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Abstract. Heavy tailed distributions are worthwhile in modeling heavy tailed data. The researchers
are often in search of such distributions to provide best fit to heavy tailed data. In this article, a new
T-X family member called, a new exponential cosine-X family is introduced. A special sub-model of
the proposed family, called, a new exponential cosine Weibull distribution is studied in detail. Some
mathematical properties along with the useful series expansion of distribution and density functions of the
proposed class are obtained. Two useful characterizations of this family are also provided. We consider
the maximum likelihood and Bayesian estimation procedures to estimate the parameters of the proposed
family. Monti Carlo simulation study is done to access the behavior of these estimators. For the illustrative
purposes, a real-life application of the proposed family to a heavy tailed medical care insurance data set
is provided. Finally, Bayesian analysis and performance of Gibbs sampling for the medical care insurance
data are also carried out.

1. Introduction

Speaking broadly, classical distributions such as Weibull, gamma, lognormal, Beta, Pareto, Lomax,
exponential and Rayleigh distributions are widely used to model data in applied fields such as engineering,
sciences, actuarial, biotic studies, finance and insurance, among others. However, in a number of situations
such as finance and actuarial sciences, data sets possess a behavior having extreme values yielding tails
which are much heavier than those of the standard classical distributions, see for example [1] and [2].

In the recent era, there has been a great deal of study in the financial and actuarial literature on heavy
tailed distributions in a number of insurance and its related frameworks. Henceforth, the introduction
of the heavy tailed distributions to model real life heavy tailed insurance data is an interesting research
topic. Therefore, in a series of recent papers, numerous authors have shown a deep attention toward the
introduction of a number of new models possessing heavy tails. In particular, insurance data sets are
frequently positively skewed, unimodal having tick tail, for detail see ([3]-[5]). The distributions having
heavy tails provide adequate fits to heavy tailed insurance data sets.
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A distribution is said to have heavier tails than exponential distribution, if its survival function (sf)
satisfies

lim
x→∞

1 − F(x)
e−px > 0,

for all p > 0. For further information see [6]. Due to the prominent applications of statistical distributions
in actuarial sciences, the researchers have been working to introduce new distributions for adequately
modeling heavy tailed insurance data sets. For example see ([7]-[15]), among others.

The aforementioned distributions have been introduced through many different approaches such as
introducing new parameters to the existing distributions. The commonly used methods are (a) transfor-
mation approach, (b) compounding of two or more distributions, (c) composition of distributions, and (d)
finite mixture of models, for detail see [16].

We further carry this branch of research and propose a new approach to obtained new heavy tailed
distributions to provide adequate fits to heavy tailed medical care insurance data sets. Let p (t) be the
density of a random variable T ∈ [a1, a2] for−∞ ≤ a1 < a2 < ∞ and let K [F (x; ξ)] be a function of cumulative
distribution function (cdf) of a random variable X, satisfying

1. K [F (x; ξ)] ∈ [a1, a2] ,
2. K [F (x; ξ)] is differentiable and monotonically increasing, and
3. K [F (x; ξ)]→ a1 as x→ −∞ and K [F (x; ξ)]→ a2 as x→∞.

Recently, [17] proposed the T-X family method by

G (x) =
∫ K[F(x;ξ)]

a1

p(t) dt, x ∈ R, (1)

where K [F (x; ξ)] fulfills the conditions stated above. The probability density function (pdf) corresponding
to (1) is

1 (x) =
{
∂
∂x

K [F (x; ξ)]
}

p {K [F (x; ξ)]} , x ∈ R.

Deploying the T-X approach, a number of new families of distributions have been proposed in the literature,
see [18]. Recently, [19] proposed a new family called the exponential cosine-X(EC-X) family by replacing
p (t) with the pdf of the exponential distribution with rate parameter λ = 1 given by p(t) = e−t and
K [F (x; ξ)] = − log

[
cos

(
π
2 F (x; ξ)

)]
. The cdf of the EC-X family is

G (x;θ, ξ) = 1 −
{
cos

(
π
2

F (x; ξ)
)}θ
, θ > 0, x, ξ ∈ R. (2)

In the present work, we propose another member of T-X family, may be named as a new exponential cosine-
X(NEC-X) family. This family is introduced by taking p(t) to be the pdf of the exponential distribution
exp(1) and K [F (x; ξ)] = − log

[
cos

(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

})]
in (1). The cdf of the NEC-X family is

G (x; σ, ξ) = 1 − cos
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
, σ > 0, x, ξ ∈ R, (3)

where, σ̄ = (1 − σ) . Clearly, for σ = 1, expression (3) is a special case of (2). The pdf and survival function
(sf) corresponding to (3) are given by

1 (x; σ, ξ) =
πσ f (x; ξ)

2
(
1 − σ̄F̄ (x; ξ)

)2 sin
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
, x ∈ R, (4)

and

S (x; σ, ξ) = cos
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
, x ∈ R,
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respectively.
The main goal of this research is to model heavy tailed medical care insurance data via incorporating a

single additional parameter to a family of distribution functions. The introduction of additional parameter
brings more flexibility to the proposed family. Furthermore, the key motivations for using NEC-X family
in the practice are

• A prominent and convenient approach of adding an extra parameter to modify the existing distribu-
tions.

• To provide best fit to heavy tailed data.

• To propose the generalized version of the distribution having closed form for the cdf.

• To provide better fits than the competing modified models having higher, lower or the same number
of parameters than the proposed model.

The article is structured as follows. A special sub-model of the new family is presented in Section 2. Useful
expansions for the density and cdf of the NEC-Xfamily are obtained in Section 3. Some mathematical
properties are derived in Section 4. Characterizations of the NEC-X distribution are provided in Section
5. The estimation of the model parameters through maximum likelihood method and simulation study
are presented in Section 6. An application to a medical care insurance data set is analyzed in Section 7.
Bayesian analysis as well as the Gibbs sampling procedure for the real data set are discussed in Section 8.
Finally, concluding remarks are provided in the last section.

2. Sub-Model Description

In this section, we define a special sub-case of the NEC-X family, called the new exponential cosine-
Weibull (NEC-W) distribution. Let F(x; ξ) be the cdf of the two parameters Weibull distribution given
by F(x; ξ) = 1 − e−γxα , x ≥ 0, α, γ > 0, where ξ =

(
α, γ

)
. Then, the distribution function of the NEC-W

distribution is

G (x; σ, ξ) = 1 − cos

π2

(
1 − e−γxα

)
1 − σ̄e−γxα


 , x ≥ 0, σ > 0, ξ ∈ R, (5)

and the pdf corresponding to (5) is given by

1 (x; σ, ξ) =
πσαγxα−1e−γxα

2 (1 − σ̄e−γxα )2 sin

π2

(
1 − e−γxα

)
1 − σ̄e−γxα


 , x > 0. (6)

For selected values of the model parameters, different plots of the pdf of the NEC-W distribution are
sketched in Figure 1.
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Figure 1: Some possible shapes for the pdf of the NEC-W distribution.

3. Mixture Representation

The following section offers a mixture representation of the cdf (3) and pdf (4).

3.1. Mixture representation of the density function
The Maclaurin series expansion for sin(x) is given by

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ ... =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1. (7)

Let x = π2
(

F(x;ξ)
1−σ̄F̄(x;ξ)

)
, from (5), we have

sin
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
=

∞∑
n=0

(−1)n

(2n + 1)!

(
π
2

)2n+1
(

F (x; ξ)
1 − σ̄F̄ (x; ξ)

)2n+1

. (8)

Using (8) in (4), we obtain

1 (x; σ, ξ) =
∞∑

n=0

(−1)n σ f (x; ξ)
(2n + 1)!

(
π
2

)2n+2 F (x; ξ)2n+1(
1 − σ̄F̄ (x; ξ)

)2n+3 . (9)

Also, we know that

1
(1 − x)v =

∞∑
m=0

(
m + v − 1
v − 1

)
xm. (10)

Letting v = 2n + 1 and x = σ̄F̄ (x; ξ) , from (9), we have

1(
1 − σ̄F̄ (x; ξ)

)2n+3 =

∞∑
m=0

(
m + 2n + 2
2n + 2

)
σ̄m (

F̄ (x; ξ)
)m . (11)

Using (11) in (9), we arrive at

1 (x; σ, ξ) =
∞∑

n,m=0

(−1)n σσ̄m

(2n + 1)!

(
π
2

)2n+2
(

m + 2n + 2
2n + 2

)
f (x; ξ) F (x; ξ)2n+1 (

F̄ (x; ξ)
)m ,
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and finally, we have the following representation form

1 (x; σ, ξ) =
∞∑

n,m,k=0

ηn,m,k f (x; ξ) F (x; ξ)2n+k+1, (12)

where ηn,m,k =
(−1)n+kσσ̄m

(2n+1)!

(
π
2

)2n+2
(

m
k

) (
m + 2n + 2
2n + 2

)
.

3.2. Series representation of the distribution function
The Maclaurin series expansion for cos(x) is

cos (x) =
d
dx

sin (x) =
∞∑

n=0

(−1)n

2n!
x2n. (13)

Letting x = π2
{

F(x;ξ)
1−σ̄F̄(x;ξ)

}
, from (13), we have

cos
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
=

∞∑
n=0

(−1)n

2n!

(
π
2

)2n F (x; ξ)2n(
1 − σ̄F̄ (x; ξ)

)2n . (14)

Using (11) in (14), we have

cos
(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

})
=

∞∑
n,m=0

(−1)n(σ̄)m

2n!

(
π
2

)2n
(

m + 2n − 1
2n − 1

)
F (x; ξ)2n

×
(
F̄ (x; ξ)

)2n .
(15)

Finally, we get

cos
(
π
2

{
F (x; ξ)

1 − σ̄F̄ (x; ξ)

})
=

∞∑
n,m,k=0

η/n,m,kF (x; ξ)2n+k,

where η/n,m,k =
(−1)n+k(σ̄)m

2n!

(
π
2

)2n
(

2n
k

) (
m + 2n − 1
2n − 1

)
.Hence, the final form of the series representation of the

cdf (3) is given by

G (x; σ, ξ) = 1 −
∞∑

n,m,k=0

η/n,m,kF (x; ξ)2n+k.

4. Mathematical Properties

In this section, we discuss some mathematical properties of the NEC-X family.

4.1. Quantile function
Suppose X follows the NEC-X distribution, then the quantile function of X can be obtained via inverting

G
(
xq; σ, ξ

)
= q in (3). We obtain

xq = F−1

(
(π) arc cos

(
1 − q

)
2 − (σ̄π) arc cos

(
1 − q

) ) . (16)

The expression (16) has a closed form solution in xq, which makes it easier to generate random numbers.
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4.2. Moments

Let X has pdf (4), then the rth moment of X denoted by µ/r is

µ/r =

∞∫
−∞

xr1 (x; σ, ξ) dx, (17)

and using (3) in (16), we have

µ/r =
∞∑

n,m,k=0

ηn,m,k

∞∫
−∞

xr f (x; ξ) F (x; ξ)2n+k+1 dx. (18)

Using (18), we can easily derive the moments for any sub-model of the NEC-X family. Furthermore, with
(18), we can derive the moment generating function of X, Mx (t), is given by

Mx (t) =
∞∑

n,m,k=0

ηn,m,k

r!
tr

∞∫
−∞

xr f (x; ξ) F (x; ξ)2n+k+1 dx. (19)

4.3. Residual life

Let X have pdf (4), then the residual life of X is

ε (x) =
S (x + t)

S (x)
,

ε (x) =
cos

(
π
2

{
F(x+t;ξ)

1−σ̄F̄(x+t;ξ)

})
cos

(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

}) .
4.4. Reverse residual life

The reverse residual lifetime of X represented by ε̄ (x) is

ε̄ (x) =
S (x − t)

S (x)
,

ε̄ (x) =
cos

(
π
2

{
F(x−t;ξ)

1−σ̄F̄(x−t;ξ)

})
cos

(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

}) .
5. Characterizations

This section deals with certain characterizations of the NEC-X distribution in two directions: (i) based
on a simple relationship between two truncated moments; (ii) in terms of the hazard function. We present
our characterizations (i) and (ii) in two subsections.
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5.1. Characterizations based on a simple relationship between two truncated moments

In this subsection we present characterizations of the NEC-X distribution in terms of a simple relation-
ship between two truncated moments. The first characterization result employs Theorem 1 of [20]. As
shown in [21], this characterization is stable in the sense of weak convergence.

Theorem 5.1. Let (Ω,F ,P) be a given probability space and let H = [d; e] be an interval for some d<e
(d = −∞; e = ∞ might as well be allowed). Let X : Ω → H be a continuous random variable with the
distribution function G and let q1 and q2 be two real functions defined on H such that

E
(
q2 (X) |X ≥ x

)
= E

(
q1 (X) |X ≥ x

)
η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H) , η ∈ C2 (H) and G is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2 has no
real solution in the interior of H. Then G is uniquely determined by the functions q1, q2 and η, particularly

G (x) =

x∫
a

C

∣∣∣∣∣∣ η/ (u)
η (u) q1 (u) − q2 (u)

∣∣∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s/ = η/q1

ηq1−q2
and C is the normalization constant,

such that
∫
H

dF = 1.

Remark 5.1. The goal in Theorem 5.1, is to have η (x) as simple as possible.

Proposition 5.1. Suppose X is a continuous random variable. Let

q1 (x) =
[
sin

(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

})]−1
and q2 (x) = q1 (x)

[
1 − σ̄F̄ (x; ξ)

]−1 for x ∈ R. Then X has density function (4) if
and only if the function η defined in Theorem 5.1 is given by

η (x) =
1
2

[
1 +

(
1 − σ̄F̄ (x; ξ)

)−1
]

, x ∈ R.

Proof. Suppose X is a random variable with density function (4), then we have

(1 − G (x)) E
(
q1 (X) |X ≥ x

)
=
πσ
2σ̄

[(
1 − σ̄F̄ (x; ξ)

)−1
− 1

]
, x ∈ R,

and

(1 − G (x)) E
(
q2 (X) |X ≥ x

)
=
πσ
4σ̄

[(
1 − σ̄F̄ (x; ξ)

)−2
− 1

]
, x ∈ R,

and finally

η (x) q1 (x) − q2 (x) =
1
2

q1 (x)
[
1 −

(
1 − σ̄F̄ (x; ξ)

)−1
]
> 0, for x ∈ R.

Conversely, if η is of the above form, then

s/ (x) =
η/ (x) q1 (x)

η (x) q1 (x) − q2 (x)
=
σ̄ f (x; ξ)

(
1 − σ̄F̄ (x; ξ)

)−2

1 −
(
1 − σ̄F̄ (x; ξ)

)−1 , x ∈ R,

and consequently

s (x) = − log
[
1 −

(
1 − σ̄F̄ (x; ξ)

)−1
]
, x ∈ R.
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Now, according to Theorem 5.1, X has pdf (4).

Corollary 5.1. Let X: Ω → R be a continuous random variable and q1 (x) be as in Proposition 5.1. Then X
has density function (4) if and only if there exist functions q2 and η defined in Theorem 5.1 satisfying the
following first order differential equation

η/ (x) q1 (x)
η (x) q1 (x) − q2 (x)

=
σ̄ f (x; ξ)

(
1 − σ̄F̄ (x; ξ)

)−2

1 −
(
1 − σ̄F̄ (x; ξ)

)−1 , x ∈ R.

Corollary 5.2. The differential equation in Corollary 5.1 has the following general solution

η (x) =
[
1 −

(
1 − σ̄F̄ (x; ξ)

)−1
]−1

[∫
σ̄ f (x; ξ)

(
1 − σ̄F̄ (x; ξ)

)−2 (
q1 (x)

)−1 q2 (x) dx +D
]
,

in which D is a constant. We like to mention that a set of functions satisfying the above first order differential
equation is given in Proposition 5.1 with D =1/2. Clearly, there are other triplets satisfying the conditions
of Theorem 5.1.

5.2. Characterization based on hazard function

Clearly, a twice differentiable distribution function, G, satisfies the following differential equation

1/ (x)
1 (x)

=
h/G (x)

hG (x)
− hG (x) .

The following proposition provides a non-trivial characterization of NEC-X distribution.

Proposition 5.2. Suppose X is a continuous random variable. Then X has density function (4) if and
only if its hazard function hG (x) satisfies the following first order differential equation

h/G (x) =
f / (x; ξ)
f (x; ξ)

hG (x) =
πσ
2
1 (x; ξ)

d
dx

 tan
(
π
2

{
F(x;ξ)

1−σ̄F̄(x;ξ)

})
(
1 − σ̄F̄ (x; ξ)

)2

 , x ∈ R.

Proof. Is straightforward and hence omitted.

6. Maximum Likelihood Estimation and Simulation

In this section, we derive the maximum likelihood estimators of the unknown parameters of the NEC-X
family. Furthermore, we also provide a simulation study to assess the performance of these estimators.

6.1. Maximum likelihood estimation

Let x1, x1, ..., xn be the observed values of a random sample from pdf (4) with parameters σ and ξ. The
log-likelihood function is

log L (x; σ, ξ) = n log
(
π
2

)
+ n log (σ) +

n∑
i=1

log
[

f (xi; ξ)
]
− 2

n∑
i=1

log (Ai)

+
n∑

i=1
log

(
sin

[
π
2

{
F(xi;ξ)

Ai

}])
.

(20)

The partial derivatives of log L (x;α, ξ) are
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∂ log L(x;σ,ξ)
∂σ = n

σ −
π
2

n∑
i=1

(
cot

[
π
2

{
F(xi;ξ)

Ai

}]) {
F(xi;ξ)F̄(xi;ξ)

[Ai]2

}
− 2

n∑
i=1

log (Ai),
(21)

and

∂ log L(x;σ,ξ)
ξ =

n∑
i=1

∂ f (xi;ξ)/∂ξ
f (xi;ξ)

+ πσ2

n∑
i=1

cot
[
π
2

{
F(xi;ξ)

Ai

}]
∂F (xi; ξ) /∂ξ

− 2σ̄
n∑

i=1

∂F(xi;ξ)/∂ξ
Ai

,
(22)

where, Ai = 1− σ̄F̄ (xi; ξ). The maximum likelihood estimates of σ and ξ are numerical solutions of (21) and
(22) simultaneously.

6.2. Simulation study
In this sub-section, the maximum likelihood estimates are evaluated through Monte Carlo simulation.

The simulation is done using R software and is based on the following steps:

• We generate N =500 random samples of sizes n = 25, 50, ..., 500 from the NEC-W model.

• Compute the maximum likelihood estimates for the parameters of the NEC-W distribution.

• Compute the mean square error (MSE) and biases given by MSE (n) = 1
500

500∑
i=1

(ŵi − w)2 and Bias (n) =

1
500

500∑
i=1

(ŵi − w) for w =
(
α, σ, γ

)
, respectively.

The simulation results of the NEC-W are provided in Tables 1 and 2. Corresponding to each Table, the
graphical representation of the simulation results is also provided.

Table 1: Simulation results for NEC-W distribution.
Set 1: α = 1.4, σ = 0.7, γ = 1

n parameters MLE MSE Bias
α̂ 1.650759 0.3737015 0.2507585

25 σ̂ 1.780067 5.2498591 1.1800679
γ̂ 1.999261 4.7896870 0.9992605
α̂ 1.527348 0.1529964 0.1273478

10
0

σ̂ 1.245407 2.5371046 0.6454071
γ̂ 1.354976 1.5080290 0.3549759
α̂ 1.460271 0.0725317 0.0602710

20
0

σ̂ 0.872451 0.7602116 0.2724514
γ̂ 1.152294 0.5415998 0.1522937
α̂ 1.438300 0.0440006 0.0383002

30
0

σ̂ 0.764876 0.3897828 0.1648760
γ̂ 1.127544 0.3343627 0.1275436
α̂ 1.448867 0.0375601 0.0488669

40
0

σ̂ 0.779101 0.3351656 0.1791017
γ̂ 1.033442 0.1592310 0.0334415
α̂ 1.429324 0.0276946 0.0293243

50
0

σ̂ 0.716434 0.2182770 0.1164344
γ̂ 1.050925 0.1437044 0.0509253
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In support of Table 1, the simulation results are displayed graphically in Figures 2 and 3.

Figure 2: Corresponding to Table 1, plots of the estimated parameters and MSEs of the NEC-Weibull distribution.

Figure 3: Corresponding to Table 1, plots of Absolute Biases and Biases for NEC-Weibull distribution.
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Table 2: Simulation results for NEC-W distribution.
Set 2: α = 0.4, σ = 1.5, γ = 1

n parameters MLE MSE Bias
α̂ 0.462856 1.267 ×10−02 0.06285640

25 σ̂ 2.791048 5.16634516 1.29104787
γ̂ 1.205851 1.42384517 0.20585158
α̂ 0.418350 2.349×10−03 0.01835031

10
0

σ̂ 1.889642 1.20315322 0.38964235
γ̂ 0.961707 0.06228977 -0.0382926
α̂ 0.404230 4.737×10−04 0.00423072

20
0

σ̂ 1.592749 0.26005562 0.09274858
γ̂ 0.976693 0.00468954 -0.0133068
α̂ 0.403043 1.413×10−04 0.00104325

30
0

σ̂ 1.546722 0.08987322 0.02672245
γ̂ 0.986608 0.00144524 -0.0033914
α̂ 0.400375 3.861×10−05 0.00037590

40
0

σ̂ 1.507690 0.01660442 0.00768966
γ̂ 0.998740 0.00041469 -0.0012591
α̂ 0.400108 0.00041469 0.00013442

50
0

σ̂ 1.503864 2.8618e-07 0.00012239
γ̂ 0.999086 0.01063522 0.00000001

In support of Table 2, the simulation results of the NEC-W distribution are displayed graphically in
Figures 4 and 5.

Figure 4: Corresponding to Table 2, plots of the estimated parameters and MSEs of the NEC-Weibull distribution.
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Figure 5: Corresponding to Table 2, plots of Absolute Biases and Biases for NEC-Weibull distribution.

7. An Application to Medical Care Insurance Data

The main applications of the heavy tail models are the so-called extreme value theory or insurance loss
phenomena. in this section, we illustrate the potentiality of the proposed model via a real life application
taken from actuarial sciences. The data set is available at: https: instruction.bus.wisc.edujfreesjfreesbooksRegression.
The comparison of the NEC-W distribution is made with two parameters, three parameters and four pa-
rameters models. The cdf’s of the competitive distributions are:

• The Weibull

G
(
x;α, γ

)
=

(
1 − e−γxα

)
, x > 0, α, γ > 0.

• Marshall-Olkin Weibull (MOW) distribution

G
(
x;α, γ, σ

)
=

(
1 − e−γxα

)
σ + (1 − σ) (1 − e−γxα )

, x > 0, α, γ, σ > 0.

• Kumaraswamy Weibull (Ku-W) distribution

G
(
x;α, γ, a, b

)
= 1 −

{
1 −

(
1 − e−γxα

)a}b
, x > 0, α, γ, a, b > 0.

To decide about the goodness of fit between the NEC-W and other applied distributions, we consider certain
analytical measures including the Bayesian information criterion (BIC), Akaike information criterion (AIC),
minus two times maximized log-likelihood under the model −2ℓ̂, Anderson-Darling (AD) test statistic and
Kolmogorov-Smirnov (KS) with the corresponding p-value. A distribution with lower values of these
analytical measures is considered to be a good candidate model for the underlying data set. The analytical
measures are given by

• The AIC is given by

AIC = 2k − 2ℓ.

• The BIC is given by
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BIC = k log (n) − 2ℓ.

where ℓ denotes the log-likelihood function evaluated at the MLEs, k is the number of model parameters
and n is the sample size.

• The AD test statistic

AD = −n −
1
n

n∑
i=1

(2i − 1)
[
log G (xi) + log {1 − G (xn−i+1)}

]
,

where:
n = the sample size,
xi = the ith sample, calculated when the data is sorted in ascending order.

• The KS test statistic is given by

KS = supx [Gn (x) − G (x)] ,

where Gn (x)is the empirical cdf and supx is the supremum of the set of distances.

The maximum likelihood estimates with standard error (in parenthesis) of the models for the analyzed
data are presented in Table 3. Whereas, the analytical measures of the NEC-W and other considered models
are provided in Table 4. Form Table 4, we can see the NEC-W model has lower values than the other
distributions applied in comparison. The estimated densities of the fitted distributions are plotted in Figure
6. Whereas, the estimated distribution functions are sketched in Figure 7.

Table 3: The estimated values of the parameters with standard errors (in parenthesis) of the fitted distributions.
Dist. α̂ γ̂ σ̂ â b̂
NEC-W 1.436

(0.3110)
0.094
(0.1109)

0.277
(0.3080)

Weibull 1.236
(0.0458)

0.132
(0.0119)

MOW 2.176
(0.0954)

0.008
(0.0029)

0.092
(0.0259)

Ku-W 0.615
(0.2401)

0.986
(0.2795)

5.922
(3.3065)

1.414
(1.2110)

Table 4: Analytical measures of the fitted models.
Dist. AIC BIC −2ℓ̂ AD KS p-value
NEC-W 2281.75 2294.54 1137.876 0.423 0.058 0.557
Weibull 2321.13 2329.66 1158.564 0.943 0.098 0.249
MOW 2285.13 2299.93 1147.876 0.485 0.083 0.308
Ku-W 2283.11 2297.17 1141.876 0.452 0.062 0.436
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Figure 6: Estimated densities of the fitted models corresponding to medical care insurance data.
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Figure 7: Estimated distribution functions of the fitted models for the medical care insurance data set.

From Figures 6 and 7, we one can easily detect that proposed model fit the estimated pdf and cdf very
closely indicating best fitting of the model.

8. Bayesian Estimation

Bayesian inference procedure has been taken into consideration by many statistical researchers, espe-
cially those in the field of survival analysis and reliability engineering. In this section, a complete sample
data is analyzed through Bayesian point of view. We assume that the parameters α, γ and σ of NEC-Weibull
distribution have independent prior distributions as

α ∼ Gamma (a, b) , γ ∼ Gamma (c, d) and σ ∼ Gamma
(
e, f

)
,
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where a, b, c, d, e and f are positive. Hence, the joint prior density function is formulated as follows:

π
(
α, γ, σ

)
=

bαdc f e

(Γa) (Γc) (Γe)
αa−1γc−1σe−1 exp

{
−

(
bα + dγ + fσ

)}
. (23)

In the Bayesian estimation, we do not know the actual value of the parameter. Some well-known loss
functions along with Bayesian estimators and the corresponding posterior risk are provided in Table 5.

Table 5: Bayes estimator and posterior risk under different loss functions.
loss function Bayes estimator Posterior risk
L1 = SELF = (θ − d)2 E(θ|x) Var(θ|x)

L2 =WSELF = (θ−d)2

θ (E(θ−1
|x))−1 E(θ|x) − (E(θ−1

|x))−1

L3 =MSELF =
(
1 − d

θ

)2 E(θ−1
|x)

E(θ−2 |x) 1 − E(θ−1
|x)2

E(θ−2 |x)

L4 = PLF = (θ−d)2

d

√
E(θ2|x) 2

(√
E(θ2|x) − E(θ|x)

)
L5 = KLF =

√ d
θ −

√
θ
d

 √
E(θ|x)

E(θ−1 |x) 2
(√

E(θ|x)E(θ−1|x) − 1
)

For more details see [2]. Next, we provide the posterior probability distributions for a complete data
set. Let us define the function φ as

φ
(
α, γ, σ

)
= αa−1γc−1σe−1 exp

{
−

(
bα + dγ + fσ

)}
, α > 0, γ > 0, σ > 0.

The joint posterior distribution in terms of a given likelihood function L (data) and joint prior distribution
π

(
α, γ, σ

)
is defined as

π∗
(
α, γ, σ|data

)
α π

(
α, γ, σ

)
L (data) (24)

Hence, the joint posterior density of parameters α, γ and σ for complete sample data is obtained by
combining the likelihood function and joint prior density (23). Therefore, the joint posterior density
function is given by

π∗
(
α, γ, σ|x

)
= Kφ

(
α, γ, σ|x

) n∏
i=1

αγσπ

2

xα−1
i exp

(
−γxαi

)[
1 − σ̄ exp

(
−γxαi

)] sin

π2
{
1 − exp

(
−γxαi

)}[
1 − σ̄ exp

(
−γxαi

)]  , (25)

where

K−1 =
∞∫
0

∞∫
0

∞∫
0
ϕ

(
α, γ, σ

) n∏
i=1

αγσπ
2

xα−1
i exp(−γxαi )

[1−σ̄ exp(−γxαi )]

× sin
(
π
2
{1−exp(−γxαi )}

[1−σ̄ exp(−γxαi )]

)
dα dγ dσ.

It is clear from the equation (25) that there is no closed form for the Bayesian estimators under the five
loss functions described in Table 5, so we suggest using an MCMC procedure based on 10000 replicates
to compute Bayesian estimators. The corresponding Bayesian point and interval estimation and posterior
risk are provided in Tables 6 and 7. Table 7 provides 95% credible and HPD intervals for each parameter of
the NEC-W distribution. The posterior samples extracted by using Gibbs sampling technique. Moreover,
we provide the posterior summary plots in Figures 8 and 9. These plots confirm that the sampling process
is of the prime quality and convergence is occurred
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Table 6: Bayesian estimates along with posterior risks of the parameters using different loss functions based on Medical Care Insurance
data.

Data Medical Care Insurance data
Bayes α̂ γ̂ σ̂
Loss functions Estimate Risk Estimate Risk Estimate Risk
SELF 1.1869 0.0004 4.6431e-05 9.2079e-11 0.4224 0.00009
WSELF 1.1865 0.0004 4.5107e-05 1.3234e-06 0.4221 0.00022
MSELF 1.1861 0.0003 4.4236e-05 0.01932340 0.4219 0.00054
PLF 1.1870 0.0004 4.7412e-05 1.9621e-06 0.4225 0.00021
KLF 1.1867 0.0003 4.5764e-05 0.02912679 0.4223 0.00052

Figure 8: Plots of Bayesian analysis and performance of Gibbs sampling for Medical Care Insurance data set. Trace plots of each
parameter of NEC-W distribution.

Figure 9: Plots of Bayesian analysis and performance of Gibbs sampling for Medical Care Insurance data set. Autocorrelation plots of
each parameter of NEC-W distribution.

Table 7: Credible and HPD intervals of the parameters α, γ and σ for Medical Care Insurance data.

Parameters Credible interval HPD interval
α (1.187, 1.195) (1.134, 1.206)
γ (0.00004, 0.00005) (0.00003, 0.00007)
σ (0.4237, 0.4269) (0.4044, 0.4321)
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9. Concluding Remarks

In this study, a new exponential cosine-X family with baseline Weibull distribution is introduced. The
proposed distribution is very flexible and possesses heavy tails. Some mathematical properties along with
characterizations of the NEC-X family are presented. The maximum likelihood and Bayesian estimation
methods are employed to estimates of the model parameters. Furthermore, a simulation study is provided
to evaluate the behavior of the estimators. The proposed new exponential cosine Weibull distribution is
illustrated via analyzing a heavy tailed medical care insurance data set and the comparison is made with
some well-known distributions. From the real application, we observe that the proposed model provides
a better fit to the heavy tailed medical care insurance data than the other distributions.
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