Filomat 36:6 (2022), 1991–2000 https://doi.org/10.2298/FIL2206991C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

gs-Drazin Inverses of Generalized Matrices over Local Rings

Huanyın Chen^a, Mete Burak Calci^b

^aHangzhou Normal University, Hangzhou, China ^bTubitak-Bilgem, Kocaeli, Turkey

Abstract. An element *a* in a ring *R* has a gs-Drazin inverse if there exists $b \in comm^2(a)$ such that $b = b^2 a$, $a - ab \in R^{qnil}$. For any $s \in C(R)$, we completely determine when a generalized matrix $A \in K_s(R)$ over a local ring *R* has a gs-Drazin inverse.

1. Introduction

Let *R* be an associative ring with an identity. The commutant of $a \in R$ is defined by $comm(a) = \{x \in R \mid xa = ax\}$. The double commutant of $a \in R$ is defined by $comm^2(a) = \{x \in R \mid xy = yx \text{ for all } y \in comm(a)\}$.

An element *a* in a ring *R* has a s-Drazin inverse if there exists $b \in comm^2(a)$ such that $b = b^2a, a - ab \in R$ is nilpotent (see [12]). An element $a \in R$ has a s-Drazin inverse if and only if it is strongly nil-clean, i.e., it is the sum of an idempotent and a nilpotent that commute (see[12, Lemma 2.2]). Strongly nil-clean matrices over local rings were considered by many authors, e.g., [2] and [8].

Following Gurgun, an element *a* in a ring *R* has a gs-Drazin inverse if there exists $b \in comm^2(a)$ such that $b = b^2 a, a - ab \in R^{qnil}$. Here, $R^{qnil} = \{a \in R \mid 1 + ax \in U(R) \text{ for every } x \in comm(a)\}$. As is well known, an element *a* in a ring *R* has a gs-Drazin inverse if and only if there exists $e^2 = e \in comm^2(a)$ such that $a - e \in R^{qnil}$ (see [6, Theorem 3.2]). In [1], Chen and Calci extend Cline's formula and Jacobson's Lemma for gs-Drazin inverses. Various additive properties of gs-Drazin inverses are thereby obtained.

Let *R* be a ring and $s \in C(R)$. Let $K_s(R) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in R \}$, where the operations are defined as follows:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix},$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + sbc' & ab' + bd' \\ ca' + dc' & scb' + dd' \end{pmatrix}.$$

Then $K_s(R)$ is a ring with the identity $I_2 = \begin{pmatrix} 1_R & 0 \\ 0 & 1_R \end{pmatrix}$. A ring *R* is local if *R* has only one maximal right ideal. If $s \in U(R)$, then $K_s(R) \cong M_2(R)$ (see [11, Lemma 1]). Thus, the class of generalized matrices over a

²⁰²⁰ Mathematics Subject Classification. 5A09, 32A65, 16E50.

Keywords. 2×2 matrix; generalized matrix; gs-Drazin inverse; local ring.

Received: 04 March 2019; Revised: 20 January 2020; Accepted: 25 February 2020

Communicated by Dragana Cvetković Ilić

Corresponding author: Mete Burak Calci

Email addresses: huanyinchen@aliyun.com (Huanyin Chen), mburakcalci@gmail.com (Mete Burak Calci)

ring is a generalization of that of matrices. The motivation of this paper is to investigate gs-Drazin inverses of generalized matrices over a local ring.

Let $a \in R$. $l_a : R \to R$ and $r_a : R \to R$ denote, respectively, the abelian group endomorphisms given by $l_a(r) = ar$ and $r_a(r) = ra$ for all $r \in R$. Thus, $l_a - r_b$ is an abelian group endomorphism such that $(l_a - r_b)(r) = ar - rb$ for any $r \in R$.

Let *R* be a local ring and $A \in M_2(R)$. In Section 2, we prove that *A* has a gs-Drazin inverse if and only if $A \in M_2(R)^{qnil}$; or $I_2 - A \in M_2(R)^{qnil}$; or A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_\alpha - r_\beta$, $l_\beta - r_\alpha$ are injective and $\alpha \in 1 + J(R), \beta \in J(R)$. Further, we characterize matrices having gs-Drazin inverses in terms of quadratic polynomials. These results are also preparations for the general case.

In Section 3, we completely determine when a generalized matrix $A \in K_s(R)$ over a local ring R has a gs-Drazin inverse. Let R be a cobleached local ring and $s \in C(R)$. We prove that $A \in K_s(R)$ has a gs-Drazin inverse if and only if $A \in K_s(R)^{qnil}$; or $I_2 - A \in K_s(R)^{qnil}$; or A is similar to $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in 1 + J(R), v \in U(R), w \in J(R), t^2 - (vuv^{-1} + w)t + (vuv^{-1}w - sv)$ has a root in 1 + J(R) and $t^2 - (u + w)t + (wu - sv)$ has a root in J(R).

We use J(R), N(R) and U(R) to denote the Jacobson radical of R, the set of nilpotent elements and units in *R*, respectively. The symbol C(R) stands for the center of a ring *R*. $GL_2(R)$ denotes the sets of all 2×2 invertible matrices over R.

2. gs-Drazin inverses of matrices

This section is devoted to preliminary observations concerning gs-Drazin inverses of a 2×2 matrix over local rings R which will be used in the sequel. Recall that an element a in a ring R is quasipolar if there exists an idempotent $e \in comm^2(a)$ such that $a + e \in U(R)$ and $ae \in R^{qnil}$. As is well known, $a \in R$ is quasipolar if and only if it has a generalized Drazin inverse, i.e., $a - a^2b \in \mathbb{R}^{qnil}$, $b = b^2a$ for some $b \in comm^2(a)$. The following lemma is crucial.

Lemma 2.1. ([4, Theorem 3.4]) Let R be a local ring and $A \in M_2(R)$. Then A is quasipolar if and only if

(1) $A \in GL_2(R)$; or (2) $A \in M_2(R)^{qnil}$; or (2) $A \in IVI_2(\mathbf{R})^r$; or (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_{\alpha} - r_{\beta}, l_{\beta} - r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$.

Theorem 2.2. Let R be a local ring and $A \in M_2(R)$. Then A has a gs-Drazin inverse if and only if

- (1) $A \in M_2(R)^{qnil}$; or
- (2) $I_2 A \in M_2(R)^{qnil}$; or
- (2) $I_2 A \in IVI_2(R)^{Torr}$, or (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_\alpha r_\beta$, $l_\beta r_\alpha$ are injective and $\alpha \in 1 + J(R)$, $\beta \in J(R)$.

Proof. \implies In view of [6, Corollary 3.3], *A* is quasipolar. By virtue of Lemma 2.1, we have three cases.

Case 1. $A \in GL_2(R)$. By virtue of [6, Theorem 3.2], there exists an idempotent $E \in comm^2(A)$ such that $A - E \in M_2(R)^{qnil}$. Hence, $E = A(I_2 - A^{-1}(A - E)) \in GL_2(R)$, and so $E = I_2$. Therefore $I_2 - A \in M_2(R)^{qnil}$. Case 2. $A \in M_2(R)^{qnil}$.

Case 3. *A* is similar to $B := \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_{\alpha} - r_{\beta}$, $l_{\beta} - r_{\alpha}$ are injective and $\alpha \in U(R)$, $\beta \in J(R)$. Then we easily see that $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ has a gs-Drazin inverse. Hence we can find some $E = (e_{ij}) \in comm^2(B)$ such that $B - E \in M_2(R)^{qnil}$. As EB = BE, we deduce that $e_{12} = e_{21} = 0$. Hence, $e_{11} \in U(R)$, and so $e_{11} = 1$. Moreover, $e_{22} \in J(R)$, and so $e_{22} = 0$. Therefore $\alpha \in 1 + J(R)$, as desired.

 \Leftarrow We are concern on three cases.

Case 1. $A \in M_2(R)^{qnil}$. Then A has a gs-Drazin inverse. Case 2. $I_2 - A \in M_2(R)^{qnil}$. Then $A - I_2 \in M_2(R)^{qnil}$, and so A has a gs-Drazin inverse. Case 3. A is similar to $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, where $l_\lambda - r_\mu$, $l_\mu - r_\lambda$ are injective and $\lambda \in 1 + J(R)$, $\mu \in J(R)$. Clearly, we have $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \lambda - 1 & 0 \\ 0 & \mu \end{pmatrix}$,

where $\begin{pmatrix} \lambda - 1 & 0 \\ 0 & \mu \end{pmatrix} \in M_2(J(R))$. Let $\begin{pmatrix} x & s \\ t & y \end{pmatrix} \in comm \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$. Then $\lambda s = s\mu$ and $\mu t = t\lambda;$

hence, s = t = 0. This implies that

$$\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}.$$

Therefore $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in comm^2 \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, hence the result. \Box

A ring *R* is cobleached provided that for any $a \in J(R)$, $b \in U(R)$, $l_a - r_b$ and $r_b - r_a$ are both injective. For instance, every commutative local ring is cobleached.

Corollary 2.3. Let R be a local ring and $A \in M_2(R)$. If R is cobleached, then A has a gs-Drazin inverse if and only if

(1) $A \in M_2(R)^{qnil}$; or (2) $I_2 - A \in M_2(R)^{qnil}$; or (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $\alpha \in 1 + J(R)$ and $\beta \in J(R)$.

Proof. This is obvious by Theorem 2.2. \Box

As an immediate consequence, we can derive the following result.

Corollary 2.4. Let R be a commutative local ring and $A \in M_2(R)$. Then A has a gs-Drazin inverse if and only if

(1) A = N + W with $N^2 = 0, W \in M_2(J(R));$ (2) $A = I_2 + N + W$ with $N^2 = 0, W \in M_2(J(R));$ (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $\alpha \in 1 + J(R), \beta \in J(R).$

Proof. Since *R* is commutative, it is cobleached. In view of [5, Lemma 4.1], $C \in M_2(R)^{qnil}$ if and only if $C^2 \in M_2(J(R))$. It follows by [5, Lemma 3.2] that $C^2 \in M_2(J(R))$ if and only if C = N + W, where $N \in N(M_2(R))$ and $W \in M_2(J(R))$. Therefore we complete the proof, by Corollary 2.3. \Box

Corollary 2.5. Let D be a division ring. Then $A \in M_2(D)$ has a gs-Drazin inverse if and only if

(1) $A^2 = 0;$ (2) $(I_2 - A)^2 = 0;$ (3) A is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$

Proof. Since every local ring is a division ring with Jacobson radical 0, we obtain the result by Corollary 2.4. \Box

1993

Lemma 2.6. ([5, Lemma 3.3]) Let R be a local ring and $A \in M_2(R)$. Then

(1) $A \in GL_2(R)$; or (2) $A^2 \in M_2(J(R))$; or (3) A is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda \in J(R), \mu \in U(R)$.

We are now ready to prove:

Theorem 2.7. Let R be a cobleached local ring and $A \in M_2(R)$. Then A has a gs-Drazin inverse if and only if

- (1) $A \in M_2(R)^{qnil}$; or
- (2) $I_2 A \in M_2(R)^{qnil}$; or
- (3) A is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda \in J(R)$, $\mu \in U(R)$, the equation $x^2 \mu x \lambda = 0$ has a root in 1 + J(R) and a root in J(R).

Proof. \implies By virtue of Lemma 2.6, we have three cases.

Case 1. $A \in GL_2(R)$. Then $A - E \in M_2(R)^{qnil}$ for some $E \in comm^2(A)$. Hence $E = I_2$, and so $I_2 - A \in M_2(R)^{qnil}$. Case 2. $A^2 \in M_2(J(R))$. Hence $A \in M_2(R)^{qnil}$.

Case 3. *A* is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda \in J(R), \mu \in U(R)$. It suffices to consider Case 3. In view of Theorem 2.2, there exists $U \in GL_2(R)$ such that

$$U^{-1}\left(\begin{array}{cc} 0 & \lambda \\ 1 & \mu \end{array}\right)U = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array}\right),$$

where $\alpha \in U(R), \beta \in J(R)$. Set $U = \begin{pmatrix} x & y \\ s & t \end{pmatrix}$. Then we have

$$\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix} \begin{pmatrix} x & y \\ s & t \end{pmatrix} = \begin{pmatrix} x & y \\ s & t \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

This shows that

$$\lambda s = x\alpha;$$

$$\lambda t = y\beta;$$

$$x + \mu s = s\alpha;$$

$$y + \mu t = t\beta.$$

Clearly, $x \in J(R)$. Since $U \in GL_2(R)$, we see that $y, s \in U(R)$, and so $t \in U(R)$. Let $\delta = s\alpha s^{-1}$ and $\gamma = t\beta t^{-1}$. Then $\delta \in U(R)$, $\gamma \in J(R)$. It is easy to verify that

$$\delta^{2} - \mu \delta = s\alpha^{2}s^{-1} - \mu s\alpha s^{-1}$$

= $(s\alpha - \mu s)(\alpha s^{-1})$
= $x\alpha s^{-1}$
= λ .

Therefore $\delta^2 - \mu \delta - \lambda = 0$. Similarly, $\gamma^2 - \mu \gamma - \lambda = 0$. Consequently, $x^2 - \mu x - \lambda = 0$ has a root $\delta \in U(R)$ and a root $\gamma \in J(R)$, as required.

 $= \text{If } A \in M_2(R)^{qnil} \text{ or } I_2 - A \in M_2(R)^{qnil}, \text{ then } A \text{ has a gs-Drazin inverse. Suppose that } x^2 - \mu x - \lambda = 0$ has a root $\alpha \in U(R)$ and a root $\beta \in J(R)$. Then we have

$$\begin{aligned} \alpha^2 - \mu \alpha - \lambda &= 0; \\ \beta^2 - \mu \beta - \lambda &= 0. \end{aligned}$$

Hence,

$$(\alpha - \mu)\alpha = \lambda;$$

$$(\beta - \mu)\beta = \lambda.$$

Obviously,

$$\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix} \begin{pmatrix} \alpha - \mu & \beta - \mu \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \alpha - \mu & \beta - \mu \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

Clearly, we have

$$\begin{pmatrix} \alpha - \mu & \beta - \mu \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \beta - \mu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha - \beta & 0 \\ 1 & 1 \end{pmatrix} \in GL_2(R)$$

Therefore $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$ is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $\alpha \in U(R)$ and a root $\beta \in J(R)$. This completes the proof, by Theorem 2.2. \Box

Corollary 2.8. Let R be a commutative local ring and $A \in M_2(R)$. Then A has a gs-Drazin inverse if and only if

- (1) A = N + W with $N^2 = 0$, $W \in M_2(J(R))$; (2) $A = I_2 + N + W$ with $N^2 = 0$, $W \in M_2(J(R))$; (3) $x^2 - tr(A)x + det(A)$ has a root $\alpha \in 1 + J(R)$ and a root $\beta \in J(R)$.

Proof. \implies In view of Theorem 2.7, we have three cases.

Case 1. $A \in M_2(R)^{qnil}$. In view of [5, Lemma 4.1], $A^2 \in M_2(J(R))$. By virtue of [5, Lemma 3.2], we have A = N + W with $N^2 = 0$, $W \in M_2(J(R))$.

Case 2. $I_2 - A \in M_2(R)^{qnil}$. Similarly, $A - I_2 = N + W$ with $N^2 = 0, W \in M_2(J(R))$, as desired.

Case 3. *A* is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$ where $\lambda \in J(R)$, $\mu \in U(R)$, and the equation $x^2 - \mu x - \lambda = 0$ has a root in J(R) and a root in 1 + J(R). Hence $\mu = tr(A)$ and $-\lambda = det(A)$. Therefore the equation $x^2 - tr(A)x + det(A) = 0$ has a root in J(R) and a root in 1 + J(R).

We will suffice to assume that the equation $x^2 - tr(A)x + det(A) = 0$ has a root in J(R) and a root in 1 + J(R). By virtue of Lemma 2.6, we may assume that A is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$ where $\lambda \in J(R), \mu \in U(R)$. Hence $\mu = tr(A)$ and $-\lambda = det(A)$. Thus, the equation $x^2 - x\mu - \lambda = 0$ has a root in J(R) and a root in 1 + J(R). Therefore we obtain the result by Theorem 2.7. \Box

Example 2.9. Let $A = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{Z}_3)$. Then A has a generalized Drazin inverse, but has no gs-Drazin inverse.

Proof. Clearly, \mathbb{Z}_3 is a commutative local ring with $J(\mathbb{Z}_3) = \overline{0}$. Clearly, A^2 , $(I_2 - A)^2 \neq \overline{0}$. Additionally, $tr(A) = \overline{2}$ and $det(A) = \overline{0}$. Taking $p(x) = x(x+1) = x^2 + x \in \mathbb{Z}_3[x]$ which has roots $\overline{0}$ and $\overline{2}$. In light of Corollary 2.8, $A \in M_2(\mathbb{Z}_3)$ has no gs-Drazin inverse. As $M_2(\mathbb{Z}_3)$ is a finite ring, we easily see that A has a generalized Drazin inverse, as desired. \Box

Theorem 2.10. Let R be a local ring and $A \in M_2(R)$. If R is cobleached, then the following are equivalent:

- (1) A has a gs-Drazin inverse.
- (2) There exists $E^2 = E \in comm(A)$ such that $A E \in M_2(R)^{qnil}$.
- (3) There exists $B \in comm(A)$ such that $B = B^2A, A AB \in M_2(R)^{qnil}$.

1995

Proof. (1) \Rightarrow (3) This is trivial.

(3) \Rightarrow (2) By hypothesis, there exists $B \in comm(A)$ such that $B = B^2A, A - AB \in M_2(R)^{qnil}$. Set E = AB. Then $E \in comm(A)$ and $A - E \in M_2(R)^{qnil}$, as desired.

(2) \Rightarrow (1) By hypothesis, there exists $E^2 = E \in comm(A)$ such that $W := A - E \in M_2(R)^{qnil}$. In view of [4, Lemma 2.3], E = 0, or $E = I_2$ or E is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Clearly, 0 and $I_2 \in comm^2(A)$. We may assume that

$$U^{-1}EU = \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right).$$

Hence,

$$U^{-1}AU - U^{-1}EU = U^{-1}WU \in M_2(R)^{qnil}$$

By hypothesis, EA = AE, and so

$$U^{-1}AU \in comm \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right).$$

Write $U^{-1}AU = \begin{pmatrix} x & y \\ s & t \end{pmatrix}$. It follows from

$$\begin{pmatrix} x & y \\ s & t \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ s & t \end{pmatrix}$$

that y = s = 0.

Moreover, we have

$$\begin{pmatrix} 1+x & 0\\ 0 & t \end{pmatrix} = \begin{pmatrix} x & 0\\ 0 & t \end{pmatrix} + \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \in M_2(R)^{qnil}.$$

This implies that $1 + x, t \in J(R)$.

For any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in comm \begin{pmatrix} x & 0 \\ 0 & t \end{pmatrix}$, we have

$$xb - bt = 0, tc - cx = 0.$$

Since *R* is cobleached, we see that b = c = 0, and so

$$\left(\begin{array}{cc}a&0\\0&d\end{array}\right)\in comm\left(\begin{array}{cc}1&0\\0&0\end{array}\right).$$

This implies that

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \in comm^2 \left(\begin{array}{cc} x & 0 \\ 0 & t \end{array}\right),$$

thus, $U^{-1}EU \in comm^2(U^{-1}AU)$. Hence $E \in comm^2(A)$. This completes the proof. \Box

Corollary 2.11. Let R be a local ring and $A \in M_2(R)$. If R is cobleached, then the following are equivalent:

- (1) A has a gs-Drazin inverse.
- (2) There exists a unique $E^2 = E \in comm(A)$ such that $A E \in M_2(R)^{qnil}$.
- (3) There exists a unique $B \in comm(A)$ such that $B = B^2A, A AB \in M_2(R)^{qnil}$.

Proof. (1) \Leftrightarrow (2) This is clear, by [6, Theorem 2.7].

(2) \Rightarrow (3) In view of Theorem 2.10, there exists $B \in comm(A)$ such that $B = B^2A, A - AB \in M_2(R)^{qnil}$. Suppose that there exists $C \in comm(A)$ such that $C = C^2A, A - AC \in M_2(R)^{qnil}$. Let E = AB and F = AC. Then $E^2 = E, F^2 = F \in comm(A)$ and $A - E, A - F \in M_2(R)^{qnil}$. By the uniqueness, we get E = F, and so $B = B(BA) = BE = BF = B(AC) = (BA)C = (CA)C = AC^2 = C$, as desired.

(3) \Rightarrow (1) This is obvious in terms of Theorem 2.10. \Box

3. Generalized Matrices over local rings

The purpose of this section is to completely characterize gs-Drazin inverses of generalized matrices over a local ring. The following result will play an important role.

Lemma 3.1. Let R be a local ring and $s \in J(R) \cap C(R)$. Then $A \in K_s(R)$ is quasipolar if and only if

- (1) $A \in U(K_s(R)); or$
- (2) $A \in K_s(R)^{nil}$; or
- (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_{\alpha} r_{\beta}, l_{\beta} r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$.

Proof. \leftarrow If $A \in U(K_s(R))$ or $A \in K_s(R)^{nil}$, then $A \in K_s(R)$ is quasipolar. Suppose that A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_{\alpha} - r_{\beta}$, $l_{\beta} - r_{\alpha}$ are injective and $\alpha \in U(R)$, $\beta \in J(R)$. Write $U^{-1}AU = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$. As *R* is local, it is quasipolar. Hence, we can find idempotents $e \in comm^2(\alpha)$, $f \in comm^2(\beta)$ such that $\alpha - e, \beta - f \in U(R)$, $\alpha e, \beta f \in J(R)$. Set $E = U\begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} U^{-1}$. Then $E^2 = E \in K_s(R)$. We easily check that $\begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} \in comm^2\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$. Hence $U^{-1}EU \in comm^2(U^{-1}AU)$, and so $E \in comm^2(A)$. Moreover, we see that $A - E \in U(K_s(R))$, as desired.

 \implies Suppose that $A \notin U(K_s(R))$ and $A \notin K_s(R)^{nil}$. Write A + E = W with $E \in comm^2(A)$, $W \in K_s(R)^{qnil}$. Set $E = \begin{pmatrix} c & x \\ y & d \end{pmatrix}$. Let $X \in comm(A)$. Then EX = XE, and so XW = WX. This shows that $I_2 - WX \in U(K_s(R))$. If $c, d \in J(R)$, then $E \in J(K_s(R))$ by [11, Lemma 2], and so $I_2 - AX = (I_2 - WX) - EX \in U(K_s(R))$. This shows that $A \in K_s(R)^{qnil}$, an absurd. Thus, we see that c or d is not in J(R).

Case 1. $c \in U(R)$. Then $\begin{pmatrix} 1 & 0 \\ -yc^{-1} & 1 \end{pmatrix} E \begin{pmatrix} c^{-1} & -c^{-1}x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & d - syc^{-1}x \end{pmatrix}$. This implies that

 $\begin{pmatrix} 1 & 0 \\ 0 & d - syc^{-1}x \end{pmatrix} \in K_s(R)$ is regular, and then so is $d - syc^{-1}x \in R$. As *R* is local, we easily check that $d - syc^{-1}x$ is zero or invertible. Hence, we have $P, Q \in U(K_s(R))$ such that PEQ is an idempotent diagonal matrix. In

light of [11, Lemma 3], *E* is similar to a diagonal matrix. Case 2. $d \in U(R)$. Similarly to the discussion in Case 1, we easily verify that *E* is similar to a diagonal matrix.

Write $P^{-1}EP = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix}$. We may assume that e = 1 and f = 0. Then $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + P^{-1}UP$ and $P^{-1}AP\left(\begin{array}{cc}1&0\\0&0\end{array}\right) = \left(\begin{array}{cc}1&0\\0&0\end{array}\right)P^{-1}AP.$ This forces that $P^{-1}AP$ is diagonal $\left(\begin{array}{cc}\lambda&0\\0&\mu\end{array}\right)$. Given $\lambda x = x\mu$ with $x \in R$, then

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & \mu\end{array}\right)\left(\begin{array}{cc}0 & x\\ 0 & 0\end{array}\right) = \left(\begin{array}{cc}0 & x\\ 0 & 0\end{array}\right)\left(\begin{array}{cc}\lambda & 0\\ 0 & \mu\end{array}\right).$$

Hence, we have

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right)\left(\begin{array}{cc}0&x\\0&0\end{array}\right)=\left(\begin{array}{cc}0&x\\0&0\end{array}\right)\left(\begin{array}{cc}1&0\\0&0\end{array}\right)$$

It follows that x = 0. This shows that $l_{\lambda} - r_{\mu}$ is injective. Likewise, $l_{\mu} - r_{\lambda}$ is injective, as desired. \Box

Theorem 3.2. Let R be a local ring and $s \in C(R)$. Then $A \in K_s(R)$ has a gs-Drazin inverse if and only if

- (1) $A \in K_s(R)^{qnil}$; or (2) $I_2 A \in K_s(R)^{qnil}$; or

(3) *A* is similar to
$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
, where $l_{\alpha} - r_{\beta}$, $l_{\beta} - r_{\alpha}$ are injective and $\alpha \in 1 + J(R)$, $\beta \in J(R)$.

Proof. Since *R* is local, $s \in U(R)$ or $s \in J(R)$.

Case 1. $s \in U(R)$. Then $K_s(R) \cong M_2(R)$, and so the result follows by Theorem 2.2.

Case 2. $s \in J(R)$.

 $\implies \text{Suppose that } A, I_2 - A \notin K_s(R)^{qnil}. \text{ If } A \in U(K_s(R)), \text{ then } A - E \in K_s(R)^{qnil} \text{ for some } E^2 = E \in comm^2(A).$ Hence, $E = I_2$, and so $I_2 - A \notin K_s(R)^{qnil}$. In view of [6, Corollary 3.3], $A \notin K_s(R)$ is quasipolar. It follows by Lemma 3.1 that A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $l_\alpha - r_\beta, l_\beta - r_\alpha$ are injective and $\alpha \in U(R), \beta \in J(R)$. If $\alpha \in 1 + U(R)$, then $A \in U(K_s(R))$, and so we see that $\alpha \in 1 + J(R)$, as required.

 $= \text{If } A \in K_s(R)^{qnil} \text{ or } I_2 - A \in K_s(R)^{qnil}, \text{ the proof is obvious. Assume that } A \text{ is similar to} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \text{ where } \\ \alpha \in 1 + J(R) \text{ and } \beta \in J(R). \text{ Choose } P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \text{ Then } A - P \in K_s(R)^{qnil} \text{ and } P^2 = P. \text{ Let } X \in comm \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}. \\ \text{So } X = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix}, \text{ since } l_\alpha - r_\beta \text{ and } l_\beta - r_\alpha \text{ are injective. Hence } \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in comm^2 \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}. \text{ Hence } A \text{ has a } \\ \text{gs-Drazin inverse, as desired. } \Box$

As an immediate consequence of Theorem 3.2, we now derive

Corollary 3.3. Let R be a cobleached local ring and $s \in C(R)$. Then $A \in K_s(R)$ has a gs-Drazin inverse if and only if

(1) $A \in K_s(R)^{qnil}$; or (2) $I_2 - A \in K_s(R)^{qnil}$; or (3) A is similar to $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where $\alpha \in 1 + J(R), \beta \in J(R)$.

Lemma 3.4. Let R be a local ring and $s \in C(R)$ and $A \in K_s(R)$. Then

(1)
$$A \in U(K_s(R))$$
; or
(2) $I_2 - A \in U(K_s(R))$; or
(3) $A \text{ or } I_2 - A \text{ is similar to a matrix} \begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in 1 + J(R), v \in U(R), w \in J(R)$

Proof. We have two cases to complete to the proof. Assume that $s \in U(R)$. So $K_s(R) \cong M_2(R)$, and the result follows by [13, Lemma 4]. We now assume that $s \in J(R)$. Let $A \in K_s(R)$. In view of [11, Lemma 5], $A \in U(K_s(R))$; or $I_2 - A \in U(K_s(R))$, or A is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, or $\begin{pmatrix} w & 1 \\ v & u \end{pmatrix}$, where $u \in 1 + J(R), v \in U(R), w \in J(R)$. If A is isomorphic to $\begin{pmatrix} w & 1 \\ v & u \end{pmatrix}$, then $I_2 - A$ is isomorphic to $\begin{pmatrix} 1 - w & -1 \\ -v & 1 - u \end{pmatrix}$. Hence, $I_2 - A$ is isomorphic to $\begin{pmatrix} 1 - w & 1 \\ v & 1 - u \end{pmatrix}$. This completes the proof. \Box

We have accumulated all the information necessary to prove the following.

Theorem 3.5. Let R be a cobleached local ring and $s \in C(R)$. Then $A \in K_s(R)$ has a gs-Drazin inverse if and only if

- (1) $A \in K_s(R)^{qnil}$; or
- (2) $I_2 A \in K_s(R)^{qnil}$; or
- (3) A is similar to $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in 1 + J(R)$, $v \in U(R)$, $w \in J(R)$, $t^2 (vuv^{-1} + w)t + (vuv^{-1}w sv)$ has a root in 1 + J(R) and $t^2 (u + w)t + (wu sv)$ has a root in J(R).

Proof. \implies Write A = E + W with $E^2 = E \in comm^2(A)$ and $W \in K_s(R)^{qnil}$. In view of Lemma 3.4, we have three cases.

Case 1. $A \in U(K_s(R))$. Then $E = I_2$. Hence, $I_2 - A \in K_s(R)^{qnil}$. Case 2. $I_2 - A \in U(K_s(R))$. Then E = 0, and so $A \in K_s(R)^{qnil}$. Case 3. A or $I_2 - A$ is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u, v \in U(R), w \in J(R)$. (1) A is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$. Then we may assume that there exists $\begin{pmatrix} a & x \\ y & b \end{pmatrix} \in U(K_s(R))$ such that $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix} \begin{pmatrix} a & x \\ y & b \end{pmatrix} = \begin{pmatrix} a & x \\ y & b \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$.

Here, $\alpha \in 1 + J(R), \beta \in J(R)$. Thus, we have

$$ua + sy = a\alpha;$$

$$va + wy = y\alpha;$$

$$ux + b = x\beta;$$

$$svx + wb = b\beta.$$

Further, we check that $x, y \in U(R)$. Let $\lambda = y\alpha y^{-1} \in 1 + J(R)$ and $\mu = x\beta x^{-1} \in J(R)$. Then we verify that

$$\lambda^{2} - (vuv^{-1} + w)\lambda + vuv^{-1}w$$

$$= ((y\alpha)\alpha - (vuv^{-1} + w)y\alpha + vuv^{-1}wy)y^{-1}$$

$$= ((va + wy)\alpha - (vuv^{-1} + w)y\alpha + vuv^{-1}wy)y^{-1}$$

$$= (va\alpha - vuv^{-1}(va + wy) + vuv^{-1}wy)y^{-1}$$

$$= (v(ua + sy) - vua)y^{-1}$$

$$= sv,$$

and

$$\mu^{2} - (u + w)\mu + wu$$

= $x\beta^{2}x^{-1} - (u + w)x\beta x^{-1} + wu$
= $((ux + b)\beta - (u + w)x\beta + wux)x^{-1}$
= $(b\beta - wx\beta + wux)x^{-1}$
= $(svx + wb - w(ux + b) + wux)x^{-1}$
= sv

as desired.

(2) $I_2 - A$ is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$. Clearly, $I_2 - A$ is similar to $\begin{pmatrix} 1 - \beta & 0 \\ 0 & 1 - \alpha \end{pmatrix}$, and then we are done as in (1).

Let *R* be a commutative ring and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_s(R)$. Set $tr_s(A) = a + d$ and $det_s(A) = ad - sbc$. We now derive

Corollary 3.6. Let R be a commutative local ring, $s \in R$ and $A \in K_s(R)$. Then $A \in K_s(R)$ has a gs-Drazin inverse if and only if

- (1) $A^2 \in J(K_s(R))$ or $(I_2 A)^2 \in J(K_s(R))$; or (2) $t^2 tr_s(A)t + det_s(A) = 0$ has a root in 1 + J(R) and a root in J(R).

Proof. Suppose that A^2 , $(I_2 - A)^2 \notin J(K_s(R))$. Then $A, I_2 - A \notin K_s(R)^{qnil}$ by [5, Lemma 4.1]. By virtue of Theorem 3.5, *A* has a gs-Drazin inverse if and only if *A* or $I_2 - A$ is similar to $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in 1 + J(R), v \in U(R), w \in U(R)$ J(R).

Case 1. A is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$. Then $t^2 - tr_s(A)t + det_s(A) = 0$ is solvable if and only if $t^2 - (u + w)t + (uw - sv) = 0$ is solvable, as desired.

Case 2. $I_2 - A$ is similar to a matrix $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$. Then $t^2 - tr_s(A)t + det_s(A) = 0$ is solvable if and only if $x^2 - tr_s(I_2 - A) + det_s(I_2 - A) = 0$ is solvable, if and only if $x^2 - (u + w)x + (uw - sv) = 0$ is solvable, hence the result. 🗆

Example 3.7. Let $A = \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{3} & \overline{2} \end{pmatrix} \in K_2(\mathbb{Z}_4)$. Then A has a gs-Drazin inverse in $K_2(\mathbb{Z}_4)$, but it has no gs-Drazin inverse in $M_2(\mathbb{Z}_4)$.

Proof. Clearly, \mathbb{Z}_4 is a commutative local ring with $J(\mathbb{Z}_4) = \overline{2}\mathbb{Z}_4$. Since $tr_2(A) = \overline{3}$ and $det_2(A) = \overline{0}$, the equation $t^2 - tr_2(A)t + det_2(A) = \overline{0}$ has a root $\overline{3}$ in $1 + J(\mathbb{Z}_4)$ and a root $\overline{0}$ in $J(\mathbb{Z}_4)$. Therefore A has a gs-Drazin inverse in $K_2(\mathbb{Z}_4)$ by Corollary 3.6.

Clearly, $det(A) = -\overline{1}$ and $det(I_2 - A) = \overline{1}$, we see that $A, I_2 - A$ are not nilpotent in $M_2(\mathbb{Z}_4)$. Moreover, the equation $t^2 - tr(A)t + det(A) = \overline{0}$ is not solvable in \mathbb{Z}_4 . In light of Corollary 2.8, A has no gs-Drazin inverse in $M_2(\mathbb{Z}_4)$, as asserted. \Box

Acknowledgment: The authors thank to the referee for his/her careful reading. H. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).

References

- [1] H. Chen, M. B. Calci, On gs-Drazin inverses in a ring, Journal Algebra and Its Applications (2019) 2050029 [9 pages], DOI: 10.1142/S0219498820500292.
- [2] H. Chen, On strongly nil clean matrices, Communications in Algebra 41 (2013), 1074–1086.
- [3] J. Cui, J. Chen, A class of quasipolar rings, Communications in Algebra 40 (2012), 4471-4482.
- [4] J. Cui, J. Chen, Quasipolar matrix rings over local rings, Bulletin of the Korean Mathematical Society 51 (2014), 813–822.
- [5] J. Cui, J. Chen, Pseudopolar matrix rings over local rings, Journal Algebra and Its Applications 13 (2014) 1350109 [12 pages], DOI: 10.1142/S0219498813501090.
- [6] O. Gurgun, Properties of generalized strongly Drazin invertible elements in general rings, Journal Algebra and Its Applications 16 (2017) 1750207 [13 pages], DOI: 10.1142/S0219498817502073.
- [7] Q. Huang, G. Tang, Y. Zhou, Quasipolar property of generalized matrix rings, Communications in Algebra 42 (2014), 3883–3894. [8] M.T. Kosan, Z. Wang, Y. Zhou, Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra 2016, http://dx.doi.org/10.1016/j.jpaa.2015.07.009.
- [9] B. Li, Strongly clean matrix rings over noncommutative local rings, Bulletin of the Korean Mathematical Society 46 (2009), 71–78.
- [10] D. Mosic, Reverse order laws for the generalized strongly Drazin inverses, Applied Mathematics and Computation 284 (2016), 37-46.
- [11] G. Tang, Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra and Its Applications 437 (2012), 2546-2559.
- [12] Z. Wang, A class of Drazin inverses in rings, Filomat 31 (2017), 1781–1789.
- [13] X. Yang, Y. Zhou, Strong cleanness of the 2 × 2 matrix ring over a general local ring, Journal of Algebra 320 (2008), 2280-2290.