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Available at: http://www.pmf.ni.ac.rs/filomat

Construction of New Hadamard Matrices Using Known Hadamard
Matrices

Adda Farouka, Qing-Wen Wanga,b

aDepartment of Mathematics, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
bCollaborative Innovation Center for the Marine Artificial Intelligence, Shanghai 200444, P. R. China

Abstract. In this paper, by the use of Latin squares, we describe a procedure to construct Hadamard
matrices using the existing Hadamard matrices of order m as input matrices. We propose constructions of
Hadamard matrices of orders m(m − 1), m( m

2 − 1) and m( m
k − 1), where k is a multiple of four that divides m

into an even number. This work is a continuation of our previous one in [5].

1. Introduction

A Hadamard matrix H of order n is an n × n matrix with entries from the set {−1, 1}, which satisfies the
equality HH⊤ = nIn. Hadamard matrices are also important combinatorial structures as they induces sym-
metric designs (see [3]; Part V). So, they are applied in coding, graph and cryptography theories. Moreover,
they are of maximum determinant, and therefore, of analytical importance (see [4]).

The construction of Hadamard matrices has been an elusive problem, but it is well known that this matrices
exist only for the orders 1, 2, and 4k, where k ∈ N∗. Many mathematicians have discussed the construc-
tion of Hadamard matrices. We mention of their works, Paley’s (in[8]) who describe the construction of
Hadamard matrices of order q + 1, where q ≡ 3 (mod4) is a power of a prime number, called Paley type I
matrices, then the construction of Hadamard matrices of order 2(q′ + 1), where q′ ≡ 1 (mod4) is a power
of a prime number, known as Paley type II matrices. Both of the constructions are obtained by operating
the quadratic residue on the field GF(q) or GF(q′); respectively. Paley type Hadamard matrices are used as
input matrices in Scarpis’ theorem [6, 7] to construct Hadamard matrices of order q(q + 1), where q ≡ 3(
mod 4) a prime number. This theorem has been generalized by Dokovic̀ in [9], to contain the cases where q
is a power of prime number. Then we have given an analogue of this construction in [5] to obtain 2q′(q′ + 1)
Hadamard matrices using as input matrices the Paley type II Hadamard matrices, where q′ ≡ 1( mod 4) a
power of a prime number.

The constructions of Hadamard matrices based on Latin squares is widely known and used. Among
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them we mention the work of Goethlas and Seidel (see [15]), who use 17 different classes of Latin squares
of order 6 to construct Hadamard matrices. The multiplication tables of finite groups form particular Latin
squares, called Cayley tables. While, difference sets are designs defined on the last multiplication tables, over
a subset of the group. They induce a description of families of Hadamard matrices, which includes the
Paley type matrices (see [3]; Part VI, 18).

In the early 90s a relation between Hadamard matrices and Homological groups led to the study of
cocyclic Hadamard matrices [16]. Many families of Hadamard matrices are shown to be cocyclic, and more
likely the cocyclic theory of Hadamard matrices should induce an answer to the Hadamard conjecture.
The description of cocyclic Hadamard matrices is based on the description of a sets 2-cocycles operator of
values in the multiplicative field {−1, 1}. In [17], the authors have shown that cocyclic Hadamard matrices
are equivalent to relative difference sets, which are a generalization of the concept of difference sets, and based
on Cayley tables.

This shows the importance of Latin squares in the construction of Hadamard matrices, and in the res-
olution of the Hadamard conjecture.

In this paper, by generalizing the ideas of Scarpis’ theorem, we propose constructions of Hadamard
matrices of orders m(m − 1), m( m

2 − 1) and m( m
k − 1) where k is a multiple of 4 that divides m, using as

input matrix a Hadamard matrix of order m. So, the rest of the paper is divided as follows: In the second
section we study a set of Latin squares that shares a specific propriety, we call them Latin Squares Eligible
for a Scarpis’ Construction, or LSESC. The complete set of LSESC reveals the main idea in the constructions
theorems. We define such Latin squares, and we give methods and conditions to obtain them. Then in
the third section we propose the construction of Hadamard matrices in question. In the fourth section, we
give the relation between Scarpis’ constructions and the proposed constructions, we study the eligibility of
Sylvester Hadamard matrices as input matrices, then we conclude the paper with some extracted problems.

First, let’s recall some definitions and notation.

We denote the set of all n × n Hadamard matrices by Hn. The i-th row of a matrix A = (ai j)
1≤ j≤n
1≤i≤n is de-

noted by ai. A⊤ denotes the transpose matrix of A. We denote by An the set {1, ...,n}. Let Jm be the 1 × m
matrix (row vector) with all entries equal to 1. Om,p is the zero matrix of size m × p, and In is the identity
matrix of order n. Two n × n matrices X,Y are disjoint if there is no position where they are both nonzero.

Two vectors are orthogonal if their inner product (or dot product) is 0 (i.e., two 1 × n vectors x = (xi)
and y = (yi) are orthogonal if ⟨x,y⟩ :=

∑n
i=1 xiyi = xy⊤ = 0).

The Kronecker (or tensor) product X ⊗ Y of two matrices X = (xi j) and Y is the block matrix X ⊗ Y = (xi jY).

By deleting the first row and column of a normalized Hadamard matrix H, we obtain a matrix where the
inner product of every two of its rows (or columns resp) gives −1. This matrix is called the Core of H.

Note that the multiplicative group of permutation matrices of size n, is a group isomorphic to the symmetric
group Sn by corresponding to each π ∈ Sn the permutation matrix Pπ = [δ(π(i), j)], where

δ(i, j) =
{

1 if i = j
0 otherwise .

It is generated by transposition matrices which are permutations that switch only two rows (or two columns).
For all σ ∈ Sn on the symboles set {1, ...,n}, we write

σ =

(
1 ... n
σ(1) ... σ(n)

)
.
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A multidimensional array is called a tensor. Vectors are first order tensors, matrices are second order
tensors, and we call higher order tensors, the tensors of order greater than two. The set of all tensors of order
l and of the same dimenssions n1 × n2 × .... × nl form a vector space, and denoted by Tn1,n2,...,nl .

In this paper, we use the third-order tensors. A cubic tensor is a third-order tensor of dimensions all
equal to an integer n, and we denote the set of all such tensors by Tn. Using the terminology in [2], we
denote tensors by calligraphic letters as X, Y, .... Slices are the two-dimensional sections of a tensor. The
slices of the third-order tensor X are: the horizontal slices Xi::, the lateral slices X: j:, and the frontal slices
X::k = Xk.

A Latin square of order n is an n × n matrix with entries chosen from the n-set of symbols, such that each
symbol appears exactly once in each row and exactly once in each column. Here, the rows and columns
of a Latin square of order n are indexed by the elements of An, or the elements of a group of order n. We
denote the set of all Latin squares of order n over a fixed symbols set by Ln. If we permute the rows or
columns of a Latin square, then the result is a Latin square; and if we permute the symbols set of a Latin
square or replace the symbols set by another symbols set, then the result is a Latin square. Any Latin square
obtained from another Latin square, L, by any combination of these operations is said to be isotopic to L.
Clearly, isotopy is an equivalence relation. Then, Latin squares are classified by isotopy.

A pair of Latin squares L and L′, of the same order are said to be orthogonal if for each a in the sym-
bols set of L and each b in the symbols set of L′, there exists a unique pair i, j such that li j = a and l′i j = b.

We consider a function that associate to every Latin square a cubic tensor defined as follows

F : Ln → Tn
L 7→ X

,

where X is the cubic tensor of frontal slices

Xk =
[
δ(li k, j)

]
.

We define also the functions
Gm : Tn → Tmn,mn,n

X 7→ Y

where, m ∈N, andY is the third-order tensor of frontal slices

Yk = Im ⊗ Xk.

Remark 1.1. Let L ∈ Ln, and let F(L) = X. Then

(1) Every frontal slice Xt is a permutation matrix such that, the nonzero entry in row i is at the lit-th position. So,
the frontal slices form a set of disjoint permutation matrices;

(2) The horizontal slices Xt:: also form a set of disjoint permutation matrices, where every row i contain the nonzero
element in the lti-th position ;

(3) Furthermore, the lateral slices X:t: form a set of disjoint permutation matrices, where

L =
n∑

i=1

iX:i:. (1)

Therefore, using a fixed symbols set, the notion of isotopic is equivalent in the image of F to the permutations over
cubic tensors.
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2. Latin squares eligible for a Scarpis’ construction

In view of Remark 1.1, we see that any Latin square of size n on a symbols setAn ( considered as scalars
fromZ) can be written as a linear combination of n disjoint permutation matrices each of which multiplied
by an element of An. Therefore, using this remark, we describe Latin squares by permutation matrices,
then we define the set of Latin squares, which is the kernel of the construction of Hadamard matrices in the
next sections. We describe them and we study their construction and proprieties.

Lemma 2.1. An n× n matrix L of entries from the symbols setAn is a Latin square if and only if there exists a set of
disjoint permutation matrices of order n, {P1, ...,Pn}, such that

L =
n∑

i=1

iPi.

Proof. Supposing that L is a Latin square, we conclude immediately from Remark 1.1, (3) the result, by
taking the set of lateral slices of F(L) and we obtain the equation (1). Conversely, as the Pis are permutation
matrices, every row or column contains exactly one nonzero element, and by disjointness, every i ∈ An
appear surely one time in every row or column of L. Then,

L =
n∑

i=1

iPi

form a Latin square.

Note that, if the Latin square L =
∑n

i=1 iPi, an isotopic L′ obtained by permuting the symbols set by a ϕ ∈ Sn,
is equal to

n∑
i=1

ϕ(i)Pi =

n∑
i=1

iPϕ−1(i).

In [5–7], the resulted matrices’ construction is based on an idea of rows indexes intersections of some
extracted matrix from the input Hadamard matrix. But, this can be done only if we use finite fields as we
need the inverse of every element, and therefore it is used in the obtainment of Hadamard matrices larger
by q times of the original order, for q a power of a prime number. Here, we will propose a generalisation of
this aspect using Latin squares ( or on the Quasi groups case, by the correspondence between the two notions).

Definition 2.2. We say that a pair of Latin squares L and L′ of the same order n are eligible for a Scarpis’ construction,
or LSESC, if for every i and i′ there exists a unique j such that li j = l′i′ j. A complete set of LSESC is a set that contain
the maximal number of pairwise LSESC Latin squares. Its cardinality is denoted by N′(n).

Remark 2.3. Let L1 and L2 be two Latin squares of order n, and let L′1,L
′

2 isotopic of L1,L2 obtained by a rows
permutations , respectively. It is clear from the definition that L1 and L2 are LSESC if and only if L′1 and L′2 are
LSESC.

As for MOLS (Mutually orthogonal Latin squares), the notion of complete set of MOLS can be projected on
LSESC, and we define the complete set of LSESC. Hence, we show that N′(n) ≤ n − 1 then we propose a
construction of a complete set of LSESC.

Theorem 2.4. Let n ≥ 2. Then, N′(n) ≤ n − 1.

Proof. Let L1,L2, ...,Lr a set of r LSESC. Then, by Remark 2, and with out a loss of generality we can assume
that li,1 1 = a for all i ∈ {1, ..., r}. Here, when j , 1, each j-th entry of the first row of Li are distinct, for all
i ≤ r, none of them is equal to a. Hence, r ≤ n − 1.
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When n is a power of prime number, it is easy to find a complete set of LSESC, and next corollary give a
way to construct such sets.

Corollary 2.5. Let GF(q) = {x1, x2, ..., xq} a field of order q, and let Lb be the q × q matrix with i, j-th entry xi + bx j.
Then the set L = {Lb : b ∈ GF(q) − 0} is a complete set of LSESC.

Proof. Let i and i′ be the row indices of two rows of different Latin squares Lb and Lb′ , respectively.
Considering the equation in GF(q)

xi + br = x′i + b′r,

which admits a unique solution r = (x′i − xi)(b − b′)−1. Assuming that r = x j, the equation is equivalent to
lb,i j = lb′,i′ j. Therefore, the set L is a complete set of LSESC.

The set L is also a complete set of MOLS [ see Theorem 1.6 in [1] ]. But, for n = 3 the following set

S =

L =

 1 2 3
2 3 1
3 1 2

 ,L′ =
 1 3 2

3 2 1
2 1 3




is a complete set of LSESC, and not of MOLS (taking a = 1 and b = 2, then for all i and j, li j = 1 implies that
l′i j , 2). So, the fact that two Latin squares are LSESC, does not imply that they are MOLS; Corollary 2.5
suggests the question whether or not a set of MOLS is a set of LSESC.

A long-standing conjecture is that a complete set of MOLS of order n and N(n) = n − 1 exists if and
only if n is a power of prime number (see [1]). Therefore, in the search of a set of LSESC of order n and
N′(n) = n − 1, is preferable to discuss the complete sets of LSESC that are not MOLS to avoid complexities.
Next, we propose a construction of such sets, using the disjoint permutation matrices description of a Latin
square.

Theorem 2.6. Let {P1, ...,Pn} be a set of disjoint permutation matrices of order n, and σ ∈ Sn that fixes the 1, and of
order n − 1 on each of the other symbols. Then, the set

Sσ = {S(t) =

n∑
i=1

σt(i)Pi : 1 ≤ j ≤ n − 1, t ∈ Zn−1}

is a complete set of LSESC if and only if the sets {Pσt(i)Pi
⊤ : 1 ≤ i ≤ n} are sets of disjoint permutation matrices, for

each t ∈ Zn−1.

Proof. Replacing the symbols set of Sσ by indeterminants xi, we obtain Oσ = {O(0),O(1), ...,O(n−2)
}. For

instance, the Latin square S(t) =
∑n

i=1 σ
t(i)Pi is equivalently written as O(t) =

∑n
i=1 xσt(i)Pi.

Particularly, taking {x1, x2, ..., xn} as a normalized base of the vector space GF(2)n (over the field GF(2) = {0, 1}),
and Pis considered as its operators. In this way, if Sσ is a set of LSESC, the inner product of any row of O(t)

and another from O(s) is equal to 1, when t , s.
Therefore, checking the product of any two rows each of them from a different Latin square in Oσ, defined
over the normalized base, should lead to the condition on {Pσt(i)Pi

⊤ : 1 ≤ i ≤ n} and yields the theorem
consequently. Hence, we proceed as follows, for any l,m ∈ {1, ..,n} and t , s ∈ Zn−1 we have

o(t)
lo(s)

m
⊤

=

 n∑
i=1

xσt(i)pil


 n∑

i=1

xσs(i)pim


⊤

=

n∑
i, j=1

xσt(i)pil(pjm)⊤xσs( j)
⊤.

Here, pil denotes the l-th row of the matrix Pi. We compute the product by considering two cases:
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1. l = m:
The disjointness propriety yields that pil(pjl)

⊤ = 0, unless, i = j where it is equal to 1. Then,

o(t)
lo(s)

l
⊤

=

n∑
i=1

xσt(i)xσs(i)
⊤ = xσt(1)xσs(1)

⊤ = 1,

as σ fixes the 1, and of order n − 1 on each of the other symbols.

2. l , m:
When i = j, the sum

∑n
i=1 xσt(i)pil(pim)⊤xσs(i)

⊤ = 0 as, pil(pim)⊤ = 0 by the definition of permutation
matrices. We also should omit the factors when’s σt(i) , σs( j), because xσt(i)xσs( j)

⊤ = 0, and then,
xσt(i)pil(pjm)⊤xσs( j)

⊤ = 0, whatever the value of pil(pjm)⊤.
It remains just to consider the case when σt(i) = σs( j). Thus, i = σs−t( j). The product in result is equal
to

n∑
j=1,i=σs−t( j)

xσt(i)pil(pjm)⊤xσs( j)
⊤ =

n∑
j=1

xσs( j)pσs−t(j)l(pjm)⊤xσs( j)
⊤.

To compute it’s result we need to know the values of pσs−t(j)l(pjm)⊤.
If Pσs−t( j)P j

⊤s are disjoint permutation matrices, then there exist a unique symbol j′ such that pσs−t(j′)lpj′m
⊤ =

1. So,
o(t)

lo(s)
m
⊤

= xσt( j′)pσs−t(j′)l(pj′m)Txσt( j′)
⊤ = 1.

Otherwise, it must exist m and l such that, either there is no symbol j′ where pσs−t(j′)lpj′m
⊤ = 1 or a

multiple symbols that lead to the result, and consequently the inner product leads to 0 or an integer
different than 1, respectively.

This completes the proof.

From the theorem we notice that the set Sσ is a set of isotopes of S(0) =
∑n

i=1 iPi obtained by permuting the
symbols set following the powers of σ. So, the construction of the set aims in the construction of S(0). More
precisely, the obtainment of the particular set of disjoint permutation matrices. Moreover, the set revealed
by Theorem 2.6 is not a set of MOLS ( taking 1 and b , 1, there is no indices i and j such that li j = 1 and
l′i j = b, for any L,L′ ∈ Sσ).

Additionally to the example given for the case n = 3, we conclude this section with the following two
examples

Example 2.

(1) For n = 4, let’s consider the following disjoint permutation matrices

P1 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , P2 =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 ,

P3 =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 , P4 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 ;
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It is easy to check that the set satisfies the conditions in Theorem 2.6, taking σ =
(

1 2 3 4
1 3 4 2

)
. The

disjoint permutations matrices induces the Latin square

S =


1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

 ,
together with σ form a set of isotopic Latin squares

Sσ =




1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

 ,


1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3

 ,


1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4


 ,

which is a complete set of LSESC and not of MOLS.

(2) For n = 5, we consider the following set:

P1 =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 , P2 =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 ,

P3 =


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 , P4 =


0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

 ,

P5 =


0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

 ;

the set satisfies the conditions in Theorem 2.6, taking σ =
(

1 2 3 4 5
1 3 4 5 2

)
. Therefore, the Latin

square

S =


1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

 ,
together with σ form a set of isotopic Latin squares

Sσ =




1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

 ,


1 3 4 5 2
3 4 2 1 5
4 2 5 3 1
5 1 3 2 4
2 5 1 4 3

 ,


1 4 5 2 3
4 5 3 1 2
5 3 2 4 1
2 1 4 3 5
3 2 1 5 4

 ,


1 5 2 3 4
5 2 4 1 3
2 4 3 5 1
3 1 5 4 2
4 3 1 2 5



,

which is a complete set of LSESC and not of MOLS.
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3. Construction of the Hadamard matrices

We describe three procedure whose input is a Hadamard matrix H of order m and output is a Hadamard
matrix of orders m(m − 1), or m( m

2 − 1), or m( m
k − 1), where k is a multiple of four and m

k is even. Except
the first matrix, the others can be constructed only if the input matrix H satisfies some conditions. These
procedures use the complete sets of LSESC. The constructions are based on permutations of rows of matrices
and insertions.
This section is divided into three subsections, each containing the conditions on the input matrix, and the
construction Hadamard matrix of appropriate order.
Before starting the description of the main results, let’s for every complete set of LSESC associate by F a
tensors set, X. We call it a complete tensors set of LSESC. By each function Gk applied on Xwe associate a set
of tensors X(k). For the Latin squares sets obtained by Theorem 2.6, it is sufficient to apply F only on S(0) ,
and then permute the lateral slices following the powers of σ to obtain the set X.

3.1. Construction of the Hadamard matrices of order m(m − 1)
Here, we describe a procedures whose input is a Hadamard matrix H of order m, and output is a

Hadamard matrix B of order m(m − 1). So, we obtain

ΦX : Hm →Hm(m−1).

ΦX(H) generates a family of Hadamard matrices which depends on the choice of the complete set of LSESC,
and whose sizes depend on variation of m. Thus, we have

Theorem 3.1 (Construction theorem). Let H be a normalized Hadamard matrix of order m and a Core C. X =
{χ(1), ..., χ(m−2)

} is a complete tensors set of LSESC of size m − 1, such that N′(m − 1) = m − 2. Let B0 = H′ ⊗ Jm−1,
with, H′ is obtained from H by deleting the first row, and

B =



Jm−1
⊤
⊗ c1 C C ... C

Jm−1
⊤
⊗ c2 X(1)

1 C X(1)
2 C ... X(1)

m−1C
Jm−1

⊤
⊗ c3 X(2)

1 C X(2)
2 C ... X(2)

m−1C
...

...
... ...

...

Jm−1
⊤
⊗ cm−1 X(m−2)

1 C X(m−2)
2 C ... X(m−2)

m−1 C


.

Then, the matrix

ΦX(H) =
[

B0
B

]
,

is a Hadamard matrix of order m(m − 1).

Proof. We prove the theorem by showing that ΦX(H) satisfies row orthogonality requirement.
First, let’s divide B into m − 1 block matrices, each of size (m − 1) ×m(m − 1), by a row division as follows

Γ0 =
[

Jm−1
⊤
⊗ c1 C C ... C

]
of rows[

c1| c j c j ... c j

]
, (2)

and
Γk =

[
Jm−1

⊤
⊗ ck+1 X(k)

1 C X(k)
2 C ... X(k)

m−1C
]
,

of rows[
c(k + 1)| c(s(k)

j 1) c(s(k)
j 2) ... c(s(k)

j m−1)
]
, (3)

where 1 ≤ k ≤ m − 2. Then, we have four cases to consider.
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1. Two distinct rows of B0 are evidently orthogonal as Kronecker product preserves orthogonality.

2. A row l of B0 can be written on the form h′l ⊗ Jm−1, and a row s of B should be from one of the Γks.
When k , 0, considering (3) the two rows are orthogonal. Because,

b0lbs
⊤ = h′1 l

m−1∑
i=1

[c(k + 1)⊤]i +

m−1∑
i=1

h′(i+1) l

m−1∑
r=1

[c(s(k)
ji)⊤]r

= −

m∑
i=1

h′i l = 0.

Here [c(s(k)
ji)]r are components of the row vector c(s(k)

ji). If the second row is from Γ0, using (2), we
can in the same way conclude that the expression leads to 0.

3. Two distinct rows of Γk are orthogonal.
For instance, two distinct rows l and r of Γk when k , 0 inner product is equal to

c(k + 1)c(k + 1)⊤ +
m−1∑
i=1

c(s(k)
li)c(s(k)

ri)
⊤

= m − 1 − (m − 1) = 0. (4)

Using (2), taking two distinct rows of Γ0 leads to similar equations, and then similar results.

4. It remains to verify that when 0 ≤ s , k ≤ m − 1, a row from Γk and another from Γs are orthogonal.
We have two subcases to consider:

s and k are different from 0. So, taking a row l of Γk and another r of Γs, their inner product is
equal to

c(k + 1)c(s + 1)⊤ +
m−1∑
i=1

c(s(k)
li)c(s(s)

ri)
⊤

(5)

By the definition 2.1, two rows from different LSESC shares exactly one position, namely i′. Then,
c(s(k)

li′ ) = c(s(l)
ri′ ), and the inner product becomes −1+ (m− 1− (m− 2)) = 0. Hence, the two rows

are orthogonal.

Taking s = 0, the inner product of the two rows is equal to

c(k + 1)c1
⊤ +

m−1∑
i=1

c(s(k)
li)cr

⊤ (6)

As every row of a Latin square contain each element of An exactly once, then, (6) becomes
−1 + (m − 1 − (m − 2)) = 0.

This finishes showing that ΦX(H) is a Hadamard matrix.

Note that, in this construction any known Hadamard matrix can be used as input matrix. Therefore, we
obtain the following.

Corollary 3.2. Let H be a normalized Hadamard matrix of order m, and let’s define the sequence{
U0 = m

Ut+1 = U2
t −Ut; t ∈N∗ .

If for some integer n there exists a complete set of LSESC of order Ur − 1 and N′(Ur − 1) = Ur − 2, for each 0 ≤ r ≤ n,
then there exists a Hadamard matrix of orders Ur+1 of the form Φr+1(H), respectively to each r.
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3.2. Construction of the Hadamard matrices of order m( m
2 − 1)

Now we present the construction of the Hadamard matrix of order m( m
2 − 1) from a Hadamard matrix

H of order m. H is normalized, and of second column (1,−1, 1, ..., 1,−1, ...,−1) (see Lemma 2.1 in [5]).
Furthermore, this construction is done only if H satisfies the following conditions:

C.1 By deleting the first two rows and columns of H, then using a column permutation N on the resulted

matrix, we get a matrix T =
[

C
D

]
such that C and D are of sizes ( m

2 − 1) × (m − 2) that satisfies the

following: For each row of C, the sum of the first m
2 − 1 entries is −1, and the sum of the remaning

m
2 − 1 entries is also −1. While, for each row of D, the sum of the first m

2 − 1 entries is −1, and the sum
of the remaning m

2 − 1 entries is 1.

C.2 We denote by H′′ the matrix obtained from H by deleting the first two rows. There exists a column
permutation matrix M that rearranges the rows of H′′ in such away: starting from the first entry, any
two consecutive entries appear as the elements of the set A = {±(1, 1),±(1,−1)}, where each row of
H′′ contains as many (1, 1)s as (−1,−1)s and as many (−1, 1)s as (1,−1)s.

We describe then a procedure whose input is H that satisfies C.1 and C.2, and output is a Hadamard matrix
of order m( m

2 − 1). So, we define
Φ′
X

: H ′m →Hm( m
2 −1),

where H ′m is the set of all Hadamard matrices of order m that satisfies the conditions C.1 and C.2. Φ′
X

(H)
generates a family of Hadamard matrices which depends on the choice of the complete set of LSESC, and
whose orders depend on variation of m. Then, we obtain the following

Theorem 3.3 (Construction theorem). Let H be a normalized Hadamard matrix of order m that has a second
column on the form (1,−1, 1, ..., 1,−1, ...,−1), and satisfies the conditions C.1 and C.2. LetX be a complete tensors set
of LSESC of order m

2 −1 such that N′( m
2 −1) = m

2 −2. By G2, we associate toX the tensors setX(2) = {χ′(1), ..., χ′(
m
2 −2)
}.

Let B′0 = H′ ⊗ J m
2 −1, H′ = H′′M, H′′ and M as mentioned in C.2, and

B′ =



T̃1 T T ... T
T̃2 X′(1)

1 T X′(1)
2 T ... X′(1)

m
2 −1T

T̃3 X′(2)
1 T X′(2)

2 T ... X′(2)
m
2 −1T

...
...

... ...
...

T̃ m
2 −1 X′(

m
2 −2)

1 T X′(
m
2 −2)

2 T ... X′(
m
2 −2)

m
2 −1 T


where T̃k =

 J⊤m
2 −1 ⊗ ck

J⊤m
2 −1 ⊗ dk

 and T as in C.1. Then, the matrix

Φ′
X

(H) =
[

B′0
B′

]
,

is a Hadamard matrix of order m( m
2 − 1).

Proof. As in Theorem 3.1 we divide B′ into m
2 − 1 block matrices, each of size (m − 2) × m( m

2 − 1), by a row
division as follows

Γ′0 =
[

T̃1 T T ... T
]

of rows of the form[
c1| c j c j ... c j

]
, (7)
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or [
d1| d j d j ... d j

]
, (8)

where 1 ≤ j ≤ m
2 − 1, and when 1 ≤ k ≤ m − 2,

Γ′k =
[

T̃k+1 X′(k)
1 T X′(k)

2 T ... X′(k)
m−1T

]
,

of rows of the form[
c(k + 1)| c(s(k)

j 1) c(s(k)
j 2) ... c(s(k)

j m−1)
]
, (9)

or [
d(k + 1)| d(s(k)

j 1) d(s(k)
j 2) ... d(s(k)

j m−1)
]
, (10)

then we discuss the row orthogonality of the constructed matrix by considering the four cases as claimed
in Theorem 3.1.
From C.1, the inner product of a row of C and another from D is 0. Therefore, the inner product of a row of
Φ′
X

(H) obtained by C rows ((7) or (9)) and another obtained from D rows ((8) or (10)) is 0. So, it stays just to
consider the cases where both rows in test are constructed from either C or D, respectively. Thus, we have:

1. Two rows of B′0 are evidently orthogonal by Kronecker product proprieties.

2. The inner product of two rows of Γ′k of the same form is equal to the expression (4) substituting the
entries by rows of C or D; respectively. It gives zero consequently.

3. Taking a row of Γ′k and another from Γ′s, when k , s. The inner product gives a substitute by the rows
of C or D of the expression (5) (or (6) if k or s is equal to 0), and leads to zero by Definition 1 (or by the
construction of Latin squares, resp).

4. It remains to show the orthogonality of a row of B′0 and another from B′. A row k of B′0 has the form
[h′k ⊗ J m

2 −1], considering a row l from Γ′n, l ≡ j (mod( m
2 − 1)). Then, we discuss two cases:

If the row of B′ has the form (9), the inner product of the two rows is the result of summing the
terms of the following:

h′k 1

m
2 −1∑
u=1

cn+1 u + h′k 2

m−2∑
u= m

2

cn+1 u = −(h′k 1 + h′k 2).

For 0 < v < m
2 − 1:

h′k 2v+1

m
2 −1∑
u=1

[c(s(n)
j 2v−1)]u + h′k 2v+2

m−2∑
u= m

2

[c(s(n)
j 2v)]u = −(h′k 2v+1 + h′k 2v+2).

We obtain the terms −(h′k 1 + h′k 2),−(h′k 3 + h′k 4), ...,−(h′k 2q+1 + h′k 2q+2). Summing all of them we
get −

∑n
v=1 h′k v = 0. Hence, the orthogonality is shown. In the same way we conclude the

orthogonality if the second row is from Γ′0 and has the form (7).

Similarly, considering (10) we have

h′k 1

m
2 −1∑
u=1

dn+1 u + h′k 2

m−2∑
u= m

2

dn+1 u = h′k 1 − h′k 2
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and for 0 < v < m
2 − 1:

h′k 2v+1

m
2 −1∑
u=1

[d(s(n)
j1)]u + h′k 2v+2

m−2∑
u= m

2

[d(s(n)
j1)]u = h′k 2v+1 − h′k 2v+2

yielding the terms (h′k 1−h′k 2), (h′k 3−h′k 4), ..., (h′k 2q+1−h′k 2q+2). If h′k 2v+1 = −h′k 2v+2 = 1, the v-th term
has the value 2, if h′k 2v+1 = −h′k 2v+2 = −1, then it yields −2, and zero otherwise. By C.2, we have
as many (1,−1)s as (−1, 1)s. Therefore,

m
2 −1∑
v=0

h′k 2v+1 −

m
2∑

v=1

h′k 2v = 0

implying the orthogonality. The result must be concluded in the same way if the second row is
of Γ′0 of the form (8).

The proof is now complete.

From Lemma 2.2 in [5], Paley type II Hadamard matrices of size 2(q + 1), where q ≡ 1 (mod4) a power of
prime number, satisfies C.1 and C.2. Then, they can be used as input matrices to construct a family of
2q(q+1) Hadamard matrices using this construction. Furthermore, the construction of Theorem 3.3 induces
the following result:

Corollary 3.4. Let H be a normalized Hadamard matrix of size m and satisfies C.1 and C.2, and let’s define the
sequence 

V0 = m

Vt+1 =
V2

t

2
− Vt; t ∈N∗

.

If for some integer n there exists a complete set of LSESC of order Vr − 1 and N′(Vr − 1) = Vr − 2, for each 0 ≤ r ≤ n,
then there exists a Hadamard matrix of orders Vr+1 of the form Φ′r+1(H), whenever Φ′s(H) satisfies also the two
conditions for each s ≤ r; respectively to each r.

3.3. Construction of the Hadamard matrices of order m( m
k − 1)

By extending the conditions C.1 and C.2 on the input matrix, we pass to the construction of Hadamard
matrices of other orders. Mainly, for a normalized Hadamard matrix H of size m, taking a positive integer
k that divides m, we construct a Hadamard matrix of order m( m

k − 1).

Next, we discuss the conditions and we conclude the constraints on k.
Assume that H has m − k rows that form T′ and m − k rows that construct H′′ such that the following two
conditions are satisfied:

Ck.1
T′ =

[
D(k)

| T′(k)
]

where, D(k) is a matrix of size (m − k) × k and T′(k) is a square matrix of order m − k. The last two
matrices are as follows:

i.

D(k) =


JT

m
k −1 ⊗w1

...
JT

m
k −1 ⊗wk

 ,
with {w1, ...,wk}mutually orthogonal rows vectors of size k. So, k is a multiple of 4; and
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ii. For a permutation matrix N, T′(k)N = T(k), with T(k) is equal to
C1
...

Ck

 ,
where each matrix Cu is of size ( m

k − 1) × (m − k) such that, in each row of Cu, computing from
the first entry, and summing every m

k − 1 entries, then putting the sum results in a row vector
according to their order. We obtain the same {1,−1} row vector ru of size k.

Ck.2 There exists a column permutation matrix MH′′ that rearranges the rows of H′′ to obtain H′ in such
a way that, starting from the first entry, every k consecutive entries appear as the elements of the
set A(k) = {±v : v is a {1,−1}-row vector of size k}, where each row of H′ contains as many vs as −vs.
Consequently, m

k must be an even number.

Remark 3.5. From Ck.1 i., and Ck.2, the integer k must be a multiple of 4 that divides m into an even number.

We describe a procedure whose input is a Hadamard matrix H of order m that satisfies Ck.1 and Ck.2, and
output is a Hadamard matrix of order m( m

k − 1). So, we define

Φ(k)
X

: H (k)
m →Hm( m

k −1),

whereH (k)
m is the set of all Hadamard matrices of order m that satisfies the conditions Ck.1 and Ck.2. Φ(k)

X
(H)

generates a family of Hadamard matrices which depends on the choice of the complete set of LSESC, and
whose orders depend on variation of m.

Theorem 3.6 (Construction theorem). Let H be a normalized Hadamard matrix of a order m divisible by 8, and let
k ∈N∗ such that k ≡ 0 (mod4) and m

k is an even number. Moreover, suppose that H satisfies the conditions Ck.1 and

Ck.2. LetX be a complete tensors set of LSESC of order m
k −1 such that, N′( m

k −1) = m
k −2. X(k) = {χ(k)(1)

, ..., χ(k)( m
k −2)
}

is the set of tensors obtained by Gk applied on X. Let B(k)
0 = H′ ⊗ J m

k −1, where H′ is defined as in Ck.2, and

B′ =



T̃(k)
1 T(k) T(k) ... T(k)

T̃(k)
2 X(k)

1

(1)
T(k) X(k)

2

(1)
T(k) ... X(k)

m
k −1

(1)
T(k)

T̃(k)
3 X(k)

1

(2)
T(k) X(k)

2

(2)
T(k) ... X(k)

m
k −1

(2)
T(k)

...
...

... ...
...

T̃(k) m
k −1 X(k)

1

( m
k −2)

T(k) X(k)
2

( m
k −2)

T(k) ... X(k)
m
k −1

( m
k −2)

T(k)


where T̃(k)

r =


JT

m
k −1 ⊗ c1(r)
...

JT
m
k −1 ⊗ ck(r)

, cu(r) are rows of Cu in Ck.1, and T(k) is the matrix defined in Ck.1. Then, the matrix

Φ(k)
X

(H) =
[

B(k)
0

B(k)

]
,

is a Hadamard matrix of order m( m
k − 1).

Proof. In the same way as in Theorems 3.1 and 3.3, we construct the proof by checking row orthogonality.
Firstly, we divide B(k) into m

k − 1 block matrices, each of size (m − k) × m( m
k − 1), by a row division and we
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denote them by Γ(k)
t , where

Γ(k)
0 =

[
T̃(k)

1 T(k) T(k) ... T(k)
]

and when t , 0

Γ(k)
t =

[
T̃(t+1) X(k)

1

(t)
T(k) X(k)

2

(t)
T(k) ... X(k)

m
k −1

(t)
T(k)

]
,

then we consider the four cases and we discuss the orthogonality.
Rows of Γ(k)

t ( where, 0 ≤ t ≤ m
k − 2) are the following:

Every row l of Γ(k)
0 has one of the forms:[

cr1| cr j cr j ... cr j

]
; (11)

where 1 ≤ r ≤ k, and l ≡ j (mod(m − k)).
When t , 0, every l row of Γ(k)

t is one of the following rows[
cr(t + 1)| cr(s(t)

j 1) cr(s(t)
j 2) ... cr(s(t)

j m
k −1)

]
, (12)

where, 1 ≤ r ≤ k, and l ≡ j (mod(m − k)).
From the construction of T′ in Ck.1, the inner product of every row of Ci and another from C j, when i , j is
0. Thus, every two rows of Φ(k)

X
(H) constructed from different Crs are mutually orthogonal.

Since the rows of Φ(k)
X

(H) have the same forms as the ones obtained in Theorems 3.1 and 3.3, we can
conclude easily that the proof of this theorem is similar to the proof of Theorem 3.3. So, following the same
steps we find that: every two rows of B(k)

0 are mutually orthogonal, every two rows of Γ(k)
t are mutually

orthogonal, and for all 0 ≤ t ≤ m
k − 2, and taking any row of Γ(k)

t and another from Γ(k)
s , when s , t the two

rows are mutually orthogonal.
Here, we show only the case of a row from B(k)

0 and another from B(k), as its demonstration is obtained
differently. Take a row r of B(k)

0 and another l of Γ(k)
n , such that l ≡ j (mod(m − k)). Then, the inner product is

the sum of the following expressions

h′r 1

m
k −1∑
i=1

[Cu]n+1 i + h′r 2

2( m
k −1)∑

i= m
k

[Cu]n+1 i + ... + h′r k

(m−k)∑
i=(k−1)( m

k −1)

[Cu]n+1 i

=

k∑
i=1

h′r i[ru]i, (13)

for 1 ≤ v ≤ m
k − 1,

h′r vk+1

m
k −1∑
i=1

[cu(s(n)
j (v−1)k+1)]i + h′r vk+2

2( m
k −1)∑

i= m
k

[cu(s(n)
j (v−1)k+2)]i +

... + h′r (v+1)k

(m−k)∑
i=(k−1)( m

k −1)

[cu(s(n)
j vk)]i =

k∑
i=1

h′r vk+i[ru]i, (14)

for some u ∈ {1, ..., k}. It yields the terms

k∑
i=1

h′r i[ru]i,
k∑

i=1

h′r k+i[ru]i, ...,
k∑

i=1

h′r ( m
k −1)k+i[ru]i.
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Ck.2 states that, computing from the first entry, any k consecutive entries appears as v1,v2, ...,vs ∈ A
(k),

where each row of H′ contains as many vis as−vis. Therefore, for every 0 ≤ v ≤ m
k −1 there exists necessarily

a 0 ≤ v′ ≤ m
k − 1 such that

k∑
i=1

h′r v′k+i[ru]i = −

k∑
i=1

h′r vk+i[ru]i.

Consequently, the sum of all the terms is zero, and the orthogonality follows.

We have shown the row orthogonality, and then the matrix in question is a Hadamard matrix.

We now give an example of input matrices. The next proposition ensures the existence of matrices obtained
by this construction.

Proposition 3.7. Let A and B be two normalized Hadamard matrices of orders m and k greater than or equal to 2,
respectively. Then, there exist a Hadamard matrix Φ(m)

X
(A ⊗ B), or Φ(k)

X′
(B ⊗ A), whenever, N′(m − 1) = m − 2, or

N′(k − 1) = k − 2, for some LSESCs X, or X′; respectively.

Proof. We show the existence and construction of the Hadamard matrix of order mk(m − 1), and the one of
order mk(k − 1) can be shown in the same way. Let

H = A ⊗ B.

Clearly, H is a Hadamard matrix of size mk as the tensor product preserve orthogonality. By deleting the k
first rows of H we obtain the following matrix

T
(k)
= A′ ⊗ B,

where A′ is the matrix obtained by deleting the first row of A. We can immediately obtain Ck.2 as A′ consists

of m
2 1s and m

2 − 1s. So, every row of T
(k)

is composed of a row of B, say b, where we have as many bs as
−bs.

On the other hand, we have

T
(k)
=

[
Jm−1

T
⊗ B CA ⊗ B

]
,

where CA is the core of A. Using rows permutations on T
(k)

we obtain the matrix

T̂(k) =


Jm−1

T
⊗ b1 CA ⊗ b1

Jm−1
T
⊗ b2 CA ⊗ b2
...

...
Jm−1

T
⊗ bk CA ⊗ bk


=

[
D(k) T′(k)

]
,

The first part of Ck.1 follows from the rows of D(k). Using columns permutations on T′(k) we obtain

T(k) = B ⊗ CA.

Then, for i ∈ {1, ..., k}, we divide it to block matrices Ci of size (m − 1) × (mk − k) in the following way

T(k) =


C1
C2
...

Ck

 .
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The sum of every m − 1 entries staring from the first entry of each row of Ci gives either −1 if bi j = 1, or 1 if
bi j = −1, by the core proprieties. Then puting the obtained results in a row vector, according to their order,
we obtain for every row of Ci, the row vector −bi. Therefore, the second part of Ck.1 follows.
Finally, the matrix H satisfies Ck.1 and Ck.2. Then, H is eligible as input matrix in the construction of
Theorem 3.3, and then we obtain a Hadamard matrix of order mk(m − 1).
If we suppose A as a Hadamard matrix of a random order m, and B the Hadamard matrix of order 2. In the
same way we find that H satisfies C.1 and C.2. Then, its an input matrix of Φ′, and we obtain a Hadamard
matrix of order 2m(m − 1).

Remark 3.8. The constructions given in the last proposition are Hadamard equivalent to the matrices ΦX(A) ⊗ B
and A⊗ΦX′ (B), respectively. Therefore, it is more important to search about eligible input Hadamard matrices out of
the ones obtained by Kronecker products. The Proposition in [7] gives an important result that can be useful in this
investigation. It states that any Hadamard matrix of order m is Hadamard equivalent to the form[

Ja,b X
Y Z

]
,

where Ja,b is the a × b all ones block. It follows that ab ≤ m, and that either every column sum of X is zero, or every
row sum of Y is zero. Thus, it is very likely that X⊤ or Y induces a discription of D(k) in Ck.1, when a = b = k.

Similarly to the case Φ′, we conclude this part with the following result.

Corollary 3.9. Let H be a normalized Hadamard matrix of order m divisible by 8, let k be a multiple of four that
divides m into an even number, and H satisfies Ck.1 and Ck.2. Let’s define the sequence

W0 = m

Wt+1 =
W2

t

k
−Wt; t ∈N∗

.

If for some integer n there exists a complete set of LSESC of order Wr−1 and N′(Wr−1) =Wr−2, for each 0 ≤ r ≤ n,
then there exists a Hadamard matrix of orders Wr+1 of the form Φ(k)r+1(H), whenever Φ(k)s(H) satisfies also the two
conditions for each s ≤ r; respectively to each r.

4. Results using Paley and Sylvester Hadamard matrices

In this section, we discuss the relation between the constructions described in [5, 6, 9] and the proposed
constructions, then we discuss the eligibility of Sylvester Hadamard matrices as input matrices in the forms.

4.1. Relation between Scarpis’ constructions and the new constructions
In [5, 6, 9], the authors have used finite fields to construct Hadamard matrices from the known Hadamard

matrices, such constructions are known as Scarpis’ constructions. From the construction theorem in [6],
and respectively to the notation used in it, the matrix B can also be written as

Jm−1
⊤
⊗ c1 C C ... C

Jm−1
⊤
⊗ c2 X(1)

1 C X(1)
2 C ... X(1)

m−1C
Jm−1

⊤
⊗ c3 X(2)

1 C X(2)
2 C ... X(2)

m−1C
...

...
... ...

...

Jm−1
⊤
⊗ cm−1 X(m−2)

1 C X(m−2)
2 C ... X(m−2)

m−1 C


,

where X(r)
k ; k ∈ {1, ..., q} are the k frontal slices of the image by F of a Latin square L = (arx + y)y∈GF(q)

x∈GF(q) for
ar ∈ GF(q) − 0, and GF(q) follows a fixed order. Therefore, by Corollary 2.5, we obtain the following
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Corollary 4.1. The Hadamard matrix H obtained by Scarpis’ theorem of order q(q + 1), where q ≡ 3 (mod4), is a
Hadamard matrix obtained by the complete set of LSESCL = {Lb : b ∈ GF(q)− 0} following the constructionΦL(H).

Similarly, for the construction in [5], and respectively to the notations and conditions on the input matrix,
mentioned in the last paper, the matrix B′ is equivalent to a matrix

T̃1 T T ... T
T̃2 X′(1)

1 T X′(1)
2 T ... X′(1)

m
2 −1T

T̃3 X′(2)
1 T X′(2)

2 T ... X′(2)
m
2 −1T

...
...

... ...
...

T̃ m
2 −1 X′(

m
2 −2)

1 T X′(
m
2 −2)

2 T ... X′(
m
2 −2)

m
2 −1 T


where X′(r)

k , k ∈ {1, ..., q} are the k frontal slices of the image by G2 ◦ F of a Latin square L = (ax + y)y∈GF(q)
x∈GF(q) for

a ∈ GF(q) − 0, and GF(q) follows a fixed order. Therefore, by Corollary 2.1, we obtain the following

Corollary 4.2. The Hadamard matrix H obtained from Paley type II Hadamard matrix as in [5], of order 2q(q + 1),
where q ≡ 1 (mod4), is a Hadamard matrix obtained by the complete set of LSESCL = {Lb : b ∈ GF(q)− 0} following
the construction Φ′

L
(H).

4.2. Case of Sylvester type Hadamard matrices
Sylvester Hadamard matrices [14] are the first known Hadamard matrices, since 1867. They are recur-

sively defined by Kronecker products that gives Hadamard matrices of orders powers of 2. For example

S0 = 1, S1 =

(
1 1
1 −1

)
, Sn =

[
Sn−1 Sn−1
Sn−1 −Sn−1

]
are Sylvester Hadamard matrices of orders 1, 2, 2n, respectively. We define the set of all Sylvester Hadamard
matrices by

S = {Sn = ⊗
nS1 : n ∈N}. (15)

Therefore, the following Corollary holds.

Corollary 4.3. Let n ∈ N∗. Then, there exist a Hadamard matrix Φ(2n−t)
X

(Sn) for every complete set of LSESC, X of
order 2t

− 1 and N′(2t
− 1) = 2t

− 2, when 1 ≤ t ≤ n. ( Here, Φ(2)
X
= Φ′

X
and Φ(1)

X
= ΦX).

Proof. This result is immediate, using Proposition 3.1, as every Sylvestr Hadamard matrix Sn is equal to

Sn−k ⊗ Sk.

for each k ∈ {0, ..., ⌊ n
2 ⌋}, and then we obtain the stated corollary by applying the constructions in Theorems

3.1, 3.3 and 3.6.

Finally, we conclude with remarks and open problems:

1. As the Sylvester Hadamard matrices are defined by Kronecker products, it is very likely that the
obtained matrices by Corollary 4.3 satisfies the conditions C.1 , C.2 or Ck.1 , Ck.2, for some ks. Hence,
we can extract a recursive construction of Hadamard matrices of orders 2sa1 · · ·al, when ais are powers
of Mersenne prime numbers less than 2s.

2. An open problem is to find a way to construct a complete set of LSESC of order n not a power of prime
number. Or equivalently, a method to find a set of disjoint permutation matrices and a permutation
of order n − 1 that satisfies the conditions in Theorem 2.6.

3. Finally, the construction given in this work yield different Hadamard matrices according to different
choice of the complete set of LSESC. Then, they can be classified more properly under Hadamard
equivalence (for Hadamard equivalence methods see [11–13]).
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5. Conclusion

We have given a description of the constructions of Hadamard matrices of orders m(m−1), m( m
2 −1), and

m( m
k − 1), obtained using known Hadamard matrices as input matrices, and we illustrated the conditions

on the input matrices. These constructions are based on Latin squares, we described the nature of the
needed Latin squares, and we have given ways to construct them for certain orders, we studied also their
relation to MOLS. Finally, we studied the relation between these constructions and Scarpis’ theorem on
the construction of Hadamard matrices, and then we focussed on Sylvester Hadamard matrices case, and
given related open problems.
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