gs-Drazin Inverses of Generalized Matrices over Local Rings

Huanyın Chen ${ }^{\text {a }}$, Mete Burak Calci ${ }^{\text {b }}$
${ }^{a}$ Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Tubitak-Bilgem, Kocaeli, Turkey

Abstract

An element a in a ring R has a gs-Drazin inverse if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=$ $b^{2} a, a-a b \in R^{\text {qnil. }}$. For any $s \in C(R)$, we completely determine when a generalized matrix $A \in K_{s}(R)$ over a local ring R has a gs-Drazin inverse.

1. Introduction

Let R be an associative ring with an identity. The commutant of $a \in R$ is defined by $\operatorname{comm}(a)=\{x \in$ $R \mid x a=a x\}$. The double commutant of $a \in R$ is defined by $\operatorname{comm}^{2}(a)=\{x \in R \mid x y=y x$ for all $y \in \operatorname{comm}(a)\}$.

An element a in a ring R has a s-Drazin inverse if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a-a b \in R$ is nilpotent (see [12]). An element $a \in R$ has a s-Drazin inverse if and only if it is strongly nil-clean, i.e., it is the sum of an idempotent and a nilpotent that commute (see[12, Lemma 2.2]). Strongly nil-clean matrices over local rings were considered by many authors, e.g., [2] and [8].

Following Gurgun, an element a in a ring R has a gs-Drazin inverse if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a-a b \in R^{\text {qnil }}$. Here, $R^{\text {qnil }}=\{a \in R \mid 1+a x \in U(R)$ for every $x \in \operatorname{comm}(a)\}$. As is well known, an element a in a ring R has a gs-Drazin inverse if and only if there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a-e \in R^{\text {qnil }}$ (see [6, Theorem 3.2]). In [1], Chen and Calci extend Cline's formula and Jacobson's Lemma for gs-Drazin inverses. Various additive properties of gs-Drazin inverses are thereby obtained.

Let R be a ring and $s \in C(R)$. Let $K_{s}(R)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$, where the operations are defined as follows:

$$
\begin{gathered}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right) \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime}+s b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & s c b^{\prime}+d d^{\prime}
\end{array}\right)
\end{gathered}
$$

Then $K_{s}(R)$ is a ring with the identity $I_{2}=\left(\begin{array}{cc}1_{R} & 0 \\ 0 & 1_{R}\end{array}\right)$. A ring R is local if R has only one maximal right ideal. If $s \in U(R)$, then $K_{s}(R) \cong M_{2}(R)$ (see [11, Lemma 1]). Thus, the class of generalized matrices over a

[^0]ring is a generalization of that of matrices. The motivation of this paper is to investigate gs-Drazin inverses of generalized matrices over a local ring.

Let $a \in R . l_{a}: R \rightarrow R$ and $r_{a}: R \rightarrow R$ denote, respectively, the abelian group endomorphisms given by $l_{a}(r)=a r$ and $r_{a}(r)=r a$ for all $r \in R$. Thus, $l_{a}-r_{b}$ is an abelian group endomorphism such that $\left(l_{a}-r_{b}\right)(r)=a r-r b$ for any $r \in R$.

Let R be a local ring and $A \in M_{2}(R)$. In Section 2, we prove that A has a gs-Drazin inverse if and only if $A \in M_{2}(R)^{\text {qnil }}$; or $I_{2}-A \in M_{2}(R)^{\text {qnil }}$; or A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in 1+J(R), \beta \in J(R)$. Further, we characterize matrices having gs-Drazin inverses in terms of quadratic polynomials. These results are also preparations for the general case.

In Section 3, we completely determine when a generalized matrix $A \in K_{s}(R)$ over a local ring R has a gs-Drazin inverse. Let R be a cobleached local ring and $s \in C(R)$. We prove that $A \in K_{s}(R)$ has a gs-Drazin inverse if and only if $A \in K_{s}(R)^{\text {qnil }}$; or $I_{2}-A \in K_{s}(R)^{\text {qnil }}$; or A is similar to $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, where $u \in 1+J(R), v \in U(R), w \in J(R), t^{2}-\left(v u v^{-1}+w\right) t+\left(v u v^{-1} w-s v\right)$ has a root in $1+J(R)$ and $t^{2}-(u+w) t+(w u-s v)$ has a root in $J(R)$.

We use $J(R), N(R)$ and $U(R)$ to denote the Jacobson radical of R, the set of nilpotent elements and units in R, respectively. The symbol $C(R)$ stands for the center of a ring $R . G L_{2}(R)$ denotes the sets of all 2×2 invertible matrices over R.

2. gs-Drazin inverses of matrices

This section is devoted to preliminary observations concerning gs-Drazin inverses of a 2×2 matrix over local rings R which will be used in the sequel. Recall that an element a in a ring R is quasipolar if there exists an idempotent $e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(R)$ and $a e \in R^{\text {qnil. }}$. As is well known, $a \in R$ is quasipolar if and only if it has a generalized Drazin inverse, i.e., $a-a^{2} b \in R^{q n i l}, b=b^{2} a$ for some $b \in \operatorname{comm}^{2}(a)$. The following lemma is crucial.

Lemma 2.1. ([4, Theorem 3.4]) Let R be a local ring and $A \in M_{2}(R)$. Then A is quasipolar if and only if
(1) $A \in G L_{2}(R)$; or
(2) $A \in M_{2}(R)^{q n i l}$;or
(3) A is similar to $\left(\begin{array}{rr}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$.

Theorem 2.2. Let R be a local ring and $A \in M_{2}(R)$. Then A has a g-Drazin inverse if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$;or
(2) $I_{2}-A \in M_{2}(R)^{\text {qnil }}$; or
(3) A is similar to $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in 1+J(R), \beta \in J(R)$.

Proof. \Longrightarrow In view of [6, Corollary 3.3], A is quasipolar. By virtue of Lemma 2.1, we have three cases.
Case 1. $A \in G L_{2}(R)$. By virtue of $\left[6\right.$, Theorem 3.2], there exists an idempotent $E \in \operatorname{comm}^{2}(A)$ such that $A-E \in M_{2}(R)^{\text {qnil }}$. Hence, $E=A\left(I_{2}-A^{-1}(A-E)\right) \in G L_{2}(R)$, and so $E=I_{2}$. Therefore $I_{2}-A \in M_{2}(R)^{\text {qnil }}$.

Case 2. $A \in M_{2}(R)^{\text {qnil }}$.
Case 3. A is similar to $B:=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$. Then we easily see that $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ has a gs-Drazin inverse. Hence we can find some $E=\left(e_{i j}\right) \in \operatorname{comm}^{2}(B)$ such that $B-E \in M_{2}(R)^{\text {qnil }}$. As $E B=B E$, we deduce that $e_{12}=e_{21}=0$. Hence, $e_{11} \in U(R)$, and so $e_{11}=1$. Moreover, $e_{22} \in J(R)$, and so $e_{22}=0$. Therefore $\alpha \in 1+J(R)$, as desired.
\Longleftarrow We are concern on three cases.
Case 1. $A \in M_{2}(R)^{\text {qnil }}$. Then A has a gs-Drazin inverse.
Case 2. $I_{2}-A \in M_{2}(R)^{q n i l}$. Then $A-I_{2} \in M_{2}(R)^{q n i l}$, and so A has a gs-Drazin inverse.
Case 3. A is similar to $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$, where $l_{\lambda}-r_{\mu}, l_{\mu}-r_{\lambda}$ are injective and $\lambda \in 1+J(R), \mu \in J(R)$.
Clearly, we have

$$
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
\lambda-1 & 0 \\
0 & \mu
\end{array}\right)
$$

where $\left(\begin{array}{cc}\lambda-1 & 0 \\ 0 & \mu\end{array}\right) \in M_{2}(J(R))$. Let $\left(\begin{array}{cc}x & s \\ t & y\end{array}\right) \in \operatorname{comm}\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$. Then

$$
\lambda s=s \mu \text { and } \mu t=t \lambda
$$

hence, $s=t=0$. This implies that

$$
\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) .
$$

Therefore $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$, hence the result.
A ring R is cobleached provided that for any $a \in J(R), b \in U(R), l_{a}-r_{b}$ and $r_{b}-r_{a}$ are both injective. For instance, every commutative local ring is cobleached.

Corollary 2.3. Let R be a local ring and $A \in M_{2}(R)$. If R is cobleached, then A has a gs-Drazin inverse if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$; or
(2) $I_{2}-A \in M_{2}(R)^{\text {qnil }}$; or
(3) A is similar to $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in 1+J(R) \operatorname{and} \beta \in J(R)$.

Proof. This is obvious by Theorem 2.2.
As an immediate consequence, we can derive the following result.
Corollary 2.4. Let R be a commutative local ring and $A \in M_{2}(R)$. Then A has a gs-Drazin inverse if and only if
(1) $A=N+W$ with $N^{2}=0, W \in M_{2}(J(R))$;
(2) $A=I_{2}+N+W$ with $N^{2}=0, W \in M_{2}(J(R))$;
(3) A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in 1+J(R), \beta \in J(R)$.

Proof. Since R is commutative, it is cobleached. In view of [5, Lemma 4.1], $C \in M_{2}(R)^{\text {quil }}$ if and only if $C^{2} \in M_{2}(J(R))$. It follows by [5, Lemma 3.2] that $C^{2} \in M_{2}(J(R))$ if and only if $C=N+W$, where $N \in N\left(M_{2}(R)\right)$ and $W \in M_{2}(J(R))$. Therefore we complete the proof, by Corollary 2.3.

Corollary 2.5. Let D be a division ring. Then $A \in M_{2}(D)$ has a gs-Drazin inverse if and only if
(1) $A^{2}=0$;
(2) $\left(I_{2}-A\right)^{2}=0$;
(3) A is similar to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Proof. Since every local ring is a division ring with Jacobson radical 0, we obtain the result by Corollary 2.4 .

Lemma 2.6. ([5, Lemma 3.3]) Let R be a local ring and $A \in M_{2}(R)$. Then
(1) $A \in G L_{2}(R)$; or
(2) $A^{2} \in M_{2}(J(R))$; or
(3) A is similar to $\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$.

We are now ready to prove:
Theorem 2.7. Let R be a cobleached local ring and $A \in M_{2}(R)$. Then A has a gs-Drazin inverse if and only if
(1) $A \in M_{2}(R)^{\text {qnil }}$; or
(2) $I_{2}-A \in M_{2}(R)^{\text {qnil }} ;$ or
(3) A is similar to $\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$, the equation $x^{2}-\mu x-\lambda=0$ has a root in $1+J(R)$ and a root in $J(R)$.

Proof. \Longrightarrow By virtue of Lemma 2.6, we have three cases.
Case 1. $A \in G L_{2}(R)$. Then $A-E \in M_{2}(R)^{\text {qnil }}$ for some $E \in \operatorname{comm}^{2}(A)$. Hence $E=I_{2}$, and so $I_{2}-A \in M_{2}(R)^{\text {qnil }}$.
Case 2. $A^{2} \in M_{2}(J(R))$. Hence $A \in M_{2}(R)^{\text {qnil }}$.
Case 3. A is similar to $\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in U(R)$. It suffices to consider Case 3 . In view of Theorem 2.2, there exists $U \in G L_{2}(R)$ such that

$$
U^{-1}\left(\begin{array}{cc}
0 & \lambda \\
1 & \mu
\end{array}\right) U=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

where $\alpha \in U(R), \beta \in J(R)$. Set $U=\left(\begin{array}{cc}x & y \\ s & t\end{array}\right)$. Then we have

$$
\left(\begin{array}{ll}
0 & \lambda \\
1 & \mu
\end{array}\right)\left(\begin{array}{cc}
x & y \\
s & t
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

This shows that

$$
\begin{gathered}
\lambda s=x \alpha ; \\
\lambda t=y \beta ; \\
x+\mu s=s \alpha ; \\
y+\mu t=t \beta
\end{gathered}
$$

Clearly, $x \in J(R)$. Since $U \in G L_{2}(R)$, we see that y, $s \in U(R)$, and so $t \in U(R)$. Let $\delta=s \alpha s^{-1}$ and $\gamma=t \beta t^{-1}$. Then $\delta \in U(R), \gamma \in J(R)$. It is easy to verify that

$$
\begin{aligned}
\delta^{2}-\mu \delta & =s \alpha^{2} s^{-1}-\mu s \alpha s^{-1} \\
& =(s \alpha-\mu s)\left(\alpha s^{-1}\right) \\
& =x \alpha s^{-1} \\
& =\lambda
\end{aligned}
$$

Therefore $\delta^{2}-\mu \delta-\lambda=0$. Similarly, $\gamma^{2}-\mu \gamma-\lambda=0$. Consequently, $x^{2}-\mu x-\lambda=0$ has a root $\delta \in U(R)$ and a root $\gamma \in J(R)$, as required.
\Longleftarrow If $A \in M_{2}(R)^{q n i l}$ or $I_{2}-A \in M_{2}(R)^{q n i l}$, then A has a gs-Drazin inverse. Suppose that $x^{2}-\mu x-\lambda=0$ has a root $\alpha \in U(R)$ and a root $\beta \in J(R)$. Then we have

$$
\begin{aligned}
& \alpha^{2}-\mu \alpha-\lambda=0 \\
& \beta^{2}-\mu \beta-\lambda=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& (\alpha-\mu) \alpha=\lambda ; \\
& (\beta-\mu) \beta=\lambda
\end{aligned}
$$

Obviously,

$$
\left(\begin{array}{cc}
0 & \lambda \\
1 & \mu
\end{array}\right)\left(\begin{array}{cc}
\alpha-\mu & \beta-\mu \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha-\mu & \beta-\mu \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Clearly, we have

$$
\left(\begin{array}{cc}
\alpha-\mu & \beta-\mu \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \beta-\mu \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha-\beta & 0 \\
1 & 1
\end{array}\right) \in G L_{2}(R)
$$

Therefore $\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$ is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in U(R)$ and a root $\beta \in J(R)$. This completes the proof, by Theorem 2.2.

Corollary 2.8. Let R be a commutative local ring and $A \in M_{2}(R)$. Then A has ags-Drazin inverse if and only if
(1) $A=N+W$ with $N^{2}=0, W \in M_{2}(J(R))$;
(2) $A=I_{2}+N+W$ with $N^{2}=0, W \in M_{2}(J(R))$;
(3) $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)$ has a root $\alpha \in 1+J(R)$ and a root $\beta \in J(R)$.

Proof. \Longrightarrow In view of Theorem 2.7, we have three cases.
Case 1. $A \in M_{2}(R)^{\text {qnil }}$. In view of [5, Lemma 4.1], $A^{2} \in M_{2}(J(R))$. By virtue of [5, Lemma 3.2], we have $A=N+W$ with $N^{2}=0, W \in M_{2}(J(R))$.

Case 2. $I_{2}-A \in M_{2}(R)^{q n i l}$. Similarly, $A-I_{2}=N+W$ with $N^{2}=0, W \in M_{2}(J(R))$, as desired.
Case 3. A is similar to $\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$ where $\lambda \in J(R), \mu \in U(R)$, and the equation $x^{2}-\mu x-\lambda=0$ has a root in $J(R)$ and a root in $1+J(R)$. Hence $\mu=\operatorname{tr}(A)$ and $-\lambda=\operatorname{det}(A)$. Therefore the equation $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)=0$ has a root in $J(R)$ and a root in $1+J(R)$.
\Longleftarrow We will suffice to assume that the equation $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)=0$ has a root in $J(R)$ and a root in $1+J(R)$. By virtue of Lemma 2.6, we may assume that A is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$ where $\lambda \in J(R), \mu \in U(R)$. Hence $\mu=\operatorname{tr}(A)$ and $-\lambda=\operatorname{det}(A)$. Thus, the equation $x^{2}-x \mu-\lambda=0$ has a root in $J(R)$ and a root in $1+J(R)$. Therefore we obtain the result by Theorem 2.7.

Example 2.9. Let $A=\left(\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{3}\right)$. Then A has a generalized Drazin inverse, but has no $g s$-Drazin inverse.

Proof. Clearly, \mathbb{Z}_{3} is a commutative local ring with $J\left(\mathbb{Z}_{3}\right)=\overline{0}$. Clearly, $A^{2},\left(I_{2}-A\right)^{2} \neq \overline{0}$. Additionally, $\operatorname{tr}(A)=\overline{2}$ and $\operatorname{det}(A)=\overline{0}$. Taking $p(x)=x(x+1)=x^{2}+x \in \mathbb{Z}_{3}[x]$ which has roots $\overline{0}$ and $\overline{2}$. In light of Corollary 2.8, $A \in M_{2}\left(\mathbb{Z}_{3}\right)$ has no gs-Drazin inverse. As $M_{2}\left(\mathbb{Z}_{3}\right)$ is a finite ring, we easily see that A has a generalized Drazin inverse, as desired.

Theorem 2.10. Let R be a local ring and $A \in M_{2}(R)$. If R is cobleached, then the following are equivalent:
(1) A has a gs-Drazin inverse.
(2) There exists $E^{2}=E \in \operatorname{comm}(A)$ such that $A-E \in M_{2}(R)^{\text {qnil }}$.
(3) There exists $B \in \operatorname{comm}(A)$ such that $B=B^{2} A, A-A B \in M_{2}(R)^{\text {qnil }}$.

Proof. (1) \Rightarrow (3) This is trivial.
(3) $\Rightarrow(2)$ By hypothesis, there exists $B \in \operatorname{comm}(A)$ such that $B=B^{2} A, A-A B \in M_{2}(R)^{\text {qnil }}$. Set $E=A B$. Then $E \in \operatorname{comm}(A)$ and $A-E \in M_{2}(R)^{\text {qnil }}$, as desired.
$(2) \Rightarrow(1)$ By hypothesis, there exists $E^{2}=E \in \operatorname{comm}(A)$ such that $W:=A-E \in M_{2}(R)^{\text {qnil }}$. In view of [4, Lemma 2.3], $E=0$,or $E=I_{2}$ or E is similar to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Clearly, 0 and $I_{2} \in \operatorname{comm}^{2}(A)$. We may assume that

$$
U^{-1} E U=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Hence,

$$
U^{-1} A U-U^{-1} E U=U^{-1} W U \in M_{2}(R)^{q n i l}
$$

By hypothesis, $E A=A E$, and so

$$
U^{-1} A U \in \operatorname{comm}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Write $U^{-1} A U=\left(\begin{array}{cc}x & y \\ s & t\end{array}\right)$. It follows from

$$
\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
s & t
\end{array}\right)
$$

that $y=s=0$.
Moreover, we have

$$
\left(\begin{array}{cc}
1+x & 0 \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
x & 0 \\
0 & t
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in M_{2}(R)^{q n i l}
$$

This implies that $1+x, t \in J(R)$.
For any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{comm}\left(\begin{array}{ll}x & 0 \\ 0 & t\end{array}\right)$, we have

$$
x b-b t=0, t c-c x=0
$$

Since R is cobleached, we see that $b=c=0$, and so

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \in \operatorname{comm}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

This implies that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{ll}
x & 0 \\
0 & t
\end{array}\right)
$$

thus, $U^{-1} E U \in \operatorname{comm}^{2}\left(U^{-1} A U\right)$. Hence $E \in \operatorname{comm}^{2}(A)$. This completes the proof.
Corollary 2.11. Let R be a local ring and $A \in M_{2}(R)$. If R is cobleached, then the following are equivalent:
(1) A has a gs-Drazin inverse.
(2) There exists a unique $E^{2}=E \in \operatorname{comm}(A)$ such that $A-E \in M_{2}(R)^{\text {qnil }}$.
(3) There exists a unique $B \in \operatorname{comm}(A)$ such that $B=B^{2} A, A-A B \in M_{2}(R)^{\text {quil }}$.

Proof. (1) $\Leftrightarrow(2)$ This is clear, by [6, Theorem 2.7].
$(2) \Rightarrow(3)$ In view of Theorem 2.10, there exists $B \in \operatorname{comm}(A)$ such that $B=B^{2} A, A-A B \in M_{2}(R)^{\text {quil }}$. Suppose that there exists $C \in \operatorname{comm}(A)$ such that $C=C^{2} A, A-A C \in M_{2}(R)^{\text {qnil }}$. Let $E=A B$ and $F=A C$. Then $E^{2}=E, F^{2}=F \in \operatorname{comm}(A)$ and $A-E, A-F \in M_{2}(R)^{\text {qnil }}$. By the uniqueness, we get $E=F$, and so $B=B(B A)=B E=B F=B(A C)=(B A) C=(C A) C=A C^{2}=C$, as desired.
$(3) \Rightarrow(1)$ This is obvious in terms of Theorem 2.10.

3. Generalized Matrices over local rings

The purpose of this section is to completely characterize gs-Drazin inverses of generalized matrices over a local ring. The following result will play an important role.

Lemma 3.1. Let R be a local ring and $s \in J(R) \cap C(R)$. Then $A \in K_{s}(R)$ is quasipolar if and only if
(1) $A \in U\left(K_{S}(R)\right)$; or
(2) $A \in K_{s}(R)^{\text {nil }}$; or
(3) A is similar to $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$.

Proof. \Longleftarrow If $A \in U\left(K_{s}(R)\right)$ or $A \in K_{s}(R)^{\text {nil }}$, then $A \in K_{s}(R)$ is quasipolar. Suppose that A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$. Write $U^{-1} A U=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. As R is local, it is quasipolar. Hence, we can find idempotents $e \in \operatorname{comm}^{2}(\alpha), f \in \operatorname{comm}^{2}(\beta)$ such that $\alpha-e, \beta-f \in U(R), \alpha e, \beta f \in J(R)$. Set $E=U\left(\begin{array}{cc}e & 0 \\ 0 & f\end{array}\right) U^{-1}$. Then $E^{2}=E \in K_{s}(R)$. We easily check that $\left(\begin{array}{cc}e & 0 \\ 0 & f\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Hence $U^{-1} E U \in \operatorname{comm}^{2}\left(U^{-1} A U\right)$, and so $E \in \operatorname{comm}^{2}(A)$. Moreover, we see that $A-E \in U\left(K_{s}(R)\right)$, as desired.
\Longrightarrow Suppose that $A \notin U\left(K_{s}(R)\right)$ and $A \notin K_{s}(R)^{\text {nil }}$. Write $A+E=W$ with $E \in \operatorname{comm}^{2}(A), W \in K_{s}(R)^{q n i l}$. Set $E=\left(\begin{array}{ll}c & x \\ y & d\end{array}\right)$. Let $X \in \operatorname{comm}(A)$. Then $E X=X E$, and so $X W=W X$. This shows that $I_{2}-W X \in U\left(K_{s}(R)\right)$. If $c, d \in J(R)$, then $E \in J\left(K_{s}(R)\right)$ by [11, Lemma 2], and so $I_{2}-A X=\left(I_{2}-W X\right)-E X \in U\left(K_{s}(R)\right)$. This shows that $A \in K_{s}(R)^{\text {qnil }}$, an absurd. Thus, we see that c or d is not in $J(R)$.

Case 1. $c \in U(R)$. Then $\left(\begin{array}{cc}1 & 0 \\ -y c^{-1} & 1\end{array}\right) E\left(\begin{array}{cc}c^{-1} & -c^{-1} x \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & d-s y c^{-1} x\end{array}\right)$. This implies that $\left(\begin{array}{cc}1 & 0 \\ 0 & d-s y c^{-1} x\end{array}\right) \in K_{s}(R)$ is regular, and then so is $d-s y c^{-1} x \in R$. As R is local, we easily check that $d-s y c^{-1} x$ is zero or invertible. Hence, we have $P, Q \in U\left(K_{s}(R)\right)$ such that $P E Q$ is an idempotent diagonal matrix. In light of [11, Lemma 3], E is similar to a diagonal matrix.

Case 2. $d \in U(R)$. Similarly to the discussion in Case 1 , we easily verify that E is similar to a diagonal matrix.

Write $P^{-1} E P=\left(\begin{array}{ll}e & 0 \\ 0 & f\end{array}\right)$. We may assume that $e=1$ and $f=0$. Then $P^{-1} A P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+P^{-1} U P$ and $P^{-1} A P\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) P^{-1} A P$. This forces that $P^{-1} A P$ is diagonal $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$.

Given $\lambda x=x \mu$ with $x \in R$, then

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right) .
$$

Hence, we have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

It follows that $x=0$. This shows that $l_{\lambda}-r_{\mu}$ is injective. Likewise, $l_{\mu}-r_{\lambda}$ is injective, as desired.
Theorem 3.2. Let R be a local ring and $s \in C(R)$. Then $A \in K_{s}(R)$ has a gs-Drazin inverse if and only if
(1) $A \in K_{s}(R)^{q n i l}$; or
(2) $I_{2}-A \in K_{s}(R)^{\text {qnil }}$; or
(3) A is similar to $\left(\begin{array}{rr}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in 1+J(R), \beta \in J(R)$.

Proof. Since R is local, $s \in U(R)$ or $s \in J(R)$.
Case 1. $s \in U(R)$. Then $K_{s}(R) \cong M_{2}(R)$, and so the result follows by Theorem 2.2.
Case 2. $s \in J(R)$.
\Longrightarrow Suppose that $A, I_{2}-A \notin K_{s}(R)^{\text {qnil }}$. If $A \in U\left(K_{s}(R)\right)$, then $A-E \in K_{s}(R)^{\text {qnil }}$ for some $E^{2}=E \in \operatorname{comm}^{2}(A)$. Hence, $E=I_{2}$, and so $I_{2}-A \in K_{s}(R)^{\text {qnil }}$. In view of [6, Corollary 3.3], $A \in K_{s}(R)$ is quasipolar. It follows by Lemma 3.1 that A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $l_{\alpha}-r_{\beta}, l_{\beta}-r_{\alpha}$ are injective and $\alpha \in U(R), \beta \in J(R)$. If $\alpha \in 1+U(R)$, then $A \in U\left(K_{s}(R)\right)$, and so we see that $\alpha \in 1+J(R)$, as required.
\Longleftarrow If $A \in K_{s}(R)^{\text {qnil }}$ or $I_{2}-A \in K_{s}(R)^{\text {qnil }}$, the proof is obvious. Assume that A is similar to $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ where $\alpha \in 1+J(R)$ and $\beta \in J(R)$. Choose $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then $A-P \in K_{s}(R)^{\text {qnil }}$ and $P^{2}=P$. Let $X \in \operatorname{comm}\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$. So $X=\left(\begin{array}{cc}m & 0 \\ 0 & n\end{array}\right)$, since $l_{\alpha}-r_{\beta}$ and $l_{\beta}-r_{\alpha}$ are injective. Hence $\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right) \in \operatorname{comm}^{2}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Hence A has a gs-Drazin inverse, as desired.

As an immediate consequence of Theorem 3.2, we now derive
Corollary 3.3. Let R be a cobleached local ring and $s \in C(R)$. Then $A \in K_{s}(R)$ has a gs-Drazin inverse if and only if
(1) $A \in K_{s}(R)^{q n i l}$; or
(2) $I_{2}-A \in K_{s}(R)^{\text {qnil }} ;$ or
(3) A is similar to $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where $\alpha \in 1+J(R), \beta \in J(R)$.

Lemma 3.4. Let R be a local ring and $s \in C(R)$ and $A \in K_{s}(R)$. Then
(1) $A \in U\left(K_{s}(R)\right)$; or
(2) $I_{2}-A \in U\left(K_{s}(R)\right)$; or
(3) A or $I_{2}-A$ is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, where $u \in 1+J(R), v \in U(R), w \in J(R)$.

Proof. We have two cases to complete to the proof. Assume that $s \in U(R)$. So $K_{s}(R) \cong M_{2}(R)$, and the result follows by [13, Lemma 4]. We now assume that $s \in J(R)$. Let $A \in K_{s}(R)$. In view of [11, Lemma 5], $A \in U\left(K_{s}(R)\right)$; or $I_{2}-A \in U\left(K_{s}(R)\right)$, or A is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, or $\left(\begin{array}{cc}w & 1 \\ v & u\end{array}\right)$, where $u \in 1+J(R), v \in U(R), w \in J(R)$. If A is isomorphic to $\left(\begin{array}{cc}w & 1 \\ v & u\end{array}\right)$, then $I_{2}-A$ is isomorphic to $\left(\begin{array}{cc}1-w & -1 \\ -v & 1-u\end{array}\right)$. Hence, $I_{2}-A$ is isomorphic to $\left(\begin{array}{cc}1-w & 1 \\ v & 1-u\end{array}\right)$. This completes the proof.

We have accumulated all the information necessary to prove the following.
Theorem 3.5. Let R be a cobleached local ring and $s \in C(R)$. Then $A \in K_{s}(R)$ has a gs-Drazin inverse if and only if
(1) $A \in K_{s}(R)^{\text {qnil }}$; or
(2) $I_{2}-A \in K_{s}(R)^{\text {qnil }}$; or
(3) A is similar to $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, where $u \in 1+J(R), v \in U(R), w \in J(R), t^{2}-\left(v u v^{-1}+w\right) t+\left(v u v^{-1} w-s v\right)$ has a root in $1+J(R)$ and $t^{2}-(u+w) t+(w u-s v)$ has a root in $J(R)$.

Proof. \Longrightarrow Write $A=E+W$ with $E^{2}=E \in \operatorname{comm}^{2}(A)$ and $W \in K_{s}(R)^{\text {qnil }}$. In view of Lemma 3.4, we have three cases.

Case 1. $A \in U\left(K_{s}(R)\right)$. Then $E=I_{2}$. Hence, $I_{2}-A \in K_{s}(R)^{\text {qnil }}$.
Case 2. $I_{2}-A \in U\left(K_{s}(R)\right)$. Then $E=0$, and so $A \in K_{s}(R)^{\text {qnil }}$.
Case 3. A or $I_{2}-A$ is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, where $u, v \in U(R), w \in J(R)$.
(1) A is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$. Then we may assume that there exists $\left(\begin{array}{ll}a & x \\ y & b\end{array}\right) \in U\left(K_{s}(R)\right)$ such that

$$
\left(\begin{array}{cc}
u & 1 \\
v & w
\end{array}\right)\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right)=\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Here, $\alpha \in 1+J(R), \beta \in J(R)$. Thus, we have

$$
\begin{array}{ll}
u a+s y & =a \alpha ; \\
v a+w y & =y \alpha ; \\
u x+b & =x \beta ; \\
s v x+w b & =b \beta
\end{array}
$$

Further, we check that $x, y \in U(R)$. Let $\lambda=y \alpha y^{-1} \in 1+J(R)$ and $\mu=x \beta x^{-1} \in J(R)$. Then we verify that

$$
\begin{aligned}
& \lambda^{2}-\left(v u v^{-1}+w\right) \lambda+v u v^{-1} w \\
= & \left((y \alpha) \alpha-\left(v u v^{-1}+w\right) y \alpha+v u v^{-1} w y\right) y^{-1} \\
= & \left((v a+w y) \alpha-\left(v u v^{-1}+w\right) y \alpha+v u v^{-1} w y\right) y^{-1} \\
= & \left(v a \alpha-v u v^{-1}(v a+w y)+v u v^{-1} w y\right) y^{-1} \\
= & (v a \alpha-v u a) y^{-1} \\
= & (v(u a+s y)-v u a) y^{-1} \\
= & s v,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mu^{2}-(u+w) \mu+w u \\
= & x \beta^{2} x^{-1}-(u+w) x \beta x^{-1}+w u \\
= & ((u x+b) \beta-(u+w) x \beta+w u x) x^{-1} \\
= & (b \beta-w x \beta+w u x) x^{-1} \\
= & (s v x+w b-w(u x+b)+w u x) x^{-1} \\
= & s v
\end{aligned}
$$

as desired.
(2) $I_{2}-A$ is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$. Clearly, $I_{2}-A$ is similar to $\left(\begin{array}{cc}1-\beta & 0 \\ 0 & 1-\alpha\end{array}\right)$, and then we are done as in (1).
\Longleftarrow We will suffice to prove $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$ has a gs-Drazin inverse, where $\alpha \in 1+J(R)$ is the root of $t^{2}-\left(v u v^{-1}+w\right) t+\left(v u v^{-1} w-s v\right)$ and $\beta \in J(R)$ is the root of $t^{2}-(u+w) t+(w u-s v)$. Let $P=\left(\begin{array}{cc}v^{-1}(\alpha-w) & 1 \\ 1 & \beta-u\end{array}\right)$. Then $P \in U\left(K_{s}(R)\right)$ by [11, Lemma 2]. It is easy to verify that $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right) P=P\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Therefore we complete the proof by Corollary 3.3.

Let R be a commutative ring and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{s}(R)$. Set $t r_{s}(A)=a+d$ and $\operatorname{det}_{s}(A)=a d-s b c$. We now derive

Corollary 3.6. Let R be a commutative local ring, $s \in R$ and $A \in K_{s}(R)$. Then $A \in K_{s}(R)$ has a gs-Drazin inverse if and only if
(1) $A^{2} \in J\left(K_{s}(R)\right)$ or $\left(I_{2}-A\right)^{2} \in J\left(K_{s}(R)\right)$; or
(2) $t^{2}-t r_{s}(A) t+\operatorname{det}_{s}(A)=0$ has a root in $1+J(R)$ and a root in $J(R)$.

Proof. Suppose that $A^{2},\left(I_{2}-A\right)^{2} \notin J\left(K_{s}(R)\right)$. Then $A, I_{2}-A \notin K_{s}(R)^{q n i l}$ by [5, Lemma 4.1]. By virtue of Theorem 3.5, A has a gs-Drazin inverse if and only if A or $I_{2}-A$ is similar to $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$, where $u \in 1+J(R), v \in U(R), w \in$ $J(R)$.

Case 1. A is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$. Then $t^{2}-\operatorname{tr}_{s}(A) t+\operatorname{det}_{s}(A)=0$ is solvable if and only if $t^{2}-(u+w) t+(u w-s v)=0$ is solvable, as desired.

Case 2. $I_{2}-A$ is similar to a matrix $\left(\begin{array}{cc}u & 1 \\ v & w\end{array}\right)$. Then $t^{2}-t r_{s}(A) t+\operatorname{det}_{s}(A)=0$ is solvable if and only if $x^{2}-\operatorname{tr}_{s}\left(I_{2}-A\right)+\operatorname{det}_{s}\left(I_{2}-A\right)=0$ is solvable, if and only if $x^{2}-(u+w) x+(u w-s v)=0$ is solvable, hence the result.

Example 3.7. Let $A=\left(\begin{array}{cc}\overline{1} & \overline{1} \\ \overline{3} & \overline{2}\end{array}\right) \in K_{2}\left(\mathbb{Z}_{4}\right)$. Then A has a gs-Drazin inverse in $K_{2}\left(\mathbb{Z}_{4}\right)$, but it has no gs-Drazin inverse in $M_{2}\left(\mathbb{Z}_{4}\right)$.

Proof. Clearly, \mathbb{Z}_{4} is a commutative local ring with $J\left(\mathbb{Z}_{4}\right)=\overline{2} \mathbb{Z}_{4}$. Since $\operatorname{tr}_{2}(A)=\overline{3}$ and $\operatorname{det}_{2}(A)=\overline{0}$, the equation $t^{2}-\operatorname{tr}_{2}(A) t+\operatorname{det}_{2}(A)=\overline{0}$ has a $\operatorname{root} \overline{3}$ in $1+J\left(\mathbb{Z}_{4}\right)$ and a root $\overline{0}$ in $J\left(\mathbb{Z}_{4}\right)$. Therefore A has a gs-Drazin inverse in $K_{2}\left(\mathbb{Z}_{4}\right)$ by Corollary 3.6.

Clearly, $\operatorname{det}(A)=-\overline{1}$ and $\operatorname{det}\left(I_{2}-A\right)=\overline{1}$, we see that $A, I_{2}-A$ are not nilpotent in $M_{2}\left(\mathbb{Z}_{4}\right)$. Moreover, the equation $t^{2}-\operatorname{tr}(A) t+\operatorname{det}(A)=\overline{0}$ is not solvable in \mathbb{Z}_{4}. In light of Corollary 2.8, A has no gs-Drazin inverse in $M_{2}\left(\mathbb{Z}_{4}\right)$, as asserted.

Acknowledgment: The authors thank to the referee for his/her careful reading. H. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).

References

[1] H. Chen, M. B. Calci, On gs-Drazin inverses in a ring, Journal Algebra and Its Applications (2019) 2050029 [9 pages], DOI: 10.1142/S0219498820500292.
[2] H. Chen, On strongly nil clean matrices, Communications in Algebra 41 (2013), 1074-1086.
[3] J. Cui, J. Chen, A class of quasipolar rings, Communications in Algebra 40 (2012), 4471-4482.
[4] J. Cui, J. Chen, Quasipolar matrix rings over local rings, Bulletin of the Korean Mathematical Society 51 (2014), 813-822.
[5] J. Cui, J. Chen, Pseudopolar matrix rings over local rings, Journal Algebra and Its Applications 13 (2014) 1350109 [12 pages], DOI: 10.1142/S0219498813501090.
[6] O. Gurgun, Properties of generalized strongly Drazin invertible elements in general rings, Journal Algebra and Its Applications 16 (2017) 1750207 [13 pages], DOI: 10.1142/S0219498817502073.
[7] Q. Huang, G. Tang, Y. Zhou, Quasipolar property of generalized matrix rings, Communications in Algebra 42 (2014), 3883-3894.
[8] M.T. Kosan, Z. Wang, Y. Zhou, Nil-clean and strongly nil-clean rings, Journal of Pure and Applied Algebra 2016, http://dx.doi.org/10.1016/j.jpaa.2015.07. 009.
[9] B. Li, Strongly clean matrix rings over noncommutative local rings, Bulletin of the Korean Mathematical Society 46 (2009), 71-78.
[10] D. Mosic, Reverse order laws for the generalized strongly Drazin inverses, Applied Mathematics and Computation 284 (2016), 37-46.
[11] G. Tang, Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra and Its Applications 437 (2012), 2546-2559.
[12] Z. Wang, A class of Drazin inverses in rings, Filomat 31 (2017), 1781-1789.
[13] X. Yang, Y. Zhou, Strong cleanness of the 2×2 matrix ring over a general local ring, Journal of Algebra 320 (2008), 2280-2290.

[^0]: 2020 Mathematics Subject Classification. 5A09, 32A65, 16E50.
 Keywords. 2×2 matrix; generalized matrix; gs-Drazin inverse; local ring.
 Received: 04 March 2019; Revised: 20 January 2020; Accepted: 25 February 2020
 Communicated by Dragana Cvetković Ilić
 Corresponding author: Mete Burak Calci
 Email addresses: huanyinchen@aliyun. com (Huanym Chen), mburakcalci@gmail.com (Mete Burak Calci)

