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Abstract. In this paper, we define the exterior square graph ΓE∧
G which is a graph associated to a non-cyclic

finite group with the vertex set G \ Z∧(G), where Z∧(G) denotes the exterior center of G, and two vertices
x and y are joined whenever x ∧ y = 1, where ∧ denotes the operator of non-abelian exterior square. We
investigate how the group structure can be affected by completeness, regularity and bipartition of this
graph.

1. Introduction

Niroomand et al. in [4] assigned the non-exterior square graph of finite group Γ
∧

G to an arbitrary non-
cyclic group G by the vertex set G \ Z∧(G) and two vertices x and y join whenever x ∧ y , 1. We are going
to consider the complement of this graph in this paper, which is called the exterior graph of the group G.
So the vertex set of this graph which is denoted by ΓE∧

G is G \ Z∧(G) and two distinct vertices x and y are
adjacent whenever x ∧ y = 1. At first, we need to recall the concept of non-abelian exterior square of G.

The non-abelian exterior square G ∧ G of a group G is the group generated by the symbols a ∧ b subject
to the relations

ab ∧ c = (ab ∧ ac)(a ∧ c), a ∧ bc = (a ∧ b)(ba ∧ bc), a ∧ a = 1G∧G

for all a, b, c ∈ G, where ab = aba−1. This construction was introduced by Brown and Loday in [4]. It is
known that there exists a group homomorphism κ : G ∧ G → G′ sending a ∧ b to [a, b] such that the kerκ
is isomorphic toM(G), the Schur multiplier of the group G. The reader can find more details on the Schur
multiplier in [4]. Recall that a group G is called capable if G � E

Z(E) , for some group E. It was proved by
Ellis in [4] that G is capable if and only if the exterior center subgroup, namely

Z∧(G) = {a ∈ G| a ∧ x = 1 , for all x ∈ G}

is trivial. It is clear that Z∧(G) =
⋂

x∈G C∧G(x), in which C∧G(x) = {a ∈ G|a ∧ x = 1} is the exterior centralizer of
an element x.

On the base of [4], we consider simple graphs which are undirected, with no loops or multiple edges.
For any graph Γ, we denote the sets of the vertices and the edges of Γ by V(Γ) and E(Γ), respectively. We
use the following notations and terminology in the rest, which can be found in [4].
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• The null graph is the graph which has no vertices.

• The vertex that has no edges is called the single vertex.

• A complete graph is a graph in which each pair of distinct vertices is connected by an edge. The
complete graph with n vertices is denoted by Kn.

• For each natural number n, the edgeless graph (or empty graph) Kn of order n is the graph with n
vertices and zero edges.

• The degree dΓ(v) of a vertex v in Γ is the number of edges incident to v and if the graph is understood,
then we denote dΓ(v) simply by d(v). The order of Γ is |V(Γ)| and its maximum and minimum degrees
will be denoted by ∆(Γ) and δ(Γ), respectively.

• A graph Γ is regular if the degrees of all vertices of Γ are the same. A regular graph with vertices of
degree k is called a k−regular graph.

• A planar graph is a graph that can be embedded in the plane so that no two edges intersect geomet-
rically except at a vertex which both are incident.

• Let X be a subset of V(Γ). Then the induced subgraph Γ[X] is the graph whose vertex set is X and
whose edge set consists of all of the edges in E(Γ) that have both endpoint in X.

• A subest X of vertices of Γ is called a clique, if the induced subgraph on X is a complete graph. The
maximum size of a clique in a graph Γ is called the clique number of Γ and denoted by w(Γ).

• A subest X of vertices of Γ is called an independent set, if the induced subgraph on X has no edges.
The maximum size of an independent set in a graph Γ is called the independence number of Γ and
denoted by α(Γ).

• A vertex cover of a graph is a subset X of V(Γ) such that every edge of the graph is incident to at least
one vertex in X. The covering number β(Γ) is the number of vertices in a smallest vertex cover for Γ.

• The length of a cycle is defined the number of its edges. The length of the shortest cycle in a graph Γ
is called girth of Γ and denoted by 1irth(Γ). If Γ has no cycle we define the girth of Γ to be infinite. A
Hamailton cycle of Γ is a cycle that contains every vertex of Γ.

• If v and u are vertices in Γ, then d(u, v) denotes the length of the shortest path between v and u. If
there is no path connecting u and v we define d(u, v) to be infinite. The largest distance between all
pairs of the vertices of Γ is called the diameter of Γ, and is denoted by diam(Γ).

• A dominating set for a graph is a subset D of V(Γ) such that every vertex which does not belong to
D joins to at least one number of D by some edges. The domination number γ(Γ) is the number of
vertices in the smallest dominating set for Γ.

• The chormatic number a graph Γ is the smallest number of colors needed to color the vertices of so
that no two adjacent vertices share the same color and denoted by χ(Γ).

• The edge chormatic number of a graph Γ is the smallest number of colors necessary to color each
edge of such that no two edges incident on the same vertex have the same color and denoted by χ′(Γ).
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2. Exterior square graph

Throughout this section, G is a finite group. We state some of basic graph theoretical properties of ΓE∧
G ,

such as independence number, regularity and domination number. Moreover, we give its effect on the
group theoretical properties of G.

According to the definition, it is obvious that de1(v) = |C∧G(v)| − |Z∧(G)| − 1 for every v ∈ V(ΓE∧
G ). Clearly

ΓE∧
G is precisely the null graph if and only if G is cyclic. In the following lemma, we list some elementary

properties of this graph.

Lemma 2.1. Let G be a finite group then:
(i) ΓE∧

G is the empty graph if and only if G is an elementary abelian 2-group.
(ii) If v is a single vertex of ΓE∧

G , then the order of v is 2 and G is capable
group.
(iii) The exterior square graph of G is not complete.
(iv) γ(ΓE∧

G ) ⩾ 2.

Proof. (i) According to [4,Theorem 2.5] and the fact ΓE∧
G is the complement of Γ∧G, the result follows.

(ii) Since de1(v) = 0, we have |C∧G(v)| = |Z∧(G)| + 1. Hence Z∧(G) = 1 and o(v) = 2.
(iii) Let ΓE∧

G be a complete graph. We have de1(v) = |G| − |Z∧(G)| − 1 for every v ∈ G \ Z∧(G). Hence
C∧G(v) = Z∧(G), which implies that v ∈ Z∧(G), a contradiction.
(iv) If {x} is a dominating set for ΓE∧

G , then de1(x) = |G| − |Z∧(G)| − 1. Hence |C∧G(x)| = |G|, which implies
that x ∈ Z∧(G), a contradiction.

According to [4,Example 3.3], we give some results on ΓE∧
G when G is an elementary abelian p-group, for

odd prime p.
The subgroup generated by an element x of G is denoted by ⟨x⟩.

Lemma 2.2. Let G be an elementary abelian p-group of rank n. Then |Z∧(G)| = 1 and |C∧(x)| = |⟨x⟩| = p for every
x ∈ G \ {1}.

By using Lemma 2.2, the exterior square graph associated to an elementary abelian p-group G is par-
titioned into pn−1 + pn−2 + pn−3 + · · · + p + 1 of complete graphs each is Kp−1 of order p − 1, that is
ΓE∧

G = Kp−1 ∪ Kp−1 ∪ ... ∪ Kp−1︸                       ︷︷                       ︸
(pn−1+pn−2+···+p+1)−times

.

Corollary 2.3. Let G be an elementary abelian p-group. ΓE∧
G is planer if and only if p = 2, 3 or 5.

For the regularity of this graph we have the following lemma.

Lemma 2.4. The following conditions are equivalent.
(i) ΓE∧

G is regular.
(ii) |C∧G(x)| = |C∧G(y)|, for every x, y ∈ G \ Z∧(G).
(iii) Γ∧G is regular.

Proof. Straightforward.

According to [4,Theorem 2.6, 2.7] and Lemma 2.4, we have the following lemma.

Lemma 2.5. (i) Let G be an abelian p-group. Then ΓE∧
G is a regular graph if and only if G = Cpk ⊕ C(n)

p , in which
k ⩾ 1, n ⩾ 0.

(ii) Let G =
k∏

i=1

Gi in which Gi have coprime orders. Then ΓE∧
G is regular if and only if ΓE∧

Gi
is regular for each i,

1 ≤ i ≤ k.
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The proof of the following lemma is similar to the proof of [4, Theorem 2.14] and [4, Corollary 2.15].

Lemma 2.6. (i) Let G and H be two non-cyclic groups with ΓE∧
G � ΓE∧

H and |V(ΓE∧
G )| is a prime number. Then

|G| = |H|.
(ii) Let G be a non-cyclic group and ΓE∧

G � Γ
E∧
S3

. Then G � S3.
(iii) Let G be a non-cyclic group. If ΓE∧

G � Γ
E∧
H , then H is also non-cyclic and |Z∧(H)| divides

(|G| − |Z∧(G)|, |C∧G(x)| − |Z∧(G)|, |G| − |C∧G(x)|),

for every x ∈ G \ Z∧(G).
(iv) Let G be a dihedral group of order 2m. If ΓE∧

G � Γ
E∧
H for some group H, then |G| = |H|.

Now we are going to state some relations betweenΓE∧
G and d∧(G). We recall that the concept of commutativity

degree d(G) and the exterior degree d∧(G) were defined by the following ratios, respectively.

d(G) = |{(x,y)∈G×G:[x,y]=1}|
|G|2 , d∧(G) = |{(x,y)∈G×G:x∧y=1}|

|G|2 .

It is clear that d∧(G) ⩽ d(G). Let C = {(x, y) ∈ G × G : x ∧ y = 1}, then the number of edges of the exterior
square graph of G is

E(ΓE∧
G ) = |C| − 2|Z∧(G)|(|G| − 1) − |G|.

Since ΓE∧
G is not complete, we give an upper bound for d∧(G) in the following lemma.

Lemma 2.7. Let G be a finite group. Then we have

d∧(G) < 1
2 +

|Z∧(G)|
|G| +

|Z∧(G)|2

2|G|2 −
3|Z∧(G)|

2|G|2 +
1
|G| .

Lemma 2.8. There is no group with ΓE∧
G a star graph.

Proof. Let ΓE∧
G be a star graph. Then there exists a vertex v ∈ G \ Z∧(G) such that de1(v) = |G| − |Z∧(G)| − 1.

Then |C∧G(v)| = |G|, which implies that v ∈ Z∧(G), a contradiction.

3. On exterior graph of groups with trivial Schur multiplier

In this secion, we give some graph theoretical properties such as girth and planarity on ΓE∧
G when

M(G) = 0. We have the following lemma.

Lemma 3.1. Let G be a finite group with trivial Schur multiplier. Then
(i) G ∧ G � G′.
(ii) [x, y] = 1 if and only if x ∧ y = 1 for all x, y ∈ G.
(iii) Z∧(G) = Z(G).

Proof. Straightforward.

IfM(G) = 0, then V(ΓE∧
G ) = G \ Z(G) and two vertices x and y are joined whenever [x, y] = 1. In this case,

ΓE∧
G is just the commuting graph which is defined in [4].

Consider the generalized quarternion group Q4n = ⟨a, b : an = b2, a2n = b4 = 1, ba = a−1b⟩ for some
integer n ⩾ 2. It ius known thatM(Q4n) = 0. Clearly, the center of Q4n is {1, an

} and CQ4n (x) = ⟨x⟩ for every
x ∈ Q4n \ ⟨a⟩. On the other hand, we know de1(x) = |CQ4n (x)| − |Z(Q4n)| − 1 for every x ∈ Q4n \ Z(Q4n). Thus
de1(ai) = 2n− 3 and de1(x) = 1 for 1 ⩽ i ⩽ 2n, i , n and x ∈ G \ ⟨a⟩. Therefore ΓE∧

Q4n
is partitioned into n copies

of K2 and a K2n−2 that is, ΓE∧
Q4n
= K2 ∪ K2 ∪ ... ∪ K2︸               ︷︷               ︸

n−times

∪K2n−2.
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Lemma 3.2. For the generalized quaternion group we have:
(i) 1irth(ΓE∧

Q4n
) = 3, for each n > 2.

(ii) diam(ΓE∧
Q4n

) = ∞.
(iii) ΓE∧

Q4n
is regular if and only if n = 2.

(iv) ΓE∧
Q4n

is planar if and only if n = 2 or 3.
(v) β(ΓE∧

Q4n
) = γ(ΓE∧

Q4
) = n + 1.

(vi) χ(ΓE∧
Q4n

) = 2n − 2.

Proof. Straightforward.

Lemma 3.3. Let G be a non-cyclic group and ΓE∧
G � Γ

E∧
Q4n

. Then |G| = 4n.

Proof. It is enough to show that |Z∧(G)| = 2. We know that Q4n contains non-central elements x, y such
that de1(x) = 1 and de1(y) = 2n − 3. Since ΓE∧

G � Γ
E∧
Q4n

, there exist 1, 1′ ∈ G \ Z∧(G) such that de1(1) = 1 and
de1(1′) = 2n − 3. On the other hand, de1(1) = |CQ4n (x)| − |Z(G)| − 1 = 1 and |Z∧(G)| divides |C∧G(1)|. Thus
|Z∧(G)| = 1 or 2. If |Z∧(G)| = 1, then |C∧G(1′)| = 2n − 1 and |G| = 4n − 1, which implies that |C∧G(1′)| does not
divide |G|, a contradiction.

Kumar Das et al. in [4,Section5] characterize all finite non-abelian groups whose commuting graphs are
planar. We state the proof of planarity on ΓE∧

G when G has trivial Schur multiplier, in a simple way.

Theorem 3.4. Let G be non-capable non-abelian group with trivial Schur multiplier. Then ΓE∧
G is planar if and only

if G is isomorphic to one of the groups Q8,Q12,SL(2, 3) or M16 = ⟨a, b : a2 = 1, aba = b−3
⟩.

Proof. The planarity of ΓE∧
G for the mentioned groups is obtained easily. Conversely Let ΓE∧

G is planar. Since
the complete graph of order 5 is not planar, we have ω(ΓE∧

G ) < 5. Now we claim that if ΓE∧
G is planer, then

|Z(G)| < 5. By contradiction, let |Z(G)| ⩾ 5. Put Tx = Z(G)x where x is an arbitrary element of Z(G). The
induced subgraph ΓE∧

Tx
of ΓE∧

G by Tx is a planar graph. But ΓE∧
Tx

contains K5, which is a contradiction. Hence
|Z(G)| < 5. We claim that π(G) ⊆ {2, 3, 5}, in which π(X) is the set of all prime divisors of the order of a group
X. Let p ∈ π(G) and p ≥ 7 then there exist an element x ∈ G of order p so ΓE∧

G contains K5.
Therefore we have 2 ⩽ |Z(G)| ⩽ 4 and π(G) ⊆ {2, 3, 5}. Now we consider the following cases.
Case 1. If 5 ∈ π(G), then there exists x ∈ G such that o(x) = 5. The induced subgraph ΓE∧

Tx
of ΓE∧

G by
Tx = {x, x2, x3, x4, xz} for z ∈ Z(G) \ {1} is a planar graph. But ΓE∧

Tx
contains K5. So we must have π(G) ⊆ {2, 3}.

Case 2. If π(G) = {2, 3}, then we have three subcases.
Subcase 1. Let |Z(G)| = 3. If there exists element x ∈ G \ Z(G) such that o(x) > 6 or o(x) = 3 or 4, then ΓE∧

G
is not planar. If o(x) = 6 such that Z(G) ⊂ ⟨x⟩, then |CG(x)| = 6. By using class equation, |G| ⩽ 18. There is no
group G such that |G| ≤ 18, |Z(G)| = 3 andM(G) = 1.

Subcase 2. Let |Z(G)| = 2. If there exists element x ∈ G \Z(G) such that o(x) > 6 or o(x) = 3, then ΓE∧
G is not

planar. If o(x) = 6 and o(y) = 4 such that Z(G) ⊂ ⟨x⟩, then |CG(x)| = 6 and |CG(y)| = 4 for all x, y ∈ G \ Z(G).
By using class equation and GAP, groups whose |Z(G)| = 2 andM(G) = 1 are Q12 and SL(2, 3). Hence ΓE∧

Q12

and ΓE∧
SL(2,3) are planar.

Subcase 3. |Z(G)| = 4. There exists element x ∈ G \ Z(G) such that o(x) = 3, then the induced subgraph
ΓE∧

Tx
of ΓE∧

G by Tx = {x, x2, xz1, xz2, xz3} for zi ∈ Z(G) \ {1}, 1 ⩽ i ⩽ 3 is a planar graph. But ΓE∧
Tx

contains K5 and
so ΓE∧

G is not planar.
Case 3. If π(G) = {3} or equivalently G be a 3-group, then |Z(G)| = 3 and o(x) = 3n for every x ∈ G \Z(G), for
some n ⩾ 1. Put Tx = Z(G)x∪Z(G)x−1. The induced subgraph ΓE∧

Tx
of ΓE∧

G by Tx contains K5. Therefore ΓE∧
G is

not planar.
Case 4. If π(G) = {2} or equivalently G be a 2-group, then |Z(G)| = 2 or 4. Here we have three subcases.

Subcase 1. Let Z(G) � C2×C2. There exists x ∈ G\Z(G) such that o(x) ⩾ 2n, n ⩾ 2. Put Tx = Z(G)x∪Z(G)x−1.
The induced subgraph ΓE∧

Tx
of ΓE∧

G by Tx is a planar graph. But ΓE∧
Tx

contains K5. So ΓE∧
G is not planar.
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Subcase 2. Z(G) � C4. If there exists element x ∈ G \Z(G) such that o(x) ⩾ 16, then the induced subgraph
ΓE∧

Tx
of ΓE∧

G by Tx = ⟨x⟩ \ Z(G) is a planar graph. But ΓE∧
Tx

contains K5. Therefore ΓE∧
G is not planar. If o(x) = 4

or 8 for every x ∈ G \ Z(G), then by using class equation, |G| ⩽ 32. By using GAP, the only group G whose
M(G) = 1, Z(G) � C4 and |G| ⩽ 32 is M16.

Subcases 3. Let Z(G) � C2. If there exists element x ∈ G \ Z(G) such that o(x) ⩾ 8, then the induced
subgraph ΓE∧

Tx
of ΓE∧

G by Tx = ⟨x⟩ \ Z(G) is a planar graph. But ΓE∧
Tx

contains K5 and so ΓE∧
G is not planar. If

o(x) = 4 or 2, for every x ∈ G \ Z(G), then by using class equation, |G| ⩽ 8. By using GAP, the only group G
whoseM(G) = 1, Z(G) � C2 and |G| ⩽ 8 is Q8.

The following lemma shows that all non-abelian groups except Q8 with trivial Schur multiplier satisfy
1irth(ΓE∧

G ) = 3.

Lemma 3.5. Let G be a non-abelian group such thatM(G) = 1 and G � Q8. Then 1irth(ΓE∧
G ) = 3.

Proof. If ΓE∧
G is not planar, then ΓE∧

G contains K5 and 1irth(ΓE∧
G ) = 3. Hence, we assume that ΓE∧

G is planar
graph.
First, if |Z(G)| , 1, then according to Lemma 3.4, we have three cases.
Case 1. Let G � Q12. Since the center of Q12 = ⟨a, b : a3 = b2, ba = a5b⟩ is {1, a3

}, we have a cycle {a, a2, a4
} in

ΓE∧
Q12

.
Case 2. Let G � SL(2, 3), we know that SL(2, 3) = ⟨a, b : a3 = b3 = (ab)2

⟩ and Z(G) = {1, a3
}. Therefore {a, a2, a4

}

is a cycle in ΓE∧
SL(2,3).

Case 3. Let G � ⟨a, b : bab = a3, b2 = 1⟩. Therefore {a, a2, a5
} is a cycle in ΓE∧

G .
Now let Z(G) = 1. In this case, we have two possibilities.
Case 1. If there exists element x ∈ G such that o(x) ⩾ 4, then {x, x2, x3

} is a cycle.
Case 2. If there exists element x ∈ G such that o(x) = 2 or 3, by using class equation, there is no group with
this condition. Hence the result follows.

4. Some properties on ΓE∧

G
when G is CE-group

In this section, we give some results on ΓE∧
G when G is CE-group.

Definition 4.1. A group G is called an exterior CE-group provided that C∧G(x) is cyclic for every x ∈ G.

We recall [4, Lemma 2.20], which is an essential tool in the next.

Lemma 4.2. The following conditions are equivalent for any group G
(i) G is CE-group.
(ii) If x ∧ y = 1, then C∧G(x) = C∧G(y), for all x, y ∈ G \ Z∧(G).
(iii) If x ∧ y = x ∧ z = 1, then y ∧ z = 1 , for all x, y, z ∈ G \ Z∧(G).

We give some elementary properties of ΓE∧
G when G is an exterior CE-group.

Lemma 4.3. Let G be non-cyclic CE-group. Then we have:
(i) ΓE∧

G is partitioned into at least two complete graphs.
(ii) ΓE∧

G is disconnected.
(iii) diam(ΓE∧

G ) = ∞.
(iv) ΓE∧

G is not Hamiltonian graph.
(v) If ∆(ΓE∧

G ) = 2n, then χ′(ΓE∧
G ) = 2n + 1.

(vi) If ∆(ΓE∧
G ) = 2n − 1, then χ′(ΓE∧

G ) = 2n − 1.
(vi) ∆(ΓE∧

G ) + 1 = χ(ΓE∧
G ).

Proof. It follows from Lemma 4.2 and [4,Exercise 6.2.1] directly.



M. Zameni et al. / Filomat 36:6 (2022), 1865–1872 1871

In the following lemmas, we give some properties on a group G when ΓE∧
G is a (p − 1)-regular graph or

planar.

Lemma 4.4. Let G be a non-cyclic CE-group. Then we have

(i) ΓE∧
G is 1-regular if and only if one of the following cases holds: Case 1. G is an elementary abelian 3-group.

Case 2. |Z∧(G)| = 2 and o(x) = 4 for every x ∈ G \ Z∧(G).

(ii) ΓE∧
G is (p − 1)-regular if and only if one of the following cases hold. Case 1. |Z∧(G)| = 1 and ΓE∧

G is partitioned
into the induced subgraph ΓE∧

G [⟨xi⟩] such that o(xi) = p + 1 for every xi ∈ G \ {1}. Case 2. |Z∧(G)| = p and
o(x) = 2 or 2p for every x ∈ G \ Z∧(G).

Proof. (i) Let ΓE∧
G be 1-regular. We know de1(x) = |C∧G(x)| − |Z∧(G)| − 1 = 1, for every x ∈ G \Z∧(G) and |Z∧(G)|

divides |C∧G(x)|. Then |Z∧(G)| = 1 or 2.
If |Z∧(G)| = 1, then |C∧G(x)| = 3 for every x ∈ G \ Z∧(G). So, G is an elementary abelian 3−group.
If |Z∧(G)| = 2, then C∧G(x) � C4 for every x ∈ G \ Z∧(G) and o(x) = 4.
Conversely, if G is an elementary abelian 3-group, then Z∧(G) = 1, o(x) = 3 for every x ∈ G \ Z∧(G). So
|C∧G(x)| = 3 and ΓE∧

G is 1-regular.
If |Z∧(G)| = 2 and o(x) = 4 for every x ∈ G \ Z∧(G), then C∧G(x) � C4, since G is non-cyclic CE-group. Then
de1(x) = 1 for every x ∈ G \ Z∧(G).
(ii) Let ΓE∧

G be (p − 1)-regular. Then Z∧(G) = 1 or p. We consider two following cases.
Case 1. |Z∧(G)| = 1, then |C∧G(x)| = p + 1 and C∧G(x) � Cp+1, for every x ∈ G \ Z∧(G). By using Definition 4.1,
the order of x divides p + 1.
Case 2. |Z∧(G)| = p, then |C∧G(x)| = 2p and C∧G(x) � C2p, for every x ∈ G \ Z∧(G). By using Definition 4.1,
o(x) = 2 or 2p.
Conversely, if |Z∧(G)| = 1 and ΓE∧

G is partitioned into ΓE∧
G [⟨xi⟩] such that o(xi) = p + 1 for every xi ∈ G \ {1}.

We have C∧G(x) � C|C∧G(x)|, then |C∧G(x)| = p + 1. Otherwise if |C∧G(x)| , p + 1, then there exists x ∈ G \ {1} such
that o(x) > p + 1. It is a contradiction.
If |Z∧(G)| = p and o(x) = 2 or 2p for every x ∈ G \ Z∧(G), then |C∧G(x)| = 2p. If |C∧G(x)| > 2p, then there exists
element y ∈ G \ Z∧(G) such that o(y) > 2p. It is a contradiction.

Lemma 4.5. Let G be non-cyclic CE-group. ΓE∧
G is planar if and only if one of the following cases holds.

(i) G is a 2-group such that Z∧(G) � C4 and o(x) = 8 for every x ∈ G \ Z∧(G).
(ii) ΓE∧

G is partitioned into the induced subgraph ΓE∧
G [⟨xi⟩] such that o(xi) = 6 and Z∧(G) � C3 for some xi ∈ G\Z∧(G).

(iii) |G| = 2n
× 3m, where m,n ⩾ 0 , Z∧(G) � C2 and o(x) ⩽ 6 for every x ∈ G \ Z∧(G).

(iv) |G| = 2n
× 3m

× 5r, where m,n, r ⩾ 0, |Z∧(G)| = 1, o(x) ⩽ 5 and if o(x) , o(y), x < ⟨y⟩ and y < ⟨x⟩ for every
x, y ∈ G \ Z∧(G), then x ∧ y , 1.

Proof. Suppose that ΓE∧
G is planar. We prove that |Z∧(G)| < 5. By contrary, let |Z∧(G)| ⩾ 5 and consider

Tx = xZ∧(G) for some x ∈ G \Z∧(G). The induced subgraph ΓE∧
Tx

of ΓE∧
G by Tx is a planar graph. On the other

hand, ΓE∧
G contains K5. It is a contradiction. Therefore de1(x) ⩽ 3 and |Z∧(G)| ⩽ 4. We consider four cases.

(i) |Z∧(G)| = 4, then Z∧(G) � C4 and |C∧(x)| ⩽ 8 for every x ∈ G \Z∧(G). We know that |Z∧(G)| divides |C∧(x)|,
C∧(x) � C8.
(ii) |Z∧(G)| = 3, then Z∧(G) � C3 and |C∧(x)| ⩽ 7 for every x ∈ G \ Z∧(G). Hence C∧(x) � C6.
(iii) |Z∧(G)| = 2, then Z∧(G) � C2 and |C∧(x)| ⩽ 6 for every x ∈ G \ Z∧(G). Therefore C∧(x) � C6 or C4.
(iv) |Z∧(G)| = 1, then C∧(x) � Cn, where n = 2, 3, 4, 5, as required.
The converse is trivial.

Corollary 4.6. Let G be non-cyclic CE-group such that Z∧(G) = 1 and |C∧(x)| = 2 or 3 or 5. Then ΓE∧
G is planar if

and only if G is an elementary abelian p-group.

Proof. Straightforward.
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