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Some Remarks on Star-Menger Spaces Using Box Products
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Abstract. This article is a continuation of study of star-Menger selection properties in line of (Kočinac, 2009,
2015), where we mainly use covers consisting of Gδ sets with certain additional condition. It is observed that
star-Mengerness is equivalent to the fact that every such type of cover of a space has a countable subcover.
We improve this result by considering ‘subcovers of cardinality less than b’ instead of ‘countable subcovers’,
which is our primary observation. We also show that it is possible to produce non normal spaces using box
products and dense star-Menger subspaces.

1. Introduction

The study of star selection principles was initiated in 1999 by Kočinac (see [8]). However, the study of
selection principles was initiated by Borel [2], Menger [14], Hurewicz [5], Rothberger [15], and others. The
systematic study of selection principles in topology was started by Scheepers [17] (see also [6]) and in the
last twenty five years it has become one of the most active research areas of set theoretic topology. Various
topological properties have been defined or characterized in terms of selection principles. The selection
principles also have various applications in several branches of Mathematics. Nowadays, many authors
have made investigations involving selection principles and star selection principles and interesting results
have been obtained, see for instance [1, 7, 9–11, 11, 12, 16, 18–27], among other works. The star version of
the Menger property [17], called the star-Menger property [8], plays a central role in this article.

In this paper we concentrate on a certain kind of covering of a space by Gδ sets to study star-Menger
spaces. We first observe that if every such type of cover of a space X has a countable subcover, then this is
equivalent to the star-Menger property of X (Theorem 3.4). Our primary concern is to investigate whether
the above result holds if the cardinality of the subcover is replaced by larger cardinals. We give a partial
answer to it using box products (Theorem 3.12). It is also observed that star operations can be used to
produce non normal spaces using box products as well.

2. Preliminaries

Throughout the paper (X, τ) stands for a Hausdorff topological space. Let ω denote the first infinite
ordinal, ω1 denote the first uncountable ordinal and ω + 1 (= [0, ω]) denote the one point compactification
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of ω when ω (= [0, ω)) viewed as a topological space with the order topology. For undefined notions and
terminologies see [4].

If {Xα ∶ α ∈ Λ} is a family of spaces, then the box product ⨉α∈ΛXα of these spaces is the set∏α∈ΛXα with
basis consisting of all sets of the form ∏α∈ΛUα, where for each α ∈ Λ, Uα is open in Xα. If for each α ∈ Λ,
Xα = X, then we will use ⨉ΛX for ⨉α∈ΛXα. For results concerning box products in the context of classical
selection principles, see [13, 28].

A space X is said to be Lindelöf if every open cover has a countable subcover. A space X is said to be
para-Lindelöf if every open cover has a locally countable open refinement. We shall use the symbol O to
denote the collection of all open covers of X. A space X is said to be Menger [17] if for each sequence (Un)

of open covers of X there is a sequence (Vn) such that for each n, Vn is a finite subset of Un and ∪n∈ωVn is an
open cover of X.

For a subset A of a space X and a collection P of subsets of X, St(A,P) denotes the star of A with respect
to P , that is the set ∪{B ∈ P ∶ A ∩ B ≠ ∅}. For A = {x}, x ∈ X, we write St(x,P) instead of St({x},P) [4].

A space X is said to be star-Menger [8] if for each sequence (Un) of open covers of X there is a sequence
(Vn) such that for each n, Vn is a finite subset of Un and ∪n∈ω{St(V,Un) ∶ V ∈ Vn} is an open cover of X.

The eventual dominance relation ≤∗ on the Baire space ωω is defined by f ≤∗ 1 if and only if f (n) ≤ 1(n),
for all but finitely many n. A subset A of ωω is said to be bounded if there is a 1 ∈ ωω such that f ≤∗ 1, for
all f ∈ A. The minimum cardinality of a unbounded subset of ωω is denoted by b.

Let X be a space, A ⊆ X and κ be a regular cardinal. Then X is said to be κ-contcentrated on A, if for
every open set U containing A, ∣X ∖U∣ < κ. If κ = ω1, then we say that X is concentrated on A.

For a collection {Xn ∶ n ∈ ω} of sets, let ρ be a relation on ∏n∈ω Xn defined as follows. For any
x = (xn), y = (yn) ∈ ∏n∈ω Xn, we say that xρy if and only if {n ∈ ω ∶ xn ≠ yn} is finite. Clearlyρ is an equivalence
relation on ∏n∈ω Xn and the set of all equivalence classes is denoted by ∏n∈ω Xn/ρ. For x ∈ ∏n∈ω Xn, the
equivalence class containing x is denoted by ρ(x). If Y ⊆ ∏n∈ω Xn, we define ρ(Y) = ∪y∈Yρ(y). For a
collection of topological spaces {Xn ∶ n ∈ ω}, let ⨉n∈ω Xn/ρ denote the quotient space of ⨉n∈ω Xn determined
by ρ. If Yn ⊆ Xn for each n, then we call the product ∏n∈ω Yn ⊆ ∏n∈ω Xn a cylinder in ⨉n∈ω Xn. Moreover if
for each n, Yn is open in Xn, then we call∏n∈ω Yn an open cylinder in ⨉n∈ω Xn.

3. Main Results

We start with a basic reformulation of the star-Menger property which will be used subsequently.

Lemma 3.1. A space X is star-Menger if and only if for every sequence (Un) of open covers of X there is a sequence
(Vn) such that for each n, Vn is a finite subset of Un and X = ∩n∈ω ∪m≥n St(∪Vm,Um).

Proof. Let (Un) be a sequence of open covers of X. Then for each n, (Um)m≥n is a sequence of open covers of
X. Since X is star-Menger, for each n, there is a sequence (V(n)m )m≥n such that for each m ≥ n, V(n)m is a finite
subset of Um and X = ∪m≥nSt(∪V(n)m ,Um). For each m, choose Vm = ∪n≤mV

(n)
m . Thus we get for each m, Vm is a

finite subset of Um. Clearly for any n and m ≥ n, ∪V(n)m ⊆ ∪Vm. It follows that X = ∪m≥nSt(∪Vm,Um), for all n
and hence X = ∩n∈ω ∪m≥n St(∪Vm,Um).

Conversely let (Un) be a sequence of open covers of X. By the given hypothesis we have a sequence (Vn)

such that for each n, Vn is a finite subset of Un and X = ∩n∈ω∪m≥n St(∪Vm,Um). This gives X = ∪m≥nSt(∪Vm,Um),
for all n and then X = ∪n∈ωSt(∪Vn,Un). This completes the proof.

In the following result we show that using the star operation on a sequence of open covers, one can
obtain a dominating subset of the Baire space.

Lemma 3.2. Let X be a Lindelöf space which is not star-Menger. If (Un) is a sequence of open covers of X which
witnesses that X is not star-Menger, then using Un’s it is possible to construct a dominating subset of ωω.

Proof. Since the sequence (Un) of open covers of X witnesses that X is not star-Menger, by Lemma 3.1, we
can say that for any sequence (Vn) with for each n, Vn is a finite subset of Un, X ≠ ∩n∈ω ∪m≥n St(∪Vm,Um).
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Without loss of generality, we assume that Un = {U
(n)
m ∶ m ∈ ω}. For each x ∈ X, define fx ∶ ω → ω by

fx(n) =min{m ∶ x ∈ U(n)m }. Let D = { fx ∶ x ∈ X}. We claim that D is a dominating subset of ωω. Suppose that
D is not dominating. Then there exists a f ∈ ωω such that for every fx ∈ D, fx(n) ≤ f (n) for infinitely many
n. For each n, choose Vn = {U

(n)
m ∶ m ≤ f (n)} and thus each Vn is a finite subset of Un. We now show that

X = ∩n∈ω ∪m≥n St(∪Vm,Um). Fix n ∈ ω and let x ∈ X. Since fx(m) ≤ f (m) for infinitely many m, there exists m0

such that m0 ≥ n and fx(m0) ≤ f (m0). It follows that U(m0)
fx(m0) ∈ Vm0 . Thus x ∈ St(∪Vm0 ,Um0) and consequently

x ∈ ∪m≥nSt(∪Vm,Um), for all n. This gives X = ∩n∈ω ∪m≥n St(∪Vm,Um), which is a contradiction. Hence D is
dominating.

Lemma 3.3. Let {Xn ∶ n ∈ ω} be a family of spaces, let X be a space and let y = (yn) ∈ ⨉n∈ω Xn. If O is an open subset
of X×⨉n∈ω Xn containing X×ρ(y), then there exists an open cylinder V in⨉n∈ω Xn such that X×ρ(y) ⊆ X×ρ(V) ⊆ O.

Proof. For each n ∈ ω, let U(n) = X0 × X1 × ⋯ × Xn−1 ×U(n)yn,n ×U(n)yn+1,n+1 × ⋯, where for each n ∈ ω, U(n)yn,n is an

open subset of Xn such that yn ∈ U(n)yn,n and X ×U(n) ⊆ O. Now, for each n ∈ ω, let Vn = ∩m≤nU(m)yn,n and we put
V = ∏n∈ω Vn. It is easy to verify that X × ρ(V) ⊆ O.

For a space X, we denote the collection of all star-Menger subspaces of X byM(X). Another reformu-
lation of the star-Menger property, which of our primary concern, is the following.

Theorem 3.4. For a space X the following assertions are equivalent.

(1) X is star-Menger.

(2) Every cover {GM ∶M ∈ M(X)} of X, where GM is a Gδ subset of X with M ⊆ GM, has a countable subcover.

Proof. We only give proof of (2) ⇒ (1). Let (Un) be a sequence of open covers of X. Then for each M ∈ M(X),
(Un) is a sequence of covers of M by open sets in X. Apply the star-Menger property of M to (Un) to obtain
a sequence (V(M)n ) such that for each n, V(M)n is a finite subset of Un and M ⊆ ∩n∈ω ∪m≥n St(∪V(M)m ,Um). For
each M, let GM = ∩n∈ω ∪m≥n St(∪V(M)m ,Um) and consequently {GM ∶M ∈ M(X)} is a cover of X with each GM
is a Gδ subset of X containing M. By the given hypothesis we obtain a countable subfamily {GMi ∶ i ∈ ω}
of {GM ∶ M ∈ M(X)} that covers X. For each n, Vn = ∪i≤nV

(Mi)
n is a finite subset of Un. We now show that

X = ∩n∈ω ∪m≥n St(∪Vm,Um). Let n ∈ ω be fixed. Next we pick a Mi ∈ M(X) such that GMi ∈ {GMi ∶ i ∈ ω}.
For m ≥ n + i, ∪V(Mi)

m ⊆ ∪Vm. It follows that ∪m≥n+iSt(∪V(Mi)
m ,Um) ⊆ ∪m≥nSt(∪Vm,Um) and subsequently

GMi ⊆ ∪m≥nSt(∪Vm,Um). This gives us ∪i∈ωGMi ⊆ ∪m≥nSt(∪Vm,Um) and hence X = ∪m≥nSt(∪Vm,Um). Since n
was chosen arbitrarily, X = ∩n∈ω ∪m≥n St(∪Vm,Um). This completes the result.

A space X is called a P-space if every Gδ set is open.

Corollary 3.5. Let f ∶ X → Y be a closed continuous mapping from X onto Y such that f−1(y) is star-Menger for
each y ∈ Y. If Y is a Lindelöf P-space, then X is star-Menger.

Proof. Let A = { f−1(y) ∶ y ∈ Y}. So A ⊆ M(X). For each y ∈ Y, let G f−1(y) be a Gδ subset of X containing
f−1(y). It is easy to see that {G f−1(y) ∶ y ∈ Y} is a cover of X. Since f is closed and Y is a P-space,
f (X ∖ G f−1(y)) is closed in Y. Choose V f−1(y) = Y ∖ f (X ∖ G f−1(y)). It is immediate that for each y ∈ Y,
f−1(y) ⊆ f−1(V f−1(y)) ⊆ G f−1(y). Since {V f−1(y) ∶ y ∈ Y} is an open cover of Y, there exists a countable
subfamily {V f−1(yn) ∶ n ∈ ω} of {V f−1(y) ∶ y ∈ Y} that covers Y. Consequently { f−1(V f−1(yn)) ∶ n ∈ ω} is an
open cover of X and it follows that {G f−1(yn) ∶ n ∈ ω} is a countable subfamily of {G f−1(y) ∶ y ∈ Y} that covers
X. From this one can easily observe that every cover {GM ∶M ∈ M(X)} of X, where GM is a Gδ subset of X
with M ⊆ GM, has a countable subcover. By Theorem 3.4, X is star-Menger.

Corollary 3.6. If X = ∪n∈ωXn, where each Xn is star-Menger, then X is star-Menger.

It is interesting to ask the following question.
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Problem 3.7. What is the largest possible cardinal κ for which the following assertions are equivalent?

(1) X is star-Menger.

(2) Every cover {GM ∶M ∈ M(X)} of X, where GM is a Gδ subset of X with M ⊆ GM, has a subcover of cardinality
less than κ.

In Theorem 3.12 we will provide a partial answer to this question. Before, we provide some results
concerning about box products.

Theorem 3.8. If {Xn ∶ n ∈ ω} is a family of compact spaces and X is a star-Menger space, then the quotient mapping
q ∶ X ×⨉n∈ω Xn → (X ×⨉n∈ω Xn)/ρ is closed.

Proof. The proof follows directly from Lemma 3.3.

Corollary 3.9. ([13]) If {Xn ∶ n ∈ ω} is a family of compact spaces, then the quotient mapping q ∶ ⨉n∈ω Xn →

⨉n∈ω Xn/ρ is closed.

Lemma 3.10. ([3]) Let f ∶ X → Y be a closed continuous map from X onto Y. If Y is para-Lindelöf and f−1(y) is
Lindelöf for each y ∈ Y, then X is para-Lindelöf.

Proof. LetU be an open cover of X. For each y ∈ Y, choose a countable setVy ⊆ U such that f−1(y) ⊆ ∪Vy. Since
f is closed, for each y ∈ Y, there exists an open set Uy in Y containing y such that f−1(y) ⊆ f−1(Uy) ⊆ ∪Vy.
The open cover {Uy ∶ y ∈ Y} of Y has a locally countable open refinement V . Clearly { f−1(V) ∶ V ∈ V} is a
locally countable open cover of X and for each V ∈ V , we get a y(V) ∈ Y with f−1(V) ⊆ f−1(Uy(V)) ⊆ ∪Vy(V).
It can be easily observed that { f−1(V) ∩U ∶ V ∈ V and U ∈ Vy(V)} is a locally countable open refinement of
U . Hence X is para-Lindelöf.

Theorem 3.11. If X is a star-Menger Lindelöf space and {Xn ∶ n ∈ ω} is a family of compact spaces such that⨉n∈ω Xn
is paracompact, then X ×⨉n∈ω Xn is para-Lindelöf.

Proof. By Theorem 3.8, the quotient mappings q1 ∶ ⨉n∈ω Xn → ⨉n∈ω Xn/ρ and q2 ∶ X×⨉n∈ω Xn → (X×⨉n∈ω Xn)/ρ
are closed. Clearly ⨉n∈ω Xn/ρ is paracompact as paracompactness is preserved under closed continuous
mappings. It is also easy to see that ⨉n∈ω Xn/ρ is homeomorphic to (X × ⨉n∈ω Xn)/ρ. Consequently
(X×⨉n∈ω Xn)/ρ is paracompact. For any ρ(y) ∈ ⨉n∈ω Xn/ρ, q−1

1 (ρ(y)) is a σ-compact subspace of⨉n∈ω Xn, the
reason is as follows. Let y = (yn) and choose Y = ⨉n∈ω Zn, where Zn = {yn}, for all but finitely many n and
for these finitely many n, Zn = Xn. Then obviously Y is compact. It is immediate that we can find at most
countably many Y for y, say {Yn ∶ n ∈ ω}, and clearly q−1

1 (ρ(y)) = ∪n∈ωYn. For any X×ρ(y) ∈ (X×⨉n∈ω Xn)/ρ,
q−1

2 (X × ρ(y)) = X × ∪n∈ωYn is a Lindelöf subspace of X × ⨉n∈ω Xn. Thus X × ⨉n∈ω Xn is para-Lindelöf by
Lemma 3.10.

We now attempt to give a partial answer to the Problem 3.7.

Theorem 3.12. For a Lindelöf space X the following assertions are equivalent.

(1) X is star-Menger.

(2) Every cover {GM ∶M ∈ M(X)} of X, where GM is a Gδ subset of X with M ⊆ GM, has a subcover of cardinality
less than b.

Proof. It is enough to give proof of (2) ⇒ (1). Let (Un) be a sequence of open covers of X. Without loss of
generality, we assume that each Un = {U

(n)
m ∶ m ∈ ω}. Let M ∈ M(X) be fixed. For each x ∈ M, we define

fx ∶ ω → ω by fx(n) = min{m ∶ x ∈ U(n)m }. Let DM = { fx ∶ x ∈M} and P = {(x, fx) ∶ x ∈M}. We now show that
DM is not dominating. Suppose that DM is dominating. Let 1 ∶ ω → ω + 1 be such that 1(n) = ω, for all n.
We claim that P ∩ (M × ρ(1)) = ∅, where P is the closure of P in M ×⨉ω(ω + 1). Let (y, f ) ∈M × ρ(1). Since
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f ∈ ρ(1), there is a n0 ∈ ω such that f (n) = 1(n) = ω, for all n ≥ n0. From fy(n0) =min{m ∶ y ∈ U(n0)
m }we have

y ∈ U(n0)
fy(n0) and denote by Uy = U(n0)

fy(n0)∩M. Let V = ∏n∈ω Vn, where Vn = ω+1 if n ≠ n0 and Vn0 = [ fy(n0)+1, ω].
Then Uy×V is an open set in M×⨉ω(ω+1) containing (y, f ). We pick a (x, fx) ∈ P with x ∈ Uy. Subsequently
x ∈ U(n0)

fy(n0) and fx(n0) ≤ fy(n0). It follows that (x, fx) ∉ Uy × V and thus we have P ∩ (Uy × V) = ∅. This

shows that P ∩ (M × ρ(1)) = ∅. Then M × ρ(1) ⊆ (M × ⨉ω(ω + 1)) ∖ P and by Lemma 3.3, we can find an
open cylinder W in ⨉ω(ω+1) containing 1 such that M×ρ(1) ⊆M×ρ(W) ⊆ (M×⨉ω(ω+1))∖P. This gives
us P ∩ (M × ρ(W)) = ∅. Without loss of generality, we can assume that W = ∏n∈ω[kn, ω] as 1 ∈W. Suppose
that DM ∩ ρ(W) = ∅. This gives us DM ⊆ (ω + 1)ω ∖ ρ(W) i.e. DM ⊆ ωω ∖ ρ(W). Let ϕ ∈ ωω be such that
ϕ(n) = kn, for all n. Since DM is a dominating subset of ωω, there exists a ψ ∈ DM such that ϕ(n) ≤ ψ(n),
for all but finitely many n i.e. kn ≤ ψ(n), for all but finitely many n. It follows that ψ ∈ ρ(W) i.e. ψ ∉ DM,
which is absurd. This shows that DM ∩ ρ(W) ≠ ∅. Then there is a fx0 ∈ DM such that fx0 ∈ ρ(W) and hence
(x0, fx0) ∈ P∩(M×ρ(W)), which is a contradiction. Thus DM is not dominating. Then there exists a hM ∈ ωω

such that for every x ∈M, fx(n) ≤ hM(n) for infinitely many n. For each n, V(M)n = {U(n)m ∶ m ≤ hM(n)} is a finite
subset of Un. Now proceeding similarly as in the proof of Lemma 3.2, we obtain M ⊆ ∩n∈ω∪m≥n St(∪V(M)m ,Um)

with GM = ∩n∈ω ∪m≥n St(∪V(M)m ,Um) is a Gδ subset of X. Then {GM ∶ M ∈ M(X)} is a cover of X and hence
by the given hypothesis there is a subfamily {GMα ∶ α < κ}, κ < b, of {GM ∶M ∈ M(X)} that covers X. Since
{hMα ∶ α < κ} is of cardinality less than b, {hMα ∶ α < κ} is a bounded subset of ωω. Consequently there exists
a h ∈ ωω such that hMα ≤

∗ h, for all α < κ. For each n,Wn = {U
(n)
m ∶ m ≤ h(n)} is a finite subset of Un. Next we

show that X = ∩n∈ω ∪m≥n St(∪Wm,Um). Let n ∈ ω be fixed and GMβ ∈ {GMα ∶ α < κ}. Since hMβ ≤
∗ h, we can

find a n1 ∈ ω such that hMβ(m) ≤ h(m), for all m ≥ n1. Without loss of generality, we assume that n1 ≥ n. It is

clear that ∪V(Mβ)
m ⊆ ∪Wm, for all m ≥ n1 and hence St(∪V(Mβ)

m ,Um) ⊆ St(∪Wm,Um), for all m ≥ n1. It becomes
GMβ ⊆ ∪m≥n1 St(∪V(Mβ)

m ,Um) ⊆ ∪m≥n1 St(∪Wm,Um) and then GMβ ⊆ ∪m≥nSt(∪Wm,Um). Since β < κ is arbitrarily
chosen, ∪α<κGMα ⊆ ∪m≥nSt(∪Wm,Um). It follows that X = ∩n∈ω ∪m≥n St(∪Wm,Um). Hence the result.

It is interesting to observe that Corollary 3.6 can be extended to κ-many star-Menger spaces, where κ < b.

Corollary 3.13. Let κ < b. If X = ∪α<κXα is Lindelöf and each Xα is star-Menger, then X is also star-Menger.

Another immediate consequence of the above result is that every Lindelöf space, which is b-concentrated
on a star-Menger subspace, is also star-Menger.

Corollary 3.14. Let Y be a star-Menger subspace of a Lindelöf space X. If X is b-concentrated on Y, then X is
star-Menger.

Proof. Let A = {Y} ∪ {{x} ∶ x ∈ X} ⊆M(X). For each M ∈ M, let GM be a Gδ subset of X containing M. Since
X is b-concentrated on Y, ∣X∖GY∣ < b. Choose X∖GY = {xα ∶ α < κ}, where κ < b. Let B = {Y}∪{{xα} ∶ α < κ}.
Since {GM ∶M ∈ B} covers X with ∣B∣ < b, X is star-Menger by Theorem 3.12.

We end with another useful application of Lemma 3.1 and 3.2.

Theorem 3.15. Let X be a Lindelöf space which is not star-Menger. If X contains a dense star-Menger subspace,
then X ×⨉ω(ω + 1) is not normal.

Proof. By Lemma 3.1, there is a sequence (Un) of open covers of X such that for all sequences (Vn)with for
each n, Vn is a finite subset of Un, X ≠ ∩n∈ω ∪m≥n St(∪Vm,Um). Without loss of generality, for each n, choose
Un = {U

(n)
m ∶ m ∈ ω}. For each x ∈ X, we define fx ∶ ω → ω by fx(n) = min{m ∶ x ∈ U(n)m }. Let D = { fx ∶ x ∈ X}

and P = {(x, fx) ∶ x ∈ X}. Then D is dominating by Lemma 3.2. Later we pick a 1 ∶ ω → ω + 1 such that
1(n) = ω, for all n. We now show that P ∩ (X × ρ(1)) = ∅. Let (y, f ) ∈ X × ρ(1). Since f ∈ ρ(1), there exists a
n0 ∈ ω such that f (n) = 1(n) = ω, for all n ≥ n0. Now fy(n0) =min{m ∶ y ∈ U(n0)

m } implies that y ∈ U(n0)
fy(n0). Let

V = ∏n∈ω Vn, where Vn = ω + 1 if n ≠ n0 and Vn0 = [ fy(n0) + 1, ω]. It is clear that U(n0)
fy(n0) ×V is an open set in
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X ×⨉ω(ω+ 1) containing (y, f ). Choose (x, fx) ∈ P with x ∈ U(n0)
fy(n0). Then fx(n0) ≤ fy(n0) and so fx(n0) ∉ Vn0 .

It follows that (x, fx) ∉ U(n0)
fy(n0) ×V and hence P ∩ (U(n0)

fy(n0) ×V) = ∅. Thus P ∩ (X × ρ(1)) = ∅.

Next we show that the disjoint closed sets P and X×ρ(1) can not be separated by open sets in X×⨉ω(ω+1).
Let U and V be two open sets in X×⨉ω(ω+1)with P ⊆ U and X×ρ(1) ⊆ V. By the given hypothesis we can
find a dense star-Menger subspace M of X. For each (x, fx) ∈ P, we consider an open set Ux×Vx in X×⨉ω(ω+1)
such that (x, fx) ∈ Ux ×Vx ⊆ U. Since M is a dense subset of X, for each Ux ×Vx, there exists zx ∈M such that
(zx, fx) ∈ Ux × Vx. Choose Q = {(zx, fx) ∶ x ∈ X} ⊆ M × ⨉ω(ω + 1). If we can prove that Q ∩ (M × ρ(1)) ≠ ∅,
where Q is the closure of Q in M × ⨉ω(ω + 1), then we are done. Suppose that Q ∩ (M × ρ(1)) = ∅. Then
M× ρ(1) ⊆ (M×⨉ω(ω+ 1)) ∖Q. By Lemma 3.3, we can obtain an open cylinder W in ⨉ω(ω+ 1) containing
1 such that M × ρ(1) ⊆ M × ρ(W) ⊆ (M × ⨉ω(ω + 1)) ∖Q. Consequently Q ∩ (M × ρ(W)) = ∅. Since D is a
dominating subset of ωω, by using similar technique of the proof of Theorem 3.12, we get D ∩ ρ(W) ≠ ∅.
Then there is a x0 ∈ X such that fx0 ∈ ρ(W) and hence (zx0 , fx0) ∈ Q ∩ (M × ρ(W)), which is a contradiction.
Thus we have Q∩(M×ρ(1)) ≠ ∅. This implies that U∩V ≠ ∅ as Q ⊆ U and M×ρ(1) ⊆ V. Hence X×⨉ω(ω+1)
is not normal.
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