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Abstract. We introduce three new categories in which their objects are T-approximation spaces and they
are denoted by NTAprS, RNTAprS, and LNTAprS. We verify the existence or nonexistence of products
and coproducts in these three categories and characterized theirs epimorphisms and monomorphisms. We
discuss equalizer and coequalizer of a pair of morphisms in the three categories. We introduce the notion
of idempotent approximation space, and we show that idempotent approximation spaces and right upper
natural transformations form a category, which is denoted by RNTApr2S. Let CS be the category of all
closure spaces and closure preserving mappings. We define a functor F from RNTApr2S to CS and show
that F is a full functor and every object of CS has a corefiection along F.

1. Introduction

In 1981, the concept of a rough set was originally proposed by Pawlak as a formal tool for modeling
and processing incomplete information in information systems [24, 25]. Since then, this subject has been
investigated in many papers, and subsequently the algebraic approach to rough sets has been studied by
some authors. A key notion in the Pawlak rough set model is the equivalence relation. The equivalence
classes are the building blocks for the construction of the lower and upper approximations. Let U be a set,
and let θ be an equivalence relation on U. If [x]θ denotes an equivalence class of θ containing x, then we
define two operators apr

θ
, aprθ : P(U)→ P(U) as apr

θ
(X) = {x ∈ U|[x]θ ⊆ X} and aprθ(X) = {x ∈ U|[x]θ ∩X ,

∅} for every X ∈ P(U). The pair (apr
θ
(X), aprθ(X)) is called a rough set. However, equivalence relations

are too respective for many applications; for instance, in existing databases, the values of attributes could
be either symbolic or real-valued. Rough set theory would have difficulty in handling such values. It is
a natural question to ask what happens if we substitute the universe set with an algebraic system. Some
authors have studied the algebraic properties of rough sets. Biswas and Nanda [4] introduced the notion of
a rough subgroup. Kuroki [21] introduced the notion of a rough ideal in a semigroup. Mordeson [22] used
covers of the universal set to define an approximation operator on the power set of the given set. Estaji,
Hooshmandasl, and Davva [14] considered the connection between a rough set and lattice theory and they
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introduced the concepts of upper and lower ideals (filters) in a lattice. Also, Estaji, Khodaii, and Bahram
[15] introduced the notion of θ-upper and θ-lower approximation of a fuzzy subset of the lattice (also, see
[13]). Davvaz [6, 7] concerned a relationship between a rough set and the ring theory and considered a ring
as a universal set and introduced the notion of a rough ideal and a rough subring with respect to an ideal
of a ring; see [9]. Kazanci and Davvaz [20] introduced the notions of a rough prime (primary) ideal and a
rough fuzzy prime (primary) ideal in a ring and gave some properties of such ideals. Rough modules have
been investigated by Davvaz and Mahdavipour [10].

The rough set theory is widely known as a reasonable and efficient soft computing method for handling
several decision making situations via attribute selections and rule acquisitions; see [19, 27, 28]. Moreover,
in the past decades, various generalized rough set models have been constructed in step with the actual
demands of real-world situations; see [26, 30]. In [33], for the sake of enhancing, the applicability of
generalized rough set models in handling the two challenges are mentioned in an HFL group decision
making. They tried to explore a novel rough set model by means of the multi-granularity three-way
decisions paradigm. Multi-granularity three-way decisions, which originate from the granular computing
frame-work [32], construct multi-level problem solving methods by providing information analysis and
information fusion rules for solution spaces in different granularity levels based on the three-way decisions
theory; see [31].

In applied mathematics, we encounter many examples of mathematical objects that can be multiplied
to each other. First of all, the real numbers themselves are such objects. Other examples are real-valued
functions, the complex numbers, matrices, infinite series, vectors in n-dimensional spaces, and vector-
valued functions. On the other hand, rough sets were originally proposed in the presence of an equivalence
relation. An equivalence relation is sometimes difficult to be obtained in real-world problems due to the
vagueness and incompleteness of human knowledge. Davvaz [? ] in 2008 introduced the concept of a
T-rough set, which is a generalization of rough set. It is obvious that by placing the equivalence function
instead of T, we will have the same concept of rough set. Also a T-rough homomorphism in a group
was defined in [8], which is a generalization of ordinary homomorphism such that T : U → P∗(W) is a set
valued mapping and U,W are two nonempty sets. It is a worth recall that the concept T-rough mentioned
here with the concept T-rough defined in [23] that is a lower semicontinuous triangular norm are two
different T-roughs. Then using the definitions of lower and upper inverses, he ? introduced the definition
of uniform set-valued homomorphism and proved that every set-valued homomorphism is uniform. In
[29], the concepts of a set-valued and a strong set-valued homomorphism of a ring were introduced and
their related properties were investigated. Also, the notions of generalized lower and upper approximation
operators, constructed by means of a set-valued mapping, which is a generalization of the notion of lower
and upper approximations of a ring, were provided.

Also, Hosseini, Jafarzadeh, and Gholami [17, 18], defined the concept of a T-rough semigroup and a
T-rough commutative ring by using the definitions of lower and upper approximations. Let U,W be two
nonempty sets and let X ⊆ W. Also let t : U → P∗(W) be a set-valued mapping, where P∗(W) denotes the
set of all nonempty subsets of W. The set of all nonempty subsets of W is called a t-approximation space. The
upper inverse and lower inverse of X under t are defined by

aprt(X) = {u ∈ U : t(u) ∩ X , ∅ },

and

apr
t
(X) = {u ∈ U : t(u) ⊆ X }.

For the sake of illustration, we consider the following example.

Example 1.1. Let U = {x, y, z, e} and let W = {a, b, c}. Consider the set-valued function t : U→ P∗(W) defined
by

t :=
(

x y z e
{b} {a, c} {b} {a, b, c}

)
.
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Then we have the following table.

X {a} {b} {c} {a, b} {a, c} {b, c} W
aprt(X) {y, e} {x, z, e} {y, e} U {y, t} U U
apr

t
(X) ∅ {x, z} ∅ {x, z} {y} {x, z} U

Category theory is not only a tool commonly used by many capable pure mathematicians but also a tie
that can connect relatively easily fields of mathematics and theoretical computer science (see [1, 2]).

Many researchers are actually concerned with or interested in deeper and pure mathematical approaches
(including categorical approach) to some application-driven issues (including fuzzy set theory, rough set
theory, and soft set theory). For example, Banerjee and Chakraborty [3] defined the category ROUGH of
Pawlak approximation spaces (with an individual subset as a related concept set) and proved that ROUGH
is finitely complete but not a topos. Diker [11] proved that R-APR, power sets and pairs of rough set
approximation operators, is isomorphic to a full subcategory of the category cdrTex whose objects are
complemented textures and morphisms are complemented direlations. Also, he showed that R-APR and
cdrTex are new examples of dagger symmetric monoidal categories.

We recall from [5] that if θ is an equivalence relation on U and γ is an equivalence relation on V, then
a function φ : U → V is called an upper natural transformation from (U, θ) into (V, γ), provided that the
diagram

P(U)

φ

��

aprθ // P(U)

φ

��
P(V)

aprγ
// P(V)

commutes, where φ : P(U) → P(V) is the forward powerset operator induced by the mapping φ, that is,
φ(A) := φ(A) for every A ∈ P(U). In the continuation, we show φ with φ. Also, approximation spaces and
upper natural transformations form a category, which is denoted by AprS. A lower natural transformation
is defined similarly. Also, approximation spaces and lower natural transformations form a category, which
is denoted by AprS. Borzooei, Estaji, and Mobini [5] verified the existence or nonexistence of limits and
colimits in two categories and characterized several kinds of epimorphisms and monomorphisms. Estaji
and Mobini [16] studied injective objects in AprS and AprS. Many applications of T-rough set theory and
category in the various sciences and two categories defined in [5] have provided our main motivation for
studying category theory of T-rough set theory.

2. On approximation spaces with the upper natural transformations

In this section, we introduce the concept of an upper natural transformation, a right (left) upper natural
transformation, rough morphism, and right(left) rough morphism on an approximation space and show that
approximation spaces with upper natural transformations or with right (left) upper natural transformations
form a category, which are denoted by NTAprS or RNTAprS (LNTAprS). In the following, we study the
properties and relations between upper natural transformation, right(left) upper natural transformation,
rough morphism, and right(left) rough morphism.

Definition 2.1. Let (U, t) and (V, s) be two approximation spaces, where t : U → P∗(U) and s : V → P∗(V)
are functions. We say a function φ : U→ V is
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(1) an upper the natural transformation from (U, t) into (V, s) if the following diagram commutes:

P(U)

φ

��

aprt // P(U)

φ

��
P(V)

aprs

// P(V).

(2) a right upper natural transformation from (U, t) into (V, s) if

φ
(
aprt(A)

)
⊆ aprs

(
φ(A)

)
for every A ∈ P(U).

(3) a left upper natural transformation from (U, t) into (V, s) if

aprs

(
φ(A)

)
⊆ φ

(
aprt(A)

)
for every A ∈ P(U).

Remark 2.2. Let U be a set and let θ be an equivalence relation on U. We define θequ : U → P∗(U) by
θequ(x) = [x]θ. Throughout this paper, this notation will be used. It is evident that x ∈ θequ(x) and
θ2

equ(x) = {θequ(x) } for every x ∈ U.
Let (U, t) be an approximation space such that x ∈ t(x) and t2(x) = { t(x) } for every x ∈ U. Then t(U) is a

portion of U, and if there is an equivalence relation θ on U whose partition is t(U), then t = θequ.

Remark 2.3. Let (U, t) and (V, s) be two approximation spaces. Then the following statements hold:

(1) If φ : U → V is an upper natural transformation from (U, t) into (V, s), then u ∈ aprt({x}) if and only if
x ∈ t(u) for every u, x ∈ U.

(2) If φ : U → V is an upper natural transformation from (U, t) into (V, s), then {φ(u) : u ∈ U, x ∈ t(u) } =
{ v ∈ V : φ(x) ∈ s(v) } for every x ∈ U.

Let φ : U→ V be an upper natural transformation from (U, t) into (V, s). Since

φ
(
aprt({x})

)
= {φ(u) : u ∈ U, x ∈ t(u) }

and

aprs

(
φ({x})

)
= { v ∈ V : φ(x) ∈ s(v) },

we conclude that

{φ(u) : u ∈ U, x ∈ t(u) } = { v ∈ V : φ(x) ∈ s(v) }

for every x ∈ U.

Proposition 2.4. The following statements hold:

(1) Approximation spaces and right upper natural transformations form a category, which is denoted by RNTAprS.

(2) Approximation spaces and left upper natural transformations form a category, which is denoted by LNTAprS.

(3) Approximation spaces and upper natural transformations form a category, which is denoted by NTAprS.
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Proposition 2.5. Let (U, t) and (V, s) be two approximation spaces. Then φ : U → V is an upper natural transfor-
mation from (U, t) into (V, s) if and only if

φ
(
aprt({x})

)
= aprs

(
φ({x})

)
for every x ∈ U.

Proof. Necessity. It is clear.
Sufficiency. Let X ⊆ U be given. Since

y ∈ φ
(
aprt(X)

)
⇒ y = φ(u) & t(u) ∩ X , ∅ for some u ∈ U

⇒ y = φ(u) & x ∈ t(u) for some (u, x) ∈ U × X
⇒ y = φ(u) & u ∈ aprt({x}) for some (u, x) ∈ U × X

⇒ y = φ(u) ∈ φ
(
aprt({x})

)
for some (u, x) ∈ U × X

⇒ y ∈ aprs

(
φ({x})

)
⊆ aprs

(
φ(X)

)
for some x ∈ X,

and

y ∈ aprs

(
φ(X)

)
⇒ φ(x) ∈ s(y) for some x ∈ X

⇒ y ∈ aprs

(
{φ(x)}

)
for some x ∈ X

⇒ y ∈ φ
(
aprt({x})

)
⊆ φ

(
aprt(X)

)
for some x ∈ X,

we conclude that φ
(
aprt(X)

)
= aprs

(
φ(X)

)
.

Proposition 2.6. Let (U, t) and (V, s) be two approximation spaces. For every function φ : U → V, the following
statements are equivalent:

(1) φ is a right upper natural transformation from (U, t) into (V, s).
(2) φ

(
aprt({x})

)
⊆ aprs

(
φ({x})

)
for every x ∈ U.

(3) φ
(
t(x)

)
⊆ s

(
φ(x)

)
for every x ∈ U.

Proof. (1)⇒ (2). It is evident.

(2)⇒ (3). For every x ∈ U,

a ∈ φ
(
t(x)

)
⇒ a = φ(b) for some b ∈ t(x)

⇒ a = φ(b) for some b ∈ U such that x ∈ aprt({b})

⇒ a = φ(b) &φ(x) ∈ φ
(
aprt({b})

)
⊆ aprs

(
φ({b})

)
for some b ∈ U

⇒ a ∈ s
(
φ(x)

)
.

Therefore, φ
(
t(x)

)
⊆ s

(
φ(x)

)
for every x ∈ U.

(3)⇒ (1). For every B ⊆ U,

a ∈ φ
(
aprt(B)

)
⇒ a = φ(x) for some x ∈ aprt(B)

⇒ a = φ(x) & b ∈ t(x) for some b ∈ B

⇒ a = φ(x) &φ(b) ∈ φ
(
t(x)

)
⊆ s

(
φ(x)

)
for some b ∈ B

⇒ a ∈ aprs

(
φ(B)

)
.

Therefore, φ
(
aprt(B)

)
⊆ aprs

(
φ(B)

)
for every B ⊆ U.
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Proposition 2.7. Let (U, t) be an approximation space such that t2(x) = {t(x)} for every x ∈ U. Then the following
statements hold:

(1) aprt({x}) , ∅ if and only if x ∈ t(x) for every x ∈ U.
(2) If aprt({x}) , ∅, for every x ∈ U, then t(U) is a partition of U.
(3) If aprt({x}) , ∅, for every x ∈ U, then aprt({x}) = t(x) for every x ∈ U.

Proof. (1). Let x ∈ U be given. Then

aprt({x}) , ∅ ⇒ x ∈ t(y) for some y ∈ U
⇒ x ∈ t(y) = t(x) for some y ∈ U, by our hypothesis

The rest is evident.

Corollary 2.8. Let (U, t) and (V, s) be two approximation spaces and letφ : U→ V be an upper natural transformation
from (U, t) into (V, s). If φ(a) = φ(b), then φ

(
aprt({a})

)
= φ

(
aprt({b})

)
.

Proof. Let a, b ∈ U with φ(a) = φ(b) be given. Then Proposition 2.5 implies

φ
(
aprt({a})

)
= aprs

(
φ({a})

)
= aprs

(
φ({b})

)
= φ

(
aprt({b})

)
.

Proposition 2.9. Let (U, t) and (V, s) be two approximation spaces. For every bijection function φ : U → V, the
following statements are equivalent:

(1) φ is a left upper natural transformation from (U, t) into (V, s).
(2) aprs

(
φ({x})

)
⊆ φ

(
aprt({x})

)
for every x ∈ U.

(3) s
(
φ(x)

)
⊆ φ

(
t(x)

)
for every x ∈ U.

Proof. (1)⇒ (2). It is evident.

(2) ⇒ (3). By way of contradiction, assume that there is an element u ∈ U such that s
(
φ(u)

)
⊈ φ

(
t(u)

)
,

which implies that there is an element v ∈ V such that v ∈ s
(
φ(u)

)
\ φ

(
t(u)

)
, that is, φ(u) ∈ aprs({v}). On the

other hand, there is an element u′ ∈ U \ t(u) such that v = φ(u′), and this implies that φ(u) ∈ aprs

(
{φ(u′)}

)
⊆

φ
(
aprt({u

′
})
)
, which implies that u ∈ aprt({u

′
}), that is, u′ ∈ t(u), a contradiction.

(3)⇒ (1). For every B ⊆ U,

a ∈ aprs

(
φ(B)

)
⇒ a = φ(x) &φ(b) ∈ s

(
φ(x)

)
⊆ φ

(
t(x)

)
for some (b, x) ∈ B ×U

⇒ a = φ(x) & b ∈ t(x) for some (b, x) ∈ B ×U
⇒ a = φ(x) for some x ∈ aprt(B)

⇒ a ∈ φ
(
aprt(B)

)
.

Therefore, φ is a left upper natural transformation from (U, t) into (V, s).

The following two examples show that the bijections in Proposition 2.9, cannot be removed.

Example 2.10. Consider U := {x, y, z} and V := {a, b, c, d}. Define t : U→ P∗(U) and s : V → P∗(V) by

t :=
(

x y z
{y, z} {x, z} {x}

)
and s :=

(
a b c d
{b, d} {a, d} {c} {c}

)
.

If φ : U → V is given by φ :=
(
x y z
a b d

)
, then it is clear that φ is a left upper natural transformation from

(U, t) to (V, s), but φ
(
t(z)

)
= {a} , {c} = s

(
φ(z)

)
.
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Example 2.11. Consider U := {w, x, y, z} and V := {a, b}. Define t : U→ P∗(U) and s : V → P∗(V) by

t :=
(

w x y z
{x,w} {x, y, z} {y, z} {x}

)
and s :=

(
a b
{a} {a, b}

)
.

If φ : U→ V is given by φ :=
(
w x y z
b a b b

)
, then

aprs

(
φ({w})

)
= {b} = φ

(
aprt({w})

)
and aprs

(
φ(A)

)
⊆ {a, b} = φ

(
aprt(A)

)
for every A ∈ P∗(U) \ { {w} }. Hence, φ is a left upper natural transformation from (U, t) to (V, s), but
s
(
φ(y)

)
= {a, b} ⊈ {b} = φ

(
t(y)

)
.

Remark 2.12. Let (U, t) be an approximation space such that for every X ⊆ P∗(U), there exists a subset Y of
U such that X ⊆ t(Y). Then for every X ∈ P∗(U), there exists an element y ∈ U such that t(y) = A, which
implies that t is a surjective function, and so |U| = |P∗(U)|, that is, |U| = 1.

It is well known that the pair (X, f ) is called a closure space if f : P(X) → P(X) is a function such that
the following conditions hold for every M,N ∈ P(X):

(1) M ⊆ f (M);
(2) if M ⊆ N, then f (M) ⊆ f (N);
(3) f

(
f (M)

)
= f (M);

(4) f (∅) = ∅.

If (X, f ) is a closure space, then the subsets M ∈ P(X) such that f (M) =M are called f -closed sets.
Let (X, f ) and (Y, 1) be closure spaces. A function φ : X → Y is said to be a closure preserving map if

φ
(

f (M)
)
⊆ 1

(
φ(M)

)
holds for every M ∈ P(X).

Recall from [12] that the category of all closure spaces and closure preserving mapping form a category
denoted by CS.

Example 2.13. Consider U := {a, b, c, d}. Define t : U→ P∗(U) by

t =
(

a b c d
{a, b} {c} {a, c} {d}

)
.

Since aprt({a}) = {a, c} , {a, b, c} = aprt

(
aprt({b})

)
, we conclude that (U, aprt) is not a closure space.

Definition 2.14. A approximation space of (U, t) is called idempotent if aprt = apr2
t .

It is evident that idempotent approximation spaces and right upper natural transformations form a
category, which is denoted by RNTApr2S, and also, idempotent approximation spaces and upper natural
transformations form a category, which is denoted by NTApr2S.

Let F : A → B be a functor and let B be an object of B. Recall that a coreflection of B along F is a pair
(RB, εB), where

1. RB is an object ofA and εB : F(RB)→ B is a morphism of B.
2. If A is an object of A and b : F(A) → B is a morphism of B, then there exists a unique morphism

a : A→ RB inA such that εB ◦ F(a) = b. See the following diagram:

RB F(RB)
εB // B

A

a

OO

F(A)

F(a)

OO

b

==
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Proposition 2.15. Let F : RNTApr2S→ CS be given by

(U, t) � F //

f

��

(U, aprt)

F( f )= f
��

(V, s) �
F
// (V, aprs)

Then F is a full functor and the corefiection of (X, f ) along F exists for every closure space (X, f ).

Proof. It is evident that F is a full functor. Let (X, f ) be a closure space. Define t f : X→ P∗(X) by t f (x) = f ({x}).
We set R(X, f ) := (X, t f ) and ε(X, f ) := idX : X → X. It is evident that the pair

(
R(X, f ), ε(X, f )

)
is a coreflection of

(X, f ) along F.

Remark 2.16. Define F : NTApr2S→ CS by

(U, t) � F //

f

��

(U, aprt)

F( f )= f
��

(V, s) �
F
// (V, aprs)

Then F is a functor.
Consider U := {a, b, c} and V := {x, y, z}. Define t : U→ P∗(U) and s : V → P∗(V) by

t =
(

a b c
{a, b} {b} {c}

)
and s =

(
x y z
{x, y} {x, y} {z}

)
.

It is evident that aprt = apr2
t and aprs = apr2

s . If ϕ : U → V is given by ϕ =
(

a b c
x x z

)
, then ϕ is a right

upper natural transformation from (U, t) to (V, s). Since ϕ
(
aprt({b})

)
= {x} , {x, y} = aprs

(
ϕ({b})

)
,we conclude

that ϕ is not an upper natural transformation from (U, t) to (V, s). Therefore, F is not a full functor.

Question 2.17. Is the category NTApr2S a coreflection of the category CS?

3. Monomorphisms and epimorphisms

We recall from [1] that a morphism φ : A→ B in a category D is said to be

(1) a monomorphism provided that for all pairs ψ,ϕ : C → A of morphisms in the category D such that
φψ = φϕ, it follows that ψ = ϕ.

(2) an epimorphism provided that for all pairs ψ,ϕ : C → A of morphisms in the category D such that
ψφ = ϕφ, it follows that ψ = ϕ.

Although a function is an epimorphism in Set if and only if it is surjective and a function is a monomor-
phism in Set if and only if it is injective but it is not evident in NTAprS, RNTAprS, and LNTAprS in
general.

Example 3.1. Consider U := {a, b} and V := {x}. Let t : U → P
∗(U) and s : V → P

∗(V) be given by

t :=
(

a b
{a} {a}

)
and s :=

(
x
{x}

)
. If φ : U → V is given by φ :=

(
a b
x x

)
, then φ is a right upper natural

transformation. Let (W, r) be an approximation space, and assume that α, β : W → U are two morphisms
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in the category NTAprS such that φα = φβ and α , β. Then there exists an element w ∈ W such that
α(w) , β(w). Hence we can assume that α(w) = a and β(w) = b. Therefore,

{x} = φ
(
aprt({α(w)})

)
= φα

(
aprr({w})

)
= φβ

(
aprr({w})

)
= φ

(
aprt({β(w)})

)
= ∅,

and this is a contradiction. Hence α is a monomorphism in the category NTAprS, but it is not an injective
function.

In the following two propositions, under the stronger conditions, in he categories NTAprS, RNTAprS,
and LNTAprS, we show that a function is an epimorphism if and only if it is surjective and that a function
is a monomorphism if and only if it is injective

Proposition 3.2. Let (U, t) and (V, s) be approximation spaces and let φ : U→ V be a function. Then the following
statements hold:

(1) Let φ be an upper natural transformation from (U, t) into (V, s) with the following properties:
(a) aprs({v}) , ∅ for every v ∈ V,
(b) v ∈ φ(U) if and only if aprs({v}) ⊆ φ(U), and
(c) v ∈ V \ φ(U) if and only if aprs({v}) ⊆ V \ φ(U).

Then φ is an epimorphism in NTAprS if and only if φ : U→ V is a surjective function.

(2) If φ is a right upper natural transformation from (U, t) into (V, s) such that

v ∈ φ(U)⇔ aprs({v}) ⊆ φ(U)

for every v ∈ V, then φ is an epimorphism in RNTAprS if and only if φ : U→ V is a surjective function.

(3) If φ is a left upper natural transformation from (U, t) into (V, s) such that aprs(A) , ∅ and

aprs(A) ⊆ φ(U)⇒ A ⊆ φ(U)

for every ∅ , A ⊆ V, then φ is an epimorphism in LNTAprS if and only if φ : U→ V is a surjective function.

Proof. (1). Necessity. We proceed by contradiction. Assume that φ(U) , V. Let W = {1, 2} and let
r : W → P∗(W) be given by r(1) = {1} and r(2) = {2}. Define α, β : V →W by α(v) = 1 and

β(v) =

1 if v ∈ φ(U),
2 if v < φ(U).

It is clear that α
(
aprs({v})

)
= {1} = aprr

(
α({v})

)
. for every v ∈ V. Since aprs({v}) , ∅, we have

β
(
aprs({v})

)
=


{1}, aprs({v}) ⊆ φ(U),
{2}, aprs({v}) ⊆ V \ φ(U),
{1, 2} otherwise,

and

aprr

(
β({v})

)
=

{1}, v ∈ φ(U),
{2}, otherwise.
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Hence, by the hypothesis, α and β are upper natural transformations and αφ = βφ. Since the upper natural
transformation φ is an epimorphism, then α = β, which is a contradiction.

Sufficiency. The proof is clear.

The proof of the rest of the statements is similar to the proof of the first statement.

Proposition 3.3. Let (U, t) and (V, s) be approximation spaces and let φ : U→ V be a function. Then the following
statements hold:

(1) Let φ be a right upper natural transformation from (U, t) into (V, s), and suppose that x ∈ t(x) for every x ∈ U.
Then φ is a monomorphism in RNTAprS if and only if φ : U→ V is an injection function.

(2) Let φ be a left upper natural transformation from (U, t) into (V, s) such that the following statements hold:
(a) x ∈ t(x) and t2(x) = {t(x)} for every x ∈ U, and
(b) aprt(φ

−1
(
φ(x)

)
) = aprt({x}) for every x ∈ U.

Then φ is a monomorphism in LNTAprS if and only if φ : U→ V is an injection function.

(3) let φ be an upper natural transformation from (U, t) into (V, s) such that the following statements hold:
(a) t(u) = {u} for every u ∈ U, and
(b) s(φ(u)) ∩ φ(U) , ∅ for every u ∈ U.

Then φ is a monomorphism in NTAprS if and only if φ : U→ V is an injection function.

Proof. (1). Necessity. By way of contradiction, assume that there exist a, b ∈ U such that φ(a) = φ(b) with
a , b. Let W := {a, b} and let r : W → P

∗(W) be given by r(a) = {a} and r(b) = {b}. Define α, β : W → U by

α :=
(
a b
a b

)
, and β :=

(
a b
b a

)
.One can see immediately that α and β are right upper natural transformations

and φα = φβ. The hypothesis implies α = β, which is a contradiction.

Sufficiency. The proof is clear.

(2). Necessity. We argue by contradiction. Assume that there exist a, b ∈ U such that φ(a) = φ(b) with
a , b. Let W = aprt({a}) and let r : W → P

∗(W) be given by r(x) = W. Let h ∈
∏

x∈φ
(

W
) φ−1(x) such that

h(x) ∈ aprt({b}) and h(φ(a)) = b. Define α, β : W → U by α(x) = x and β(x) = h
(
φ(x)

)
for every x ∈ W. Since

α
(
aprr(A)

)
=W ⊆ aprt

(
α(A)

)
for every A ⊆W, we conclude that α is a left upper natural transformation. Let

y ∈ h
(
φ(W)

)
be given. Then there exists an element z ∈ W such that y = h

(
φ(z)

)
∈ φ−1

(
φ(z)

)
, which implies

that

y ∈ aprt({y}) ⊆ aprt(φ
−1

(
φ(z)

)
) = aprt({z}) = aprt({a}) =W.

Hence h
(
φ(W)

)
⊆W. Let ∅ , A ⊆W be given. Since

aprt

(
β(A)

)
⊆ aprt(φ

−1
(
φ(A)

)
) =W,

we conclude that aprt

(
β(A)

)
=W. Therefore,

β
(
aprr(A)

)
= β(W) = h

(
φ(W)

)
⊆W = aprt

(
β(A)

)
.

We infer that β is a left upper natural transformation. Also we have φα = φβ. The hypothesis implies α = β,
which is a contradiction.

Sufficiency. The proof is clear.
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(3). Necessity. We proceed by contradiction. Assume that there exist a, b ∈ U such that φ(a) = φ(b) with
a , b. Let W := φ(U) and let r : W → P∗(W) be given by r(w) = s(w)∩φ(U). Define α, β : W → U by α(w) = a
and β(w) = b. For every x ∈ U, we have

aprt

(
α
(
φ(u)

))
= aprt(a) = {a} = α

(
aprr({φ(u)})

)
.

Hence α is an upper natural transformation, and similarly, β is an upper natural transformation. It is clear
φα = φβ, but α , β.

Sufficiency. The proof is clear.

4. Product and coproduct

In this section, we study the coproduct and product on approximation spaces. First, we see that
RNTAprS, LNTAprS, and NTAprS have all coproducts and then we see that under the stronger conditions
LNTAprS and NTAprS have all products.

Let C be a category and let (Aα)α∈I be a family of objects in C. Then a coproduct of this family is an
object A, denoted by

∐
α∈I Aα, together with a family of morphisms (ια : Aα → A)α∈I, called injections, such

that for each object C and family of morphisms ( fα : Aα → C)α∈I, there exists a unique morphism f : A→ C
such that f ια = fα for each α ∈ I. Hence for every α ∈ I, the following diagram is commutative.

A

f   

Aα
ιαoo

fα
��

C

Proposition 4.1. The following statements hold:

(1) RNTAprS has all coproducts.

(2) LNTAprS has all coproducts.

(3) NTAprS has all coproducts.

Proof. (1). Let {(U j, t j)} j∈J be a family of approximation spaces and let U =
⋃

j∈J U j×{ j}. For every x ∈ U, there
exists a unique element j ∈ J such that x ∈ U j×{ j}, which implies that t : U→ P∗(U) given by t(u) = t j(u)×{ j}
for every u ∈ U j × { j} is a function. For every j ∈ J, we define ι j : U j → U by ι j(x) = (x, j). Since ι j is an
upper natural transformation, then ι j is a right upper natural transformation. We claim that (U, t) together
with {ι j} j∈J, is a coproduct of the family {(U j, t j)} j∈J. Let φ j be a right upper natural transformation from
(U j, t j) into (W, k) for any j ∈ J. Then, φ j

(
aprt j

({x})
)
⊆ aprk

(
(φ j{x})

)
for every x ∈ U j, and also by the universal

property of coproduct in the sets category, there exists a unique map φ : U → W such that φι j = φ j. It is
sufficient to show that φ is a unique a right upper natural transformation from (U, t) into (W, k). Let a ∈ U
be given; then there exist j ∈ J and a j ∈ U j such that a = ι j(a j), which implies that

φ
(
aprt({a})

)
= φ

(
aprt({ι j(a j)})

)
= φι j

(
aprt j

({a j})
)

= φ j

(
aprt j

({a j})
)

⊆ aprk

(
φ j({a j})

)
= aprk

(
φι j({a j})

)
= aprk

(
φ({a})

)
.
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It implies that φ is a right upper natural transformation. It is clear that φ is unique.

(2). Let {(U j, t j)} j∈J be a family of approximation spaces and let U =
⋃

j∈J U j × { j}. For every x ∈ U,
there exists a unique element j ∈ J such that x ∈ U j × { j}, which implies that t : U → P∗(U) given by
t(u, j) = t j(u)×{ j} for every (u, j) ∈ U j×{ j} is a function. For every j ∈ J, we define ι j : U j → U by ι j(x) = (x, j).
For every A ⊆ U j, we have

(u, j) ∈ aprt(ι j(A))⇒ (a, j) ∈ t
(
(u, j)

)
= t j(u) × { j} for some a ∈ A

⇒ u ∈ aprt j
(a) ⊆ aprt j

(A) for some a ∈ A

⇒ (u, j) ∈ ι j
(
aprt j

(A)
)
.

Therefore ι j is a left upper natural transformation for every j ∈ J. We claim that (U, t) together with {ι j} j∈J,
is a coproduct of the family {(U j, t j)} j∈J. Let φ j be a left upper natural transformation from (U j, t j) into (W, k)
for any j ∈ J. Then, aprk

(
(φ j{x})

)
⊆ φ j

(
aprt j

({x})
)

for every (x, j) ∈ U j × J, and also by the universal property
of coproduct in the sets category, there exists a unique map φ : U → W such that φι j = φ j. It is sufficient
to show that φ is a unique a left upper natural transformation from (U, t) into (W, k). Let A ⊆ U be given.
Hence we have

u ∈ aprk

(
φ(A)

)
⇒ φ(a, j) ∈ k(u) for some (a, j) ∈ A

⇒ φ(a, j) = φ
(
ι j(a)

)
= φ j(a) ∈ k(u) for some (a, j) ∈ A

⇒ u ∈ aprk

(
φ j({a})

)
⊆ φ j

(
aprt j

({a})
)
= φι j

(
aprt j

({a})
)

for some (a, j) ∈ A

⇒ u ∈ φ
(
aprt j

({a}) × { j}
)
= φ

(
aprt

(
{(a, j)})

)
⊆ φ

(
aprt(A)

)
for some (a, j) ∈ A.

It implies that φ is a left upper natural transformation. It is clear that φ is unique.

(3). Let {(U j, t j)} j∈J be a family of approximation spaces and let U =
⋃

j∈J U j × { j}. For every x ∈ U, there
exists a unique element j ∈ J such that x ∈ U j×{ j}, which implies that t : U→ P∗(U) given by t(u) = t j(u)×{ j}
for every u ∈ U j×{ j} is a function. For every j ∈ J, we define ι j : U j → U by ι j(x) = (x, j). For every x ∈ U j,we
have

ι j
(
aprt j

({x})
)
= aprt j

({x}) × { j} = aprt

(
ι j({x})

)
.

Therefore, by Proposition 2.5, ι j is an upper natural transformation. We claim that (U, t) together with {ι j} j∈J,
is a coproduct of the family {(U j, t j)} j∈J. Let φ j be an upper natural transformation from (U j, t j) into (W, k)
for any j ∈ J. Then, φ j

(
aprt j

({x})
)
= aprt

(
(φ j{x})

)
for every x ∈ U j, and also by the universal property of

coproduct in the sets category, there exists a unique map φ : U → W such that φι j = φ j. It is sufficient to
show that φ is a unique upper natural transformation from (U, t) into (W, k). Let a ∈ U be given; then there
exist j ∈ J and a j ∈ U j such that a = ι j(a j). Hence we have

φ
(
aprt({a})

)
= φ

(
aprt({ι j(a j)})

)
= φι j

(
aprt j

({a j})
)

= φ j

(
aprt j

({a j})
)

= aprk

(
φ j({a j})

)
= aprk

(
φι j({a j})

)
= aprk

(
φ({a})

)
.

It implies that φ is an upper natural transformation. It is clear that φ is unique.
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Let C be a category and let (Aα)α∈I be a family of objects in C. Then a product of this family is an object
A, denoted by

∏
α∈I Aα, together with a family of morphisms (pα : A→ Aα)α∈I, called projections, such that

for each object C and family of morphisms ( fα : C→ Aα)α∈I, there exists a unique morphism f : C→ A such
that pα f = fα for each α ∈ I. Hence for every α ∈ I, the following diagram is commutative:

A
pα // Aα

C
f

``

fα

OO

Proposition 4.2. The category RNTAprS has all products.

Proof. Let {(U j, t j)} j∈J be a family of approximation spaces. Consider the set theoretic Cartesian product
U =

∏
j∈J U j and the projection map π j : U → U j, that is, π j((a j) j∈J) = a j for every (a j) j∈J ∈ U. Define

t : U → P∗(U) by t
(
(a j) j∈J

)
=

∏
j∈J t j(a j). We claim that (U, t) together with {π j} j∈J is a product of {(U j, t j)} j∈J

in the category RNTAprS. First we show that π j is a right upper natural transformation from (U, t) into
(U j, t j) for every j ∈ J. It is easy to see that

π j

(
aprt

(
{(a j) j∈J}

))
=

{
π j

(
(u j) j∈J

)
: (u j) j∈J ∈ aprt

(
(a j) j∈J

)}
=

{
π j

(
(u j) j∈J

)
: u j ∈ aprt j

(a j) for every j ∈ J
}

⊆

{
u ∈ U j : u ∈ aprt j

({a j})
}

=
{
u ∈ U j : u ∈ aprt j

(
π j

(
{(a j) j∈J}

))}
= aprt j

(
π j

(
{(a j) j∈J}

))
for every (a j) j∈J ∈ U, which implies that π j is a right upper natural transformation for every j ∈ J. Now
let φ j : V → U j be a right upper natural transformation from (V, s) into (U j, t j) for every j ∈ J. Then
φ j

(
aprs({x})

)
⊆ aprt j

(
φ j({x})

)
for every (x, j) ∈ V × J. Define φ : V → U by φ(x) =

(
φ j(x)

)
j∈J

. We show that φ is

a right upper natural transformation from (V, s) into (U, t). Let x ∈ V and let y ∈ φ
(
aprs({x})

)
be given. Then

y = φ(a) for some a ∈ aprs({x}), which implies that

y =
(
φ j(a)

)
j∈J
∈

∏
j∈J

φ j

(
aprs({x})

)
⊆

∏
j∈J

aprt j

(
φ j({x})

)
= aprt

((
φ j({x})

)
j∈J

)
for some a ∈ aprs({x}). Thus, φ is a right upper natural transformation. The rest is evident.

Remark 4.3. Let {(U j, t j)} j∈J be a family of approximation spaces. Consider the set theoretic Cartesian
product U =

∏
j∈J U j and the projection map π j : U → U j, that is, π j((a j) j∈J) = a j. Define t : U → P∗(U) by

t
(
(a j) j∈J

)
=

∏
j∈J t j(a j).

(1) Suppose that U j =
⋃

x∈U j
t j(x) for every j ∈ J. Let A ∈ P(U) and z ∈ aprt j

(
π j(A)

)
be given. Then there

exists an element (a j) j∈J ∈ A such that a j = π j

(
(a j) j∈J

)
∈ t j(z), and also, by our hypothesis, there exists

an element zi ∈ Ui such that ai ∈ ti(zi) for every i ∈ J \ { j}. We put u j := z and ui := zi for every i ∈ J \ { j},
then u := (u j) j∈J ∈ U, which implies that

(a j) j∈J ∈
∏
j∈J

t j(u j) = t
(
(u j) j∈J

)
,
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and so

z = u j = π j

(
(u j) j∈J

)
∈ π j

(
aprt(A)

)
.

Hence, π j is a left upper natural transformation from (U, t) into (U j, t j) for every j ∈ J.

(2) Let k ∈ J such that Uk ,
⋃

x∈Uk
tk(x), then there exists an element u ∈ Uk \

⋃
x∈Uk

tk(x). If (a j) j∈J ∈ U such
that ak = u and aprt j

({a j}) , ∅ for some k , j ∈ J, then

aprt j

(
π j({(a j) j∈J})

)
= aprt j

({a j}) , ∅ = π j

(
aprt

(
{(a j) j∈J})

)
.

Therefore, if there exists an element k ∈ J such that Uk ,
⋃

x∈Uk
tk(x), then π j is not a left upper

transformation for every k , j ∈ J.

(3) Let aprt j
({x}) , ∅ for every ( j, x) ∈ J×U j. If there exists an element j in J such that U j ,

⋃
x∈U j

t j(x) with
u ∈ U j \

⋃
x∈U j

t j(x), then there exists an element z ∈ aprt j
({u}), which follows that u ∈ t j(z) ⊆

⋃
x∈U j

t j(x),
a contradiction. Hence, U j =

⋃
x∈U j

t j(x) for every j ∈ J. Therefore, π j is a left upper natural
transformation from (U, t) into (U j, t j) for every j ∈ J.

(4) Let (u j) j∈J ∈ U with aprt

(
{(u j) j∈J}

)
, ∅ be given. By Proposition 4.5, we have

∅ , π j

(
aprt

(
{(u j) j∈J}

))
⊆ aprt j

(
π j({(u j) j∈J})

)
= aprt j

(u j)

for every j ∈ J. Hence, the following statements are equivalent:
(1) aprt({u}) , ∅ for every u ∈ U.
(2) aprt j

({x}) , ∅ for every ( j, x) ∈ J ×U j.

Example 4.4. Consider U1 := {a1, b1}, U2 := {a2, b2}, and V := {v, v′ }. Let (U1, t1), (U2, t2), and (V, s) be
approximation spaces such that

t1 :=
(

a1 b1
{a1, b1} {b1}

)
, t2 :=

(
a2 b2
{a2} {b2}

)
, and s :=

(
v v′

{v, v′ } {v′ }

)
.

We define φi : V → Ui by φi :=
(
v v′

ai bi

)
for every i ∈ {1, 2}. One can easily see that φi is a left upper

natural transformation from (V, s) to (Ui, ti). Consider U := U1 × U2, and define t : U → P∗(U) by t(x, y) =
t1(x) × t2(y). If (U, t) together with {πi}i∈{1,2} is a product of the family {(Ui, ti)}i∈{1,2}, then there exists a left
upper natural transformation φ from (V, s) to (U, t) such that π1φ = φ1 and π2φ = φ2, which implies that

φ =

(
v v′

(a1, a2) (b1, b2)

)
. On the other hand, we have

aprt

(
φ({v

′

})
)
= aprt

(
{(b1, b2)}

)
= {(a1, b2), (b1, b2)}
⊈ {(a1, a2), (b1, b2)}

= φ
(
{v, v

′

}

)
= φ

(
aprs(v

′

)
)
,

which is a contradiction. Hence, the family {(Ui, ti)}i∈{1,2} does not have product in the category LNTAprS.

In the following proposition under the same conditions, we show that LNTAprS and NTAprS have all
products.
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Proposition 4.5. Let {(U j, t j)} j∈J be a family of approximation spaces such that t j : U j → P
∗(U j) is given by t j(x) = {x}

for every ( j, x) ∈ J ×U j. Then the following statements hold:

(1) {(U j, t j)} j∈J has the product in the category LNTAprS.
(2) {(U j, t j)} j∈J has the product in the category NTAprS.

Proof. Consider the set theoretic Cartesian product U =
∏

j∈J U j and the projection map π j : U→ U j. Define

t : U→ P∗(U) by t
(
(a j) j∈J

)
=

∏
j∈J t j(a j).

(1). By Remark 4.3, π j is a left upper natural transformation from (U, t) into (U j, t j) for every j ∈ J.
Now let φ j : V → U j be a left upper natural transformation from (V, s) into (U j, t j) for every j ∈ J. Then
aprt j

(
φ j(A)

)
⊆ φ j

(
aprs(A)

)
for every A ⊆ V and every j ∈ J. Define φ : V → U by φ(x) =

(
φ j(x)

)
j∈J

. We show

that φ is a left upper natural transformation from (V, s) into (U, t). Let A ⊆ V be given. Then

(u j) j∈J ∈ aprt

(
φ(A)

)
⇒ φ(a) ∈ t

(
{(u j) j∈J}

)
for some a ∈ A

⇒ for every j ∈ J,u j = φ j({a}) for some a ∈ A

⇒ (u j) j∈J ∈ φ
(
aprs({a})

)
for some a ∈ A

⇒ (u j) j∈J ∈ φ
(
aprs(A)

)
.

Thus, φ is a left upper natural transformation. The rest is evident.
(2). First, we show that π j is an upper natural transformation from (U, t) into (U j, t j) for every j ∈ J.

Suppose that (a j) j∈J ∈ U. It is easy to see that

π j

(
aprt({(a j) j∈J})

)
= π j({(a j) j∈J}) = {a j} = aprt j

({a j}) = aprt j

(
π j((a j) j∈J)

)
.

Hence, by Proposition 2.5, π j is an upper natural transformation for every j ∈ J. Now let φ j : V → U j,
for any j ∈ J, be an upper natural transformation from (V, s) into (U j, t j) for j ∈ J. Then φ j

(
aprs({x})

)
=

aprt j

(
φ j({x})

)
= {φ j(x)} for every x ∈ V. Define φ : V → U by φ(x) = (φ j(x)) j∈J. We show that φ is an upper

natural transformation from (V, s) into (U, t). To see this, let x ∈ V. Then

φ
(
aprs({x})

)
= {φ(y) : y ∈ aprs({x})}

= {(φ j(y)) j∈J : y ∈ aprs({x})}
= {(φ j(x)) j∈J}

= {φ(x)}

= aprt

(
φ(x)

)
.

Thus, by Proposition 2.5, φ is an upper natural transformation. It is clear that π jφ = φ j for every j ∈ J.
Now, we prove that φ with this property is unique. Let ψ be an upper natural transformation from (V, s)
into (U, t) such that π jψ = φ j. Then, by the universal property of product in the sets category, ψ = φ.

5. Equalizer and coequalizer of a pair of morphisms

Let C be a category and let f , 1 : A→ B be a pair of morphisms in C. We recall from [1] that an object E,
also denoted by eq( f , 1), together with a morphism e : E→ A is called an equalizer of f and 1 if f ◦ e = 1 ◦ e
and for every morphism h : C → A with f ◦ h = 1 ◦ h, there exists a unique morphism h̄ : C → E such that
e ◦ h̄ = h.

C

h̄
��

h

��
E e

// A
f //
1
// B
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Example 5.1. Consider U := {1, 2, 3} and the map t : U→ P∗(U) given by t =
(

1 2 3
{1} {2} {3}

)
. If φ,ϕ : U→

U are given by

φ =

(
1 2 3
1 2 3

)
and ϕ =

(
1 2 3
2 3 1

)
,

then φ and ϕ are upper natural transformations from (U, t) to (U, t). Let (E, r) together with an upper natural
transformation ψ : E→ U be an equalizer of φ and ϕ in NTAprS. Then φψ = ϕψ, which implies that

ψ(E) ⊆ { x ∈ U : φ(x) = ϕ(x) } = ∅,

but this contradicts with ψ(E) , ∅. Therefore, φ and ϕ do not have equalizer.

Proposition 5.2. Let (U, t) and (V, s) be approximation spaces and let φ,ϕ : U→ V be two functions. We set

E := { x ∈ U : φ(x) = ϕ(x) },

and define r : E→ P∗(E) by r(x) = t(x) ∩ E. Suppose that the following statements hold:

(1) E , ∅,
(2) t(x) ∩ E , ∅ for every x ∈ E, and
(3) t(x) ∩ E , ∅ if and only if t(x) ⊆ E for every x ∈ U.

Then the following statements hold:

(1) If φ,ϕ : U → V are two right upper natural transformations from (U, t) to (V, s), then ψ : E → U given by
ψ(x) = x is a right upper natural transformation from (E, r) to (U, t), and (E, r) together with ψ is an equalizer
of φ and ϕ in RNTAprS.

(2) If φ,ϕ : U → V are two left upper natural transformations from (U, t) to (V, s) and suppose that x ∈ t(x) for
every x ∈ U, then ψ : E→ U given by ψ(x) = x is a left upper natural transformation from (E, r) to (U, t), and
(E, r) together with ψ is an equalizer of φ and ϕ in LNTAprS.

(3) If φ,ϕ : U → V are two upper natural transformations from (U, t) to (V, s) and x ∈ t(x) for every x ∈ U, then
ψ : E→ U given by ψ(x) = x is an upper natural transformation from (E, r) to (U, t), and (E, r) together with
ψ is an equalizer of φ and ϕ in NTAprS.

Proof. (1). At first, we prove that ψ is a right upper natural transformation. In order to approach this goal,
let us assume x ∈ E. In view of Proposition 2.6 and

ψ
(
aprr({x})

)
= aprr({x}) ⊆ aprt({x}) = aprt

(
ψ(x)

)
,

we infer that ψ is a right upper natural transformation from (E, r) to (U, t). Let ρ : W → U be a right upper
natural transformation from (W, q) to (U, t) such that φρ = ϕρ, which implies that ρ(W) ⊆ E. We define
ρ̄ : W → E by ρ̄(x) = ρ(x). It is clear that ρ̄ is a unique right upper natural transformation from (W, q) to (E, r)
such that the following diagram is commutative.

W

ρ̄

��

ρ

  
E

ψ
// U

ϕ //
φ
// V

(2). Let A ⊆ E be given. Then

aprt

(
ψ({A})

)
= aprt

(
{A}

)
= aprr

(
{A}

)
= ψ

(
aprr({A})

)
.
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We infer that ψ is a left upper natural transformation from (E, r) to (U, t). Let ρ : W → U be a left upper
natural transformation from (W, q) to (U, t) such that φρ = ϕρ. We define ρ̄ : W → E by ρ̄(x) = ρ(x). It is clear
that ρ̄ is a unique left upper natural transformation from (W, q) to (E, r) such that the following diagram is
commutative:

W

ρ̄

��

ρ

  
E

ψ
// U

ϕ //
φ
// V

(3). Let us assume x ∈ E. In view of Proposition 2.5, at first, we prove ψ is an upper natural transforma-
tion. In order to approach this goal, let us assume x ∈ E. In view of Proposition 2.5 and

ψ
(
aprr({x})

)
= aprr({x}) = aprt({x}) = aprt

(
ψ(x)

)
,

we infer that the map ψ is an upper natural transformation from (E, r) to (U, t). Let ρ : W → U be an upper
natural transformation from (W, q) to (U, t) such that φρ = ϕρ. We define ρ̄ : W → E by ρ̄(x) = ρ(x). It is
clear that ρ̄ is a unique upper natural transformation from (W, q) to (E, r) such that the following diagram is
commutative:

W

ρ̄

��

ρ

  
E

ψ
// U

ϕ //
φ
// V

Proposition 5.3. Let φ,ϕ : U→ V be two upper natural transformations from (U, t) to (V, s). We set

E := { x ∈ U : φ(x) = ϕ(x) }.

If an approximation space of (W, r) together with an upper natural transformation ψ : W → U is an equalizer of φ
and ϕ in NTAprS, then the following statements hold:

(1) E , ∅.
(2) φ

(
aprt({x})

)
= ϕ

(
aprt({x})

)
for every x ∈ E.

(3) If r(x) = {x} and t
(
ψ(x)

)
∩ ψ(W) , ∅ for every x ∈W, then ψ is an injection function.

Proof. Let the approximation space of (W, r) together with an upper natural transformation ψ : W → U be
an equalizer of φ and ϕ.

(1). Since ψ(W) ⊆ E, we infer that E , ∅.

(2). Let x ∈ E be given. Then,

φ
(
aprt({x})

)
= aprs

(
{φ(x)}

)
= aprs

(
{ϕ(x)}

)
= ϕ

(
aprt({x})

)
.

(3). By Proposition 3.3, ψ is a injection function, since ϕ in NTAprS is monomorphism.

Given two morphisms f , 1 : B → C, their coequalizer is an ordered pair (Z, e) with e f = e1 that is
universal with the property that if p : C → X satisfies p f = p1, then there exists a unique p̄ : Z → X with
p′e = p.

B
f //
1
// C

p
��

e // Z

p̄
��

X
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Proposition 5.4. Let φ,ϕ : U → V be two upper natural transformations from (U, t) to (V, s). If an approximation
space of (W, r) together with an upper natural transformation ψ : V → W is a coequalizer of φ and ϕ in NTAprS,
then the following statements hold:

(1) ψ
(
aprs({φ(x)})

)
= ψ

(
aprs({ϕ(x)})

)
for every x ∈ U.

(2) If aprr(A) , ∅ and

aprr(A) ⊆ ψ(U)⇒ A ⊆ ψ(U)

for every ∅ , A ⊆ V, then ψ is a surjective function.

Proof. (1). Let x ∈ U be given. Then,

ψ
(
aprs({φ(x)})

)
= ψ

(
φ
(
aprs({x})

))
= ψ

(
ϕ
(
aprs({x})

))
= ψ

(
aprs({ϕ(x)})

)
.

(2). By Proposition 3.2, ψ is a surjective function, since ϕ in NTAprS is an epimorphism.

Proposition 5.5. Letφ,ϕ : U→ V be two upper natural transformations from (U, t) to (V, s) such thatφ
(
aprt({u})

)
=

{φ(u)} for every u ∈ U, and assume that φ is an onto function. We set

C :=
{(
φ(x), ϕ(x)

)
: x ∈ U

}
.

Let θ be the equivalence relation on V generated by C (the least equivalence relation on V containing C), and suppose
that W := V/θ. Define r : W → P

∗(W) by r([x]θ) = { [x]θ }. If ψ : V → W is given by ψ(v) = [v]θ, then ψ is an
upper natural transformation from (V, s) to (W, r), and (W, r) together with ψ is a coequalizer of φ and ϕ in NTAprS.

Proof. It is clear that ψ is a function. Then

ψ
(
φ(u)

)
= [φ(u)]θ = [ϕ(u)]θ = ψ

(
ϕ(u)

)
,

and

ψ
(
aprs({φ(u)})

)
= ψ

(
φ
(
aprt({u})

))
= {[φ(u)]θ} = aprr

(
ψ(φ(u))

)
.

Hence, ψ is an upper natural transformation from (V, s) to (W, r) such that ψφ = ψϕ. Let α be an upper
natural transformation from (V, s) to (W′, r′) such that αφ = αϕ. We define α′ : W → W′ by α′([v]θ) = α(v).
Then for every u ∈ U,

α′
(
aprr

({
[φ(u)]θ

}))
= {α(φ(u))}

= α({φ(u)})

= α
(
φ
(
aprt({u})

))
= α

(
aprs

(
φ({u})

))
= aprr′

(
α
(
φ({u})

))
= aprr′

(
α′

({
[φ(u)]θ

}))
.

Therefore, α′ is an upper natural transformation from (W, r) to (W′, r′) such thatα′ψ = α, that is, the following
diagram is commutative:

U
φ //
ϕ
// V

α   

ψ // W

α′

��
W′
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It is clear that α′ is a unique a right upper natural transformation from (W, r) to (W′, r′) such that α′ψ = α.
Therefore, (W, r) together with ψ is a coequalizer of φ and ϕ in NTAprS.

Example 5.6. Consider U := {a, b, c}, V := {x, y, z}, and U := {a, b}. Define t : U → P∗(U), s : V → P∗(V), and
r : W → P∗(W) by

t =
(

a b c
{a, b} {b} {c}

)
, s =

(
x y z
{x, y} {x, y} {z}

)
and r =

(
a b
{a} {b}

)
.

If φ,ϕ : U→ V are given by

φ =

(
a b c
y x z

)
and ϕ =

(
a b c
x x z

)
,

then φ and ϕ are right upper natural transformations from (U, t) to (V, s). If ψ : W → U is given by

ψ =

(
a b
c b

)
, then ψ is a right upper natural transformations from (W, r) to (U, t). Let h : W′

→ U be a right

upper natural transformation from (W′

, r′ ) to (U, t) such that φh = ϕh. We define h : W′

→ W by h = ψ−1h.
It is clear that ψ is an equalizer of φ and ϕ, but φ

(
aprt(b)

)
, ϕ

(
aprt(b)

)
.

6. Applications and advantage

The rough set methodology has found many image processing, real-life recognition, and others. The
proposed method has many important advantages. Some of them are listed below.

- Provides efficient algorithms for finding hidden patterns in data.

- Finds minimal sets of data (data reduction).

- Evaluates significance of data.

- Generates minimal sets of decision rules from data.

- Easy to understand and offers a straightforward interpretation of results.

The method is particularly suited for parallel processing but in order to fully exploit this feature, a new
hardware solutions are necessary.

In applied mathematics, we encounter many examples of mathematical objects that can be multiplied
with each other. First of all, the real numbers themselves are such objects. Other examples are real-valued
functions, the complex numbers, matrices, infinite series, vectors in n-dimensional spaces, and vector-
valued functions. On the other hand, rough sets are originally proposed in the presence of an equivalence
relation. An equivalence relation is sometimes difficult to be obtained in real-world problems due to the
vagueness and incompleteness of human knowledge.

Example 6.1. In Table 1, there are six objects with three properties. It reflects on the experience of Q sales
staff to determine the quality of the goods and the existence of the train station near the store. The class
label is called the decision attribute. The information system that contains the decision attribute is called
the decision system. In Table 1, the pf (profitability) is the decision attribute. In other words, their decision
making characteristics are different. According to the table, we can introduce the set-valued mapping as
follows: Let U = {1, 2, 3, 4, 5, 6} and let W = U. Consider the set-valued mapping t : U → P∗(W), such

that t represents all objects and has similar properties, defined by t :=
(

1 2 3 4 5 6
{1} {2, 3} {2, 3} {4} {5} {6}

)
.

Let X = {1, 3, 6}, (stores have profitability), we have the following properties: aprt(X) = {1, 2, 3, 6} and
aprt(X) = {1, 6}. This means stores 1 and 6 are profitable and stores 1,2,3,6 are likely to profit. However,
stores 2,3 cannot be assigned under the mapping t.
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store E Q L pf

1 High Good No profit
2 medium Good No loss
3 medium Average No profit
4 Low Average No loss
5 medium Average Yes loss
6 High Average Yes profit

Table 1: Numerical Results.

7. Conclusion

Sciences have a natural tendency toward diversification and specialization. In particular, contemporary
rough sets consist of many different branches and are intimately related to various other fields. Each of
these branches and fields is growing rapidly and is itself diversifying. Fortunately, however, there is a
considerable amount of common ground similar ideas, concepts, and constructions. These provide a basis
for a general theory of structures. The equivalence relation, however, seems to be a very stringent condition
that may limit the application domain of the rough set model. From both theoretic and practical needs,
many authors have generalized the notion of approximation operators by using nonequivalence binary
relations.

The purpose of this paper was to present the fundamental concepts and results of such a theory,
expressed in the language of category theory. This paper created three categories NTAprS, RNTAprS, and
LNTAprS.
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