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Abstract. Let S be a ring with identity in which 2 is invertible. In this paper we describe the structure of
the quaternion ring R = H(S) which is a generalization of the Hamilton’s division ring of real quaternions
H = H(R).

1. Introduction

The ring of real quaternionsH = R⊕Ri⊕R j⊕Rk =: H(R) was discovered by William Rowan Hamilton (1805-
1865) in 1843 as an extension of the complex numbers into four dimensions (see [6]). Algebraically speaking,
H forms a division algebra over R of dimension four (see [6, Pages 195,196]). Hamilton expanded this
detection to include applications in the area of physics and in 1853 published Lectures “On Quaternions”
and in 1866 “Elements of Quaternions”. Hamilton’s quaternions have many applications other than in
physics. They are extensively used in computer graphics to describe motion in 3-space, and more recently,
they have been used in multiple antennae communications systems.

Since the quaternions were the first discovered noncommutative division ring, an investigation of their
properties and construction became the basis of this study. The main purpose of this paper is to describe
some algebraic structures of the quaternion ring R = H(S) for an arbitrary unital ring Swith 2−1

∈ S. Also,
some properties of quaternion ring over the ring of integersZ and the ringZpn , where p is a prime number
and n ≥ 1, have been considered. It is shown that in most cases the structure of center and ideals of the
quaternion rings and those of matrix rings are similar. The main motivation for our study actually comes
from papers [1, 2, 7, 12]. Aristidou and Demetre [1] investigated the finite ring H(Zp), where p is a prime,
looking into its structure and some of its properties. They also established conditions for idempotency
in H(Zp) in [2]. Miguel and Serodio [12] found the number of idempotents and zero-divisors of H(Zp)
and provided a detailed structural description of the zero-divisor graph of H(Zp). Ghahramani et al. [7]
determined the structure of superderivations of the quaternion rings over a ring S as a Z2-graded ring.
The first two authors proved in [3] that if S is a ring whose characteristic is an odd prime number, then the
quaternion ring H(S) is isomorphic to the 2 × 2 matrix ring M2(S). Moreover, recently Ghahramani et al.
[8] described the form of some mappings on quaternion rings.

This paper is organized as follows. Some preliminaries are given in Section 2. The structure of ideals
and some radicals of H(S) are presented in Section 3, where its basic properties are given too. In Section 4,
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we show that under some mild conditions on S, the rings H(S) and M2(S) are isomorphic. Section 5 deals
with some common and noncommon properties of H(S) and S.

2. Preliminaries

In this section we review some preliminary results which will be needed in the sequel.
Throughout, all rings are associative and possibly noncommutative with identity 1 , 0. For any ring R,

the center of R is denoted by Z(R) and the Jacobson radical of R is denoted by J(R). Also, we use Nil∗(R) for
lower nil radical, Nil∗(R) for upper nilradical and L-rad(R) for Levitzki radical of R. Recall that the ideal I of
R is nil if for every x ∈ I there exists n ∈ N such that xn = 0, and I is nilpotent if there exists n ∈ N such that
In = 0. Also, a subset S of R is locally nilpotent if for any finite subset { s1, ..., sn } ⊆ S there exists an integer N
such that any product of N elements from { s1, ..., sn} is zero.

The ring of n × n matrices over a ring R is denoted by Mn(R), In denotes the identity of this ring, and ei j
is the usual matrix unit.

Let S be a ring. Set

R = H(S) = { s0 + s1i + s2 j + s3k : si ∈ S } = S ⊕ Si ⊕ S j ⊕ Sk.

Then, with the componentwise addition and multiplication subject to the relations i2 = j2 = k2 = i jk = −1
and the convention that i, j, k commute with S elementwise, R is a ring called quaternion ring over S.

For any quaternion q = q0 + q1i + q2 j + q3k ∈ R, the conjugate q̄ of q is defined by q̄ = q0 − q1i − q2 j − q3k
and the norm η(q) of q is defined by η(q) = q2

0 + q2
1 + q2

2 + q2
3. For more information the reader is referred to

[10, 11].
We conclude this section with a lemma that will be useful in the sequel.

Lemma 2.1. [8, Theorem 2.1] Let S be a ring. Then

Z(H(S)) = Z(S) ⊕ (Z(S) ∩ B)i ⊕ (Z(S) ∩ B) j ⊕ (Z(S) ∩ B)k,

where B = {x ∈ S : 2x = 0} is an ideal of S. Therefore, we have the following two special cases:

(i) If char(S) = 2, then Z(H(S)) = H(Z(S)), from which it follows that if S is also commutative, so is H(S),
(ii) If S is 2-torsion free, then Z(H(S)) = Z(S).

From now on, we assume that S is a ring such that 2−1
∈ S and R = H(S).

3. Description of ideals and some radicals of R

This section is mainly devoted to the description of ideals and some radicals of the quaternion rings. For
an analogous description for matrices see [11].

Theorem 3.1. Let S be a ring with 2−1
∈ S and R = H(S). There is a one-to-one correspondence between the

set of all two-sided ideals of S and the set of all two-sided ideals of R that associates to any ideal A of S the ideal
H(A) = A ⊕ Ai ⊕ Aj ⊕ Ak of R. The inverse bijection associates to every ideal I of R the ideal I ∩ S of S.

Proof. The ideal H(A) is the kernel of the canonical mapping H(S) → H(S/A) and the ideal I ∩ S is the
inverse image of I via the canonical embedding S → H(S). In order to show that these two assignments
are mutually inverse, we must prove that H(A) ∩ S = A and H(I ∩ S) = I for every A and I. The first
equality is trivial, and so is the inclusion H(I ∩ S) ⊆ I. In order to show that I ⊆ H(I ∩ S), fix an element
p = a + bi + cj + dk ∈ I with a, b, c, d ∈ S. It suffices to prove that a, b, c, d ∈ I. We may assume a , 0
(otherwise, one can multiply p by i, j or k, depending on whether b, c or d is nonzero). Since pi + ip ∈ I,
we have −2b + 2ai ∈ I. Now put r = −2b + 2ai. Since jr − rj ∈ I and 2−1

∈ S, we get a ∈ I. Since
−pi = b − ai − dj + ck ∈ I, we have b ∈ I. Similarly, we get c, d ∈ I.



H. Cheraghpour et al. / Filomat 36:6 (2022), 1911–1920 1913

One notes that by the statement of Theorem 3.1 every ideal of H(S) is exactly of the form H(A) for some
uniquely determined ideal A of S.

Remark 3.2. Theorem 3.1 may not hold if 2−1 < S. For example, the ring R = H(Z2) is commutative, because
ji = −i j = i j and similarly jk = kj, ik = ki. Now if I is the ideal (1 + i) in R, then the set A = I ∩Z2 as defined in
Theorem 3.1 is easily seen to be Z2, while I , R.

The following corollary is immediate:

Corollary 3.3. Let S be as above. Then

(i) For every ideal A of S we have H(
S

A
) �

H(S)
H(A)

.

(ii) For every ideals A,B of S we have H(A)H(B) = H(AB).
(iii) Nil∗(H(S)) = H(Nil∗(S)).

Lemma 3.4. Suppose the ring S is commutative. Then A is a nil ideal of S if and only if H(A) is nil ideal of H(S).

Proof. Let A be a nil ideal of S and let α = α0 + α1i + α2 j + α3k ∈ H(A). Choose n such that αi
n = 0 for all

i. Since any summand of α4n contains αi
n for some i, we have α4n = 0 concluding that H(A) is nil. The

converse is clear.

Proposition 3.5. Let S be a commutative ring. Then

Nil∗(H(S)) = H(Nil∗(S)).

Proof. Since Nil∗(S) is nil, by the lemma above H(Nil∗(S)) is also nil. So H(Nil∗(S)) ⊆ Nil∗(H(S)). On the
other hand, using Theorem 3.1 assume Nil∗(H(S)) = H(A) for a suitable ideal A of S. By the lemma above
A is nil, hence A ⊆ Nil∗(S). So Nil∗(H(S)) = H(A) ⊆ H(Nil∗(S)).

Theorem 3.6. Let S be a ring with 2−1
∈ S. Then

J(H(S)) = H(J(S)).

Proof. In order to show that J(H(S)) ⊆ H(J(S)), fix an element p = a+ bi+ cj+ dk ∈ J(H(S)) with a, b, c, d ∈ S.
It suffices to show that a, b, c, d ∈ J(S). By a similar argument given in the proof of Theorem 3.1, a belongs
to J(H(S)). Hence 1− sa is (left) invertible for any s ∈ H(S). In particular for any s ∈ S ⊆ H(S), 1− sa is (left)
invertible in H(S). So, there exists p′ = a′+b′i+ c′ j+d′k ∈ H(S) such that p′(1− sa) = 1. That is, a′(1− sa) = 1,
concluding that 1 − sa is left invertible for all s ∈ S. Therefore a ∈ J(S). Similarly, we get b, c, d ∈ J(S). For
the converse inclusion it suffices to show that each x ∈ J(S) belongs to J(H(S)). Let α = a + bi + cj + dk be
arbitrary in H(S). We show that 1−αx = 1− ax− bxi− cxj− dxk is invertible in H(S) . We prove the theorem
by checking the following two claims.
Claim 1. For every a ∈ S, q = 1 − axi ∈ U(H(S)). We have qq̄ = 1 + (ax)2 = u ∈ U(S), since x ∈ J(S). Hence,
q−1 = q̄u−1 = b + ci ∈ U(H(S)) for some b, c ∈ S.
Claim 2. For every a, b ∈ S, p = 1 − axj − bxk ∈ U(H(S)). We have

pp̄ = (1 − axj − bxk)(1 + axj + bxk)

= 1 + (ax)2 + (bx)2 + (bxax − axbx)i
= u + (bxax − axbx)i for some u ∈ U(S)

= u(1 + u−1(bxax − axbx)i)
= uv for some v ∈ U(H(S)) by Claim 1.



H. Cheraghpour et al. / Filomat 36:6 (2022), 1911–1920 1914

Now we have

1 − αx = u1 − bxi − cxj − dxk for some u1 ∈ U(S)

= u1(1 − u−1
1 (bxi + cxj + dxk))

= u1(1 − s1xi − s2xj − s3xk) for some si ∈ S

= u1(u2 − s2xj − s3xk) for some u2 ∈ U(H(S)) by Claim 1

= u1u2(1 − u−1
2 (s2xj + s3xk))

= u1u2(1 − (q1 + q2i)(s2xj + s3xk)) for some qi ∈ S by Claim 1
= u1u2(1 − p1xj − p2xk) for some pi ∈ S.

By Claim 2, the last term is invertible in H(S), and this completes the proof.

Note that in the theorem above the conclusion is not necessarily true if 2−1 < S: LetS = Z2. Then it is easily
observed that

J(H(S)) = {0, 1 + i, 1 + j, 1 + k, i + j, i + k, j + k, 1 + i + j + k}.

But H(J(S)) = 0.

Remark 3.7. The case S = Z shows however that the condition 2−1
∈ S is not necessary in the theorem above:

obviously H(J(Z)) = H(0) = 0. Now, let α = a + bi + cj + dk ∈ J(H(Z)). Then 1 + a + bi + cj + dk ∈ U(H(Z)) =
{ 1,−1, i,−i, j,− j, k,−k }. An easy computation shows that the only possible case is a = b = c = d = 0, so that α = 0.
Therefore, H(J(Z)) = J(H(Z)) = 0.

Theorem 3.8. L-rad(H(S)) = H(L-rad(S)).

Proof. Recall that an ideal I of R is of the form H(A) for some ideal A of S. Now, we claim that any ideal
I = H(A) in R is locally nilpotent if and only if the ideal A in S is locally nilpotent: to see this, first assume
that I is locally nilpotent. Then since A ⊆ I, for any subset { a1, ..., an} of A, there exists N such that any
product of N elements from { a1, ..., an} is zero. Hence, A is locally nilpotent.

Conversely, assume that A ⊆ S is locally nilpotent, and let st = at0 + at1i + at2 j + at3k, 1 ≤ t ≤ n, be n
arbitrary elements in I. Set

S := { atl | 1 ≤ t ≤ n, 0 ≤ l ≤ 3 }.

By hypothesis there exists N such that the product of any N elements from S is zero. From this, one can
easily observe that the product of any N elements from { s1, ..., sn} ⊆ I is zero (since any summand of such
product is a product of N members in S). Now, noting that L-rad(R) =

∑
I, where I ranges over all locally

nilpotent ideals of R, by the claim above we have L-rad(R) =
∑

H(A) = H(
∑

A), where A ranges over all
locally nilpotent ideals of S. That is, L-rad(H(S)) = H(L-rad(S)).

According to Lemma 2.1 and Theorem 3.1, the structure of center and ideals of the quaternion rings is similar
to those of matrix rings. But in some cases they have some differences. For example, if S is a principal right
ideal domain, then by a well-known result [10, Theorem 17.20], for any n ≥ 1, Mn(S) is a principal right ideal
ring. This result does not hold for H(S) in general: Let S be the ring of integers Z. It is easy to see that the
(right) ideal (1+ i+ j+ k, 2) is not principal in H(Z). More generally, every right ideal of H(Z) is of the form

(α) or (α, α
1 + i + j + k

2
) for α ∈ H(Z). Note that ifH = { a+ bi+ cj+ dk | a, b, c, d ∈ Z or a, b, c, d ∈ Z+

1
2
} is

the Hurwitz ring of integral quaternions, then by Corollary 2.4 in [4] every one sided ideal ofH is principal.
We proceed with a yet interesting result on the ideals of H(Z).

Theorem 3.9. Let p be an odd prime number, and (using Four Squares Theorem) let

p = a2 + b2 + c2 + d2, a, b, c, d ∈ Z.

Then

(p) = H((p)) ⊊ (a + bi + cj + dk) = H(Z). (1)
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Proof. If the first inclusion is not true, then

a + bi + cj + dk = pt

for some 0 , t ∈ H(Z). Hence, multiplying by their conjugates, we arrive at p = p2tt̄, a contradiction. To
prove the second conclusion, factoring (1) modulo (p), we find that

0 ⊊
(a + bi + cj + dk)

(p)
⊆

H(Z)
(p)

� H(
Z

(p)
) � H(Zp).

Since by Theorem 3.1 and the fact that Zp is a simple ring, H(Zp) is a simple ring, we conclude that
(a + bi + cj + dk) = H(Z).

Corollary 3.10. The theorem above shows that

(i) if p is an odd prime integer, then the ideal (p) ⊊ H(Z) is maximal (hence prime),
(ii) if n is an odd integer, then there exists a one-to-one correspondence between the set of all ideals U of H(Z)

satisfying (n) ⊆ U ⊆ H(Z) and the set of all ideals V of Z satisfying (n) ⊆ V ⊆ Z.

Proof. Statement (i) follows immediately from the theorem above. For (ii), by [3, Corollary 3.13], if n is an
odd integer, then

H(Z/nZ) �M2(Z/nZ).

Hence, the basic result on ideals of matrix rings confirms our claim.

Remark 3.11. The results above are not true if n or p is not odd: Let n = p = 2. Then

(2) ⊊ (1 + i) ⊊ H(Z).

This shows that:

(a) The ideal (2) ⊊ H(Z) is not prime. (1 − i), (1 + i) ⊊ (2), while (1 − i)(1 + i) ⊆ (2).

(b) The ideal (1 + i) is strictly between (2) and H(Z), while there is no ideals strictly between (2) and Z.

4. Matrix representation of R

In this section, we are concerned with the question “Under which conditions on the ring S, the quaternion
ring H(S) is isomorphic to a 2 × 2 matrix ring?” This paves the way to our study of the quaternion rings.

Theorem 4.1. [3, Theorem 3.10] Let F be a (not necessarily finite) field whose characteristic is an odd prime number
p and let S be an algebra over F. Then

H(S) �M2(S).

The proof of the above theorem in [3] shows that if there exist commutingα, β ∈ S such that
1
4
+α2+β2 = 0,

then the quaternion ring H(S) is isomorphic to a 2×2 matrix ring. Hence the following results are immediate:

Corollary 4.2. ([3, Corollary 3.12], [9, Proposition 4]) If p is an odd prime number and t ≥ 1, then

H(Zpt ) �M2(Zpt ).

Recall that the ring R is semilocal if R/J(R) is semisimple; that is, R/J(R) �
∏r

i=1 Mni (Di), where r ≥ 1, ni ≥ 1
and each Di is a division ring. The following theorem inserts some conditions on S such that the ring R is
isomorphic to a 2 × 2 matrix ring.



H. Cheraghpour et al. / Filomat 36:6 (2022), 1911–1920 1916

Theorem 4.3. LetS be a semilocal ring such that J(S) is nil, and assume that the division rings Di in the decomposition
S

J(S)
�

∏r
i=1 Mni (Di) have nonzero odd characteristics. Then R = H(S) is a 2 × 2 matrix ring.

Proof. Identify S̄ :=
S

J(S)
with

∏r
i=1 Mni (Di), and assume that char(Di) = pi, where by assumption, pi are (not

necessarily distinct) odd prime numbers. For each i, identify the prime subfield Zpi of Di with the subring
{aIni : a ∈ Zpi } of Mni (Di), and choose ai, bi ∈ Z such that inZpi , 1 + a2

i + b2
i = 0. Noting that ai, bi are not both

zero, we may assume that for each i, ai , 0. Now, for the elements ā = (a1, ..., ar) and b̄ = (b1, ..., br) in S̄, we
have

1 + ā2 + b̄2 = (1, ..., 1) + (a1, ..., ar)2 + (b1, ..., br)2

= (1 + a2
1 + b2

1, ..., 1 + a2
r + b2

r ) = 0 = J(S).

Therefore, we have 1 + ā2 + b̄2 = j for some j ∈ J(S) ⊆ S ⊆ R. Now, we claim that for every integer t ≥ 0,
there exists rt ∈ U(R) ∩Z such that

1 + r2
t + b2 = αt j2

t
for some αt ∈ Z(R). (2)

For the time being, assume that the claim is true, and assume jn = 0. Choose t such that 2t
≥ n. In this

case, 1 + r2
t + b2 = 0 for some rt, b ∈ R ∩ Z. Since 2 is invertible in R, we conclude that 1

4 + c2 + d2 = 0 for
some c, d ∈ R.

Now, an easy computation shows that the elements e11 := 1
2 + ci + dj, e22 := 1

2 − ci − dj, e12 := −e11k =
−di + cj − k

2 and e21 := ke11 = −di + cj + k
2 make a full set of matrix units for R (in the sense that ei jers = δ jreis,

where δ jr is the δ-Kronecker function, and e11 + e22 = 1) so that, by [10, Theorem 17.5], R is a 2× 2 full matrix
ring.

To prove the claim, note that r0 := a ∈ R is invertible (since a = (a1, ..., ar) ∈ U(S̄)) and that r0 satisfies
(2). Assume that we have chosen rt ∈ U(R) ∩Z in such way that 1 + r2

t + b2 = αt j2t
= j′ for some αt ∈ Z(R).

Define rt+1 = rt −
j′

2rt
. Since r̄t+1 = r̄t ∈ U(S̄), we conclude that rt+1 ∈ U(R). We have

1 + r2
t+1 + b2 = 1 + (rt −

j′

2rt
)2 + b2 =

j′2

4rt
2 = αt+1 j2

t+1
,

where αt+1 =
α2

t
4r2

t
∈ Z(R), as claimed. This completes the proof.

In the theorem above,
(a) if we remove the assumption that J(S) is nil, the conclusion may be false: Let p be any odd prime

number and consider the localization S : = Z(p) ofZ at (p). Let R = H(S). We have J(S) = pZ(p), the unique
maximal ideal of S. Since 2−1

∈ S, by Theorem 3.6 we have

J(R) = H(J(S)) = H(pZ(p)).

Thus, from Corollary 3.3 it follows that

R

J(R)
� H(

Z(p)

pZ(p)
) � H(Zp) �M2(Zp).

I.e, R is a similocal ring, but it is not a 2× 2 matrix ring: for otherwise, there would exist a nonzero element

α =
1
s

(a + bi + cj + dk) ∈ H(S) a, b, c, d ∈ Z, s ∈ Z(p)

with α2 = 0, so that
a2
− b2
− c2
− d2 + 2abi + 2acj + 2adk = 0,
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from which it follows that a = b = c = d = 0, a contradiction. Note that pZ(p) = J(S) is not nil.
(b) if char(Di) = 0 for some i, the conclusion may not hold: Let S = Q. Then the rational quaternions

H(Q) is a division ring.

Theorem 4.4. Let S = Z2n (n ≥ 1) and J = J(H(Z2n )). We have that:

(i) J = { a + bi + cj + dk ∈ R | a + b + c + d ≡ 0 (mod 2) }

(ii) R is a local ring with
R

J(R)
� Z2.

Proof. (i) Put A = { a+ bi+ cj+ dk ∈ R | a+ b+ c+ d ≡ 0 (mod 2) }. It is easy to see that A is an ideal of R. Let
α = a + bi + cj + dk ∈ A. We have

α2 = a2
− b2
− c2
− d2 + 2abi + 2acj + 2adk.

On the other hand, −t2
≡ t2
≡ t (mod 2) for each t ∈ Z. So

a2
− b2
− c2
− d2

≡ a + b + c + d ≡ 0 (mod 2).

Hence, α2 = 2q for some q ∈ R and so α is nilpotent (since (α2)2n
= 0). That is, A ⊆ J. If there exists

α = a+ bi+ cj+ dk ∈ J−A then β = 1+α ∈ A and so β ∈ J, hence 1 = β−α ∈ J, a contradiction. That is, J ⊆ A.
(ii) Since I = H(2Z2n ) is a nilpotent ideal of R, we have I ⊆ J. On the other hand, we have

J(
R

I
) = J(

H(Z2n )
H(2Z2n )

) � J(H(Z2)).

Now, since |I| = (2n−1)4 = 24n−4 and J(
R

I
) =

J(R)
I

, we have |J(R)| = 24n−4
× 23 = 24n−1, and so

R

J(R)
� Z2.

Theorem 4.5. Assume that the rings S1,S2 satisfy the hypotheses of Theorem 4.3. Let M be a unitary (S1,S2)-

bimodule, and consider the triangular matrix ring T =
(
S1 M
0 S2

)
. Then

H(T ) �M2(T ).

Proof. It is easy to verify that J := J(T ) =
(
J(S1) M

0 J(S2)

)
. Let t =

(
s1 m
0 s2

)
∈ J with sn1

1 = 0 = sn2
2 . Then

tn1+n2 =

(
0 m′

0 0

)
for some m′ ∈M, so t2(n1+n2) = 0, concluding that J is nil. Noting that

T /J � S1/J(S1) × S2/J(S2),

Theorem 4.3 can now be applied to T . This completes the proof.

Let M be a unitary (R,S)-bimodule, and T be the triangular matrix ring T =
(
R M
0 S

)
. Then

H(M) =M ⊕Mi ⊕Mj ⊕Mk

is a unitary (H(R),H(S))-bimodule with scalar multiplications given by:

(r0 + r1i + r2 j + r3k)(m0 +m1i +m2 j +m3k) = r0m0 + r1m1i + r2m2 j + r3m3k,

(m0 +m1i +m2 j +m3k)(s0 + s1i + s2 j + s3k) = m0s0 +m1s1i +m2s2 j +m3s3k.

In this case we have the following interesting theorem:
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Theorem 4.6. Let T and H(M) be as above. Then

H(T ) �
(
H(R) H(M)

0 H(S)

)
.

Proof. Define φ : H(T )→
(
H(R) H(M)

0 H(S)

)
naturally by

φ
( (r1 m1

0 s1

)
+

(
r2 m2
0 s2

)
i +

(
r3 m3
0 s3

)
j +

(
r4 m4
0 s4

)
k
)

=

(
r1 + r2i + r3 j + r4k m1 +m2i +m3 j +m4k

0 s1 + s2i + s3 j + s4k

)
.

A straightforward computation shows that φ is a ring isomorphism.

5. Some common and noncommon properties of S and H(S)

Let S and R be as above. By Theorem 3.1, S is simple if and only if so is R. Also, as H(S) is a finitely
generated S-module, S is a left Noetherian (resp. left Artinian) ring if and only if so is R. Moreover, the
following results are consequences of Theorems 3.1, 3.6 and Corollary 3.3:

Corollary 5.1. S is semisimple if and only if so is R.

Proof. S is semisimple if and only if S is left Artinian and J(S) = 0 if and only if R is left Artinian and
J(R) = 0 (since R is a finitely generated S-module and also, by Theorem 3.6 we get J(R) = 0) if and only if
R is semisimple.

Corollary 5.2. S is semilocal if and only if so is H(S).

Proof. Immediate from Theorem 3.6 and the above corollary.

IfS is a local ring, H(S) is not necessarily local: letS be the local ringZ9. Then by Theorem 3.6 and previous
results, we have

H(S)
J(H(S))

=
H(S)

H(J(S))
� H(

S

J(S)
) = H(

Z9

3Z9
) � H(Z3),

which is not a division ring.
The following is a purely ring theoretic consequence of Theorem 3.1.

Corollary 5.3. Let S and R be as above. Then R is a prime (resp. semiprime) ring if and only if so is S.

Proof. We prove the prime case. Let R be a prime ring and let AB = 0 for some ideals A,B of S. A
straightforward computation shows that H(A)H(B) = H(AB) = 0. Since R is prime, we have H(A) = 0 or
H(B) = 0. Hence, A = 0 or B = 0. Conversely, let IJ = 0 for some ideals I,J of R. By Theorem 3.1,
I = H(A),J = H(B) for some ideals A,B of S, hence H(AB) = H(A)H(B) = 0 forces AB = 0. Now, since S
is a prime ring, we have A = 0 or B = 0, and hence I = H(A) = 0 or J = H(B) = 0. This completes the
proof.

Corollary 5.4. S is a semiprimary ring if and only if so is R.

Proof. S is semiprimary if and only if J(S) is nilpotent and
S

J(S)
is semisimple and by Corollary 3.3 and

Theorem 3.6, these happen if and only if J(H(S)) is nilpotent and
H(S)

J(H(S))
is semisimple.
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Remark 5.5. Following a construction of Shepherson [13], if R is an algebra over a field F generated by { s, t,u, v,w, x, y, z }

with relations dictated by the matrix equation AB = I2 where A =
(
s u
t v

)
and B =

(
x y
z w

)
, then R is a domain, but

BA , I2, so that M2(R) is not Dedekind-finite. For the special case when char(F) is an odd prime number, by Theorem
4.1 we get H(S) �M2(S), and thus H(S) is not Dedekind-finite.

The following proposition shows however that if the ring S is commutative, the conclusion differs.

Proposition 5.6. If S is a commutative ring, then H(S) is Dedekind-finite.

Proof. Let A = a + bi + cj + dk ∈ H(S). Since S is commutative, AĀ = ĀA = η(A) and η(AB) = η(A)η(B) =
η(B)η(A) = η(BA) for any A,B ∈ R. Let AB = 1 for some B ∈ H(S). By multiplying Ā from the left we have
η(A)B = Ā. Now, since η(A)η(B) = η(B)η(A) = 1, η(A) is invertible and B = (η(A))−1Ā. That is,

BA = (η(A))−1ĀA = 1.

Now we return to the noncommutative setting:

Theorem 5.7. R = H(S) is left primitive if and only if so is S.

Proof. Assume that S is left primitive. Then there exists a left ideal I of S such that I is comaximal with any
nonzero ideal J of S. (I.e. I+ J = S.) Let I be a nonzero ideal of R. Then by Theorem 3.1, I = H(A) for some
nonzero ideal A of S. By hypothesis we have I +A = S. So R = H(S) = H(I +A) = H(I) +H(A). Hence R is
left primitive.

Conversely, let R = H(S) be left primitive. Hence there exists a left ideal I of R that is comaximal with
any nonzero ideal of R. Define

I = {a ∈ S; a + bi + cj + dk ∈ I for some b, c, d ∈ S}.

Then I is a nonzero left ideal of S and 0 , I ⊆ H(I). Now let A be any nonzero ideal of S. We claim that
I + A = S. We have I +H(A) = R. So H(I + A) = H(I) +H(A) = R. That is, I + A = S.

To prove the next theorem, we need the following lemma:

Lemma 5.8. [11, Exercise 6.19] For any von Neumann regular ring k, any finitely generated submodule M of a
projective k-module P is a direct summand of P.

Theorem 5.9. Let S and R be as above. S is a von Neumann regular ring if and only if so is R.

Proof. Let S be von Neumann regular. In the lemma above, set k = S, P = R (as a projective left S-module)
and let M = I be any finitely generated left ideal inR. By the lemma above,I is a direct summand of the left
S-module R. Hence, by [11, Theorem 4.23] R is a von Neumann regular ring. The converse is obvious.

Theorem 5.10. A ring S (in which 2 is not necessarily invertible) is indecomposable if and only if so is H(S).

Proof. Since S is indecomposable, S has no nontrivial central idempotents. Let α = a + bi + cj + dk be a
central idempotent in H(S), i.e.

α2 = (a + bi + cj + dk)2 = a + bi + cj + dk ∈ Z(H(S)).

By Lemma 2.1 we have

Z(H(S)) = Z(S) ⊕ (Z(S) ∩ B)i ⊕ (Z(S) ∩ B) j ⊕ (Z(S) ∩ B)k,

such that B = {x ∈ S : 2x = 0}. Therefore

a2
− b2
− c2
− d2 = a ∈ Z(S),
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ab + ba + cd − dc = b ∈ Z(S) ∩ B,

ac + ca − bd + db = c ∈ Z(S) ∩ B,

ad + da + bc − cb = d ∈ Z(S) ∩ B.

Thus, 2ac = c, 2ab = b and 2ad = d. Since b, c, d ∈ B, we have b = c = d = 0. So a2 = a is a central idempotent
in Z(S). By hypothesis S has no nontrivial central idempotents. Consequently, H(S) is indecomposable.

Conversely, let H(S) be indecomposable and let e be a central idempotent in S. Since e is also a central
idempotent in H(S), e is a trivial idempotent.

There is a one-to-one correspondence between the two-sided ideals of Mn(R) and the two-sided ideals of R.
This ideal correspondence actually arises from the fact that the rings R and Mn(R) are Morita equivalent.
This means that the categories of left R-modules and left Mn(R)-modules are similar. (For a full account
on the Morita theory the reader is referred to the books [5] and [10]). Due to this observation, there
exists a natural bijective correspondence between the isomorphism classes of the left R-modules and the
left Mn(R)-modules, and between the isomorphism classes of the left ideals of R and Mn(R). Analogous
statements hold for right modules and right ideals. Through Morita equivalence, Mn(R) can inherit any
property of R which is Morita invariant: For example, simplicity, Artinianness, Noetherianness, primeness
and numerous other properties. The correspondence between the two-sided ideals of H(S) and those of S
and some common properties between H(S) and S discussed above suggests a question: Are the two rings
H(S) and SMorita equivalent? The answer is “no”, because, for example, the two rings ofH andR cannot
be Morita equivalent. Otherwise, for S = R, according to [10, Theorem 17.25], there exists a progenerator
S-module P such that H(S) � EndS(P). Since S is a division ring, P is a free S-module; that is, P � ⊕x∈XS.
If X is a singleton, we get a contradiction since H(S) � EndS(P) � EndS(S) � S. If |X| ≥ 2, then

H(S) � EndS(P) � EndS(S ⊕ (⊕x∈X−{x0}S)),

for some x0 ∈ X which is again a contradiction because the division ring H(R) does not have nontrivial
idempotents.
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