 = 0, then α is the straight line if B is timelike, or the straight line or a plane curve if B is spacelike;
(iii) If k1 = τ1 = 0, then α is the straight line if N is timelike, or the straight line or a plane curve if N is spacelike.
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Proof. (i) If kn = k1 = 0, substituting this in (5) we get T′ = 0. Thus α is the straight line.

(ii) If kn = τ1 = 0, substituting this in (14), we obtain κ = 0. Hence α is the straight line if B is timelike.
Substituting kn = τ1 = 0 in (5) and using (10) and (12), α is the straight line or plane curve if B is spacelike.

(iii) If k1 = τ1 = 0, substituting this in (12), we find κ = 0. Therefore, α is the straight line if N is timelike. On
the other hand, substituting k1 = τ1 = 0 in (5) and using (10) and (14), we get that α is the straight line or
plane curve if N is spacelike.

4. Non-null relatively normal-slant helices in Minkowski space E3
1

In this section, we introduce a non-null relatively-normal slant helix lying on a timelike surface in
Minkowski 3-space. We give the necessary and sufficient conditions in terms of the geodesic curvature,
normal curvature, and geodesic torsion of non-null curves with a non-null principal normal lying on the
timelike surface, to be a relatively normal-slant helix and determine their axes. We also consider the special
cases when relatively-normal slant helices are geodesic curves, asymptotic curves, or lines of the principal
curvature. We obtain the next relation between relatively-normal slant helices and isophote curves - a
non-null relatively-normal slant helix that is a line of principal curvature, is an isophote curve with respect
to the same axis. On the other hand, every non-null geodesic relatively normal-slant helix is a silhouette
curve with respect to the same axis. Throughout this section, let M denote a timelike surface.

Definition 4.1. A non-null curve α with a non-null principal normal N and the Darboux frame
{
ξ, ζ, η

}
lying on

M in E3
1 is called a relatively normal-slant helix, if there exists a non-zero fixed vector U ∈ E3

1 such that holds

⟨ζ ,U⟩ = c,

where c ∈ R.

The fixed direction U spans an axis of the helix and can be spacelike, timelike, or null (lightlike). We
exclude the case when the vector field ζ is constant. According to Theorem 3.1, we also exclude the cases
when two of the curvatures k1, kn and τ1, are equal to zero, since then α is the straight line.

Assume that α is a non-null relatively normal-slant helix. According to the Definition 4.1, there exists a
non-zero fixed vector U such that holds

⟨ζ ,U⟩ = c, c ∈ R. (17)

Assume that c , 0. By using the relation (17), the fixed direction U can be written as

U = u1ξ − ϵ0cζ + u3η , (18)

where u1(s) and u3(s) are some differentiable functions in the arc-length parameter s of α. Differentiating the
equation (18) with respect to s and using the equations (7), we obtain the following system of differential
equations

u′1 − ϵ0knu3 + ck1 = 0,
−k1u1 + τ1u3 = 0,

u′3 + knu1 − ϵ0cτ1 = 0.
(19)

If k1 , 0 and τ1 , 0, from the second and the third equation of (19) we get
u1 = ϵ0c τ1k1 e−

∫ τ1kn
k1

ds
( ∫
τ1e

∫ τ1kn
k1

dsds
)
,

u3 = ϵ0ce−
∫ τ1kn

k1
ds

( ∫
τ1e

∫ τ1kn
k1

dsds
)
.

(20)
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Substituting (20) in the first equation of (19), we obtain that the curvature functions of α satisfy the relation

u0

 (
τ1
k1

)′
− kn

(
τ1
k1

)2

− ϵ0kn

 + τ2
1

k1
+ ϵ0k1 = 0, (21)

where

u0 = e−
∫ τ1kn

k1
ds

( ∫
τ1e

∫ τ1kn
k1

dsds
)
. (22)

Conversely, assume that the relation (21) holds. Consider the vector U given by

U = ϵ0c
τ1
k1

u0ξ − ϵ0cζ + ϵ0cu0η , (23)

where τ1 , 0 and k1 , 0, c ∈ R0 and u0(s) is given by (22). Differentiating the equation (23) with respect to s
and using (7), we find U′ = 0. Hence U is a fixed direction. It can be easily checked that ⟨ζ ,U⟩ = c, c ∈ R0.
According to the Definition 4.1, α is a non-null relatively normal-slant helix whose axis is spanned by U.
This proves the next theorem.

Theorem 4.2. Let α be a non-null curve with a spacelike or a timelike principal normal lying on M in E3
1 with the

curvatures k1 , 0, kn and τ1 , 0. Then α is the relatively normal-slant helix if and only if

u0

 (
τ1
k1

)′
− kn

(
τ1
k1

)2

− ϵ0kn

 + τ2
1

k1
+ ϵ0k1 = 0, (24)

where u0 = e−
∫ τ1kn

k1
ds

( ∫
τ1e

∫ τ1kn
k1

dsds
)
.

Corollary 4.3. An axis of the relatively normal-slant helix α with the curvatures k1 , 0, kn and τ1 , 0 is spanned
by

U = ϵ0c
τ1
k1

u0ξ − ϵ0cζ + ϵ0cu0η , (25)

where u0 = e−
∫ τ1kn

k1
ds

( ∫
τ1e

∫ τ1kn
k1

dsds
)

and c ∈ R0.

In particular, if the axis U is orthogonal to ζ, substituting c = 0 in the relation (19), we get
u′1 − ϵ0knu3 = 0,
−k1u1 + τ1u3 = 0,

u′3 + knu1 = 0.
(26)

From the second equation and third equation of (26), we have

u1 =
τ1
k1

e−
∫ τ1kn

k1
ds
,

u3 = e−
∫ τ1kn

k1
ds
.

(27)

Substituting (27) in the first equation of (26), we obtain that the curvature functions of α satisfy the relation(
τ1
k1

)′
− kn

(
τ1
k1

)2

− ϵ0kn = 0. (28)

Thus, we can give the next corollary.
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Corollary 4.4. If an axis of the non-null relatively normal-slant helix with the curvatures k1 , 0, kn and τ1 , 0 is
orthogonal to ζ, then(

τ1
k1

)′
− kn

(
τ1
k1

)2

− ϵ0kn = 0, (29)

and its axis is spanned by the vector U given by

U =
τ1
k1

e−
∫ τ1kn

k1
ds
ξ + e−

∫ τ1kn
k1

ds
η . (30)

In what follows, we consider the next three subcases: (A.1) kn = 0, k1 , 0, τ1 , 0; (A.2) τ1 = 0, k1 , 0, kn , 0;
(A.3) k1 = 0, kn , 0, τ1 , 0.

(A.1) If kn = 0, k1 , 0, τ1 , 0, then the relations (12) and (14) gives k1 = κ, τ1 = τ and θ = 0. Also, the
relation (19) gives

ϵ0

( ∫
τ1ds

)2

−

( ∫
k1ds

)2

= constant. (31)

Conversely, assume that the relation (31) holds. Consider the vector U = −c
( ∫

k1ds
)
ξ−ϵ0cζ+ϵ0c

( ∫
τ1ds

)
η,

where c ∈ R0. Differentiating the last equation with respect to s and using the relation (7), we find U′ = 0.
Since ⟨ζ ,U⟩ = c, the Definition 4.1 implies that α is an asymptotic relatively normal-slant helix. This proves
the following theorem.

Theorem 4.5. Let α be a non-null curve with the spacelike binormal B lying on M in E3
1 with the curvatures k1 , 0,

kn = 0 and τ1 , 0. Then α is an asymptotic relatively normal-slant helix if and only if

ϵ0

( ∫
τ1ds

)2

−

( ∫
k1ds

)2

= constant.

Corollary 4.6. An axis of the asymptotic relatively normal-slant helix α lying on M in E3
1 is spanned by the vector

U given by

U = −c
( ∫

k1ds
)
ξ − ϵ0cζ + ϵ0c

( ∫
τ1ds

)
η.

where c ∈ R0.

(A.2) If τ1 = 0, k1 , 0, kn , 0, then the relation (19) gives k1
kn
= constant , 0. Conversely, if k1

kn
= constant , 0,

consider the vector U = −ϵ0cζ+ ϵ0c k1
kn
η, where c ∈ R0. Differentiating the last equation with respect to s and

using the relation (7), we find U′ = 0. Consequently, U is a fixed direction satisfying ⟨ζ,U⟩ = c. In this way,
the next theorem is proved.

Theorem 4.7. Let α be a spacelike or a timelike curve with the non-null principal normal N lying on M in E3
1 with

the curvatures k1 , 0, kn , 0 and τ1 = 0. Then α is a relatively normal-slant helix that is a line of principal

curvature if and only if k1
kn
= constant , 0.

Corollary 4.8. An axis of the relatively normal-slant helix α that is a principal curvature line on M in E3
1 is spanned

by U = −ϵ0cζ + ϵ0c k1
kn
η, c ∈ R0.

From the Definition 2.4, we can give the following corollary.
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Corollary 4.9. Every non-null relatively normal-slant helix, which is a line of principal curvature, is also an isophote
curve with respect to the same axis.

(A.3) If k1 = 0, kn , 0, τ1 , 0, then the relation (19) gives τ1kn
= constant , 0. Conversely, if τ1kn

= constant , 0,
the vector U = ϵ0c τ1kn

ξ − ϵ0cζ is constant. This proves the following statement.

Theorem 4.10. Let α be a non-null curve with the spacelike principal normal N lying on M inE3
1 with the curvatures

k1 = 0, kn , 0 and τ1 , 0. Then α is a geodesic relatively normal-slant helix on M if and only if τ1kn
= constant , 0.

Corollary 4.11. An axis of the geodesic relatively normal-slant helix α with the spacelike principal normal N on M
in E3

1 is spanned by U = ϵ0c τ1kn
ξ − ϵ0cζ, c ∈ R0.

From the Definition 2.4, we can give the following corollary.

Corollary 4.12. Every non-null geodesic relatively normal-slant helix with spacelike principal normal is silhouette
curve with respect to the same axis.

If a non-null curve α with the spacelike principal normal N lying on M is a geodesic curve, i.e. k1 = 0
for all s, we have kn = κ and τ1 = τ. Then we can give the following corollary.

Corollary 4.13. A non-null curve α with the spacelike principal normal lying on M is a geodesic relatively normal-
slant helix if and only if α is a general helix.

5. Some examples of non-null relatively normal-slant helices in E3
1

Example 5.1. Let us consider the principal normal surface M in E3
1 parameterized by

x (s, t) = α(s) + tN(s), (32)

where the base curve α has parameter equation α(s) =
√

2
2 ( cosh s, sinh s, s) and N(s) is the principal normal vector

of α (see Figure 1).

Figure 1: The timelike principal normal surface and the spacelike relatively normal-slant helix α
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The Frenet frame of α has the form

T (s) =
√

2
2 ( sinh s, cosh s, 1) ,

N (s) = ( cosh s, sinh s, 0) ,
B (s) =

√
2

2 ( sinh s, cosh s,−1) ,

and the Frenet curvatures of α read

κ (s) =

√
2

2
, τ (s) =

√
2

2
.

Therefore, α is a spacelike hyperbolic helix. By taking the partial derivatives of (32) with respect to s and t and using
(4), we get xs × xt = −tτT + (1− tκ )B. The last equation and the relation (3) imply ⟨xs × xt, xs × xt⟩ > 0 for all s and
t. Consequently, M is a timelike surface. The Darboux frame of α is given by

ξ (s) =
√

2
2 ( sinh s, cosh s, 1) ,

ζ (s) = −η ( s) × ξ ( s) = ( cosh s, sinh s, 0) ,
η (s) =

√
2

2 ( sinh s, cosh s,−1) .
(33)

By using the relations (8) and (33), we obtain

k1 (s) = −κ(s) = −

√
2

2
, kn (s) = 0, τ1 (s) = τ (s) =

√
2

2
.

By the Corollary 4.4, α is an asymptotic spacelike relatively normal-slant helix lying on M whose axis is spanned by
U = c

(
0, 0,−

√
2
)
, c ∈ R0. Note that it is also an isophotic curve with respect to the same axis.

Example 5.2. Let us consider the cylindrical ruled surface in E3
1 parametrized by (see Figure 2)

x (s, t) = α(s) + t(1, 1, 0), (34)

with the base curve α is given by

α(s) =
(
−

s5

40
,−

s5

40
+ s,

s3

6

)
.

The Frenet frame of α reads

T (s) =
(
−

s4

8
,−

s4

8
+ 1,

s2

2

)
,

N (s) =
(
−

s2

2
,−

s2

2
, 1

)
,

B (s) =
(

s4

8
+ 1,

s4

8
,−

s2

2

)
,

and the Frenet curvatures of α are given by

κ (s) = s, τ (s) = s. (35)

Since τ(s)/κ(s) = constant , 0, α is a spacelike general helix. By taking the partial derivatives of (34) with respect
to s and t and using (4) and (35), we get ⟨ xs × xt, xs × xt⟩ > 0 for all s and t. Consequently, M is a timelike cylindrical
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Figure 2: The timelike cylindrical ruled surface and the silhouette curve α

ruled surface. The Darboux frame of α has the form

ξ (s) =
(
−

s4

8
,−

s4

8
+ 1,

s2

2

)
,

ζ (s) = −η ( s) × ξ ( s) =
(

s4

8
+ 1,

s4

8
,−

s2

2

)
,

η (s) =
(

s2

2
,

s2

2
,−1

)
.

Since η = −N and θ = ∠(η ,N) = 0, the relation (16) implies that the curvatures k1, kn and τ1 of α read

k1 (s) = 0, kn (s) = −s, τ1 (s) = s.

According to the Theorem 4.10, the curve α is a geodesic relatively normal-slant helix. By the Corollary 4.11, an
axis of α is spanned by the null vector U = c (−1,−1, 0), c ∈ R0. Note that according to Corollary 4.12 it is also a
silhouette curve with respect to the same axis.

Example 5.3. Let us consider a timelike ruled surface M in E3
1 parameterized by (see Figure 3)

x (s, t) =
( √

5
2

s +
√

2
4

t, cos
s
2
−

√
2

2
t
(
cos

s
2
+

√
5

2
sin

s
2

)
, sin

s
2
+

√
2

2
t
( √

5
2

cos
s
2
− sin

s
2

))
, (36)

with the timelike base curve α is given by

α(s) =
( √

5
2

s, cos
s
2
, sin

s
2

)
.

The Frenet frame of α reads

T (s) =
( √

5
2 ,−

1
2 sin s

2 ,
1
2 cos s

2

)
,

N (s) =
(
0,− cos s

2 ,− sin s
2

)
,

B (s) =
(
−

1
2 ,
√

5
2 sin s

2 ,−
√

5
2 cos s

2

)
,
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Figure 3: The timelike ruled surface and the timelike relatively normal-slant helix α

and the Frenet curvatures of α are given by

κ (s) =
1
4
, τ (s) =

√
5

4
. (37)

Since τ(s) = constant and κ(s) = constant, α is a timelike helix. By taking the partial derivatives of (36) with respect
to s and t and using (4) and (37), we get ⟨xs × xt, xs × xt⟩ > 0 for all s and t. The Darboux frame of α has the form

ξ (s) =
( √

5
2 ,−

1
2 sin s

2 ,
1
2 cos s

2

)
,

ζ (s) = η ( s) × ξ ( s) =
( √

2
4 ,−

√
10
4 sin s

2 −
√

2
2 cos s

2 ,−
√

2
2 sin s

2 +
√

10
4 cos s

2

)
,

η (s) =
(
−

√
2

4 ,
√

10
4 sin s

2 −
√

2
2 cos s

2 ,−
√

2
2 sin s

2 −
√

10
4 cos s

2

)
.

The relation (12) implies that the curvatures k1, kn and τ1 of α read

k1 (s) =
1

4
√

2
, kn (s) =

1

4
√

2
, τ1 (s) =

√
5

4
.

According to the Theorem 4.2, the curve α is a timelike relatively normal-slant helix. By the Corollary 4.3, an axis of
α is spanned by timelike vector U = c

(
−2
√

2, 0, 0
)
, c ∈ R0. Note that it is also a general helix and isophotic curve

with respect to the same axis.
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E. Nešović et al. / Filomat 36:6 (2022), 2051–2062 2062

References
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