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Abstract.In this article, the concept of bipolar p-metric spaces has been introduced as a generalization of
usual metric spaces, b-metric spaces and also p-metric spaces. In view of this notion we prove Banach,
Reich, Bianchini and Jaggi type fixed point theorems over such spaces. Supporting examples have been
given in order to examine the validity of the underlying space and in support of our fixed point theorems.

1. Introduction and Preliminaries

The end of last century had witnessed revolutionary era in the study of fixed point theory. Researchers
involved in this area are mainly interested in finding various types of metric type structures and several
types of mappings either contractive or expansive type in nature. Fixed point theory gains attention to the
mathematical community specially to the new researchers working on functional analysis, for its numerous
applications in different branches of mathematics.

Several researchers proved different types of fixed point theorems in various metric type spaces. To
prove fixed point, common fixed point, coupled fixed point and proximity point theorems many authors
introduced different topological structured spaces. In 2016, Mutlu and Gürdal have instigated concept of
bipolar metric spaces and they have proved some contractive fixed point theorems and coupled fixed point
theorems therein (see [4, 5]).

Recently Roy and Saha [9] have generalized bipolar metric spaces by introducing the concept of bipolar
conetvs b−metric space. In the same article Roy and Saha have discussed about the topology of such spaces
and proved Cantor’s intersection like theorem with some fixed point theorems therein (see also [1]).

In the year 2017, Parvaneh et al. [7] introduced the concept of p-metric space as a generalization of
metric space and b-metric space. This space have already gained very much attention to the researchers in
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the field of fixed point theory. Several contractive type fixed point theorems involving different types of
conditions have been proved in this setting (see [6, 8]).

Here we recall some required definitions.

Definition 1.1. (b-metric space, [2, 3]) Let X be a nonempty set and s be a real number satisfying s ≥ 1. A function
ρb : X ×X → R+ is a b−metric on X if the following conditions hold:

1. ρb(ξ, η) = 0 if and only if ξ = η;
2. ρb(ξ, η) = ρb(η, ξ) for all ξ, η ∈ X;
3. ρb(ξ, ζ) ≤ s[ρb(ξ, η) + ρb(η, ζ)] for all ξ, η, ζ ∈ X.

The space (X, ρb) is called a b−metric space.

Definition 1.2. (p-metric space, [7]) Let X be a non-empty set. A function ρp : X × X → [0,∞) is said to be
extended b-metric or p-metric if there exists a strictly increasing continuous function Ω : [0,∞) → [0,∞) with
Ω−1(t) ≤ t ≤ Ω(t) for all t ≥ 0 and Ω−1(0) = 0 = Ω(0) such that for all ξ, η, ζ ∈ X, the following conditions hold:

1. ρp(ξ, η) = 0 if and only if ξ = η;
2. ρp(ξ, η) = ρp(η, ξ);
3. ρp(ξ, ζ) ≤ Ω

(
ρp(ξ, η) + ρp(η, ζ)

)
.

The pair (X, ρp) is called a p-metric space.

Definition 1.3. [4] Let X and Y be two nonempty sets. Suppose that a function ρbi : X ×Y → [0,∞) satisfies the
following conditions:

1. ρbi(ξ, η) = 0 if and only if ξ = η;
2. ρbi(ξ, η) = ρbi(η, ξ) for all ξ, η ∈ X ∩Y;
3. ρbi(ξ1, η2) ≤ ρbi(ξ1, η1) + ρbi(ξ2, η1) + ρbi(ξ2, η2) for all (ξ1, η1), (ξ2, η2) ∈ X ×Y.

The function ρbi is called a bipolar metric on (X,Y) and the triplet (X,Y, ρbi) is called a bipolar-metric space.

Definition 1.4. [9] Let E be a real Hausdorff topological vector space with a solid cone K and ⪯ be the partial ordering
on E induced by K. Also let X andY be two nonempty sets and db : X×Y → K be a function, satisfies the following
properties:

i) db(ξ, η) = θE if and only if ξ = η;
ii) db(ξ, η) = db(η, ξ) for all ξ, η ∈ X ∩Y;
iii) db(ξ1, η2) ⪯ s[db(ξ1, η1)+ db(ξ2, η1)+ db(ξ2, η2)] for all ξ1, ξ2 ∈ X and η1, η2 ∈ Y, where the coefficient s ≥ 1.

The triplet (X,Y, db) is called a bipolar conetvs b−metric space.

Remark 1.5. If we consider E = R with the usual cone K = [0,∞) then (X,Y, db) gives a bipolar b−metric space.

2. Introduction to bipolar p-metric space

Let us consider two nonempty set of functions:
Ψ = {Ω : [0,∞)→ [0,∞) : Ω is strictly increasing continuous function with Ω−1(t) ≤ t ≤ Ω(t) for all t ≥ 0}
and
Ψ∗ = {Ω ∈ Ψ : Ω−1(t1 + t2) ≤ Ω−1(t1) +Ω−1(t2) for all t1, t2 ≥ 0}.

Definition 2.1. Let X and Y be two nonempty sets and ρ : X × Y → [0,∞) be a mapping. Then ρ is said to be
bipolar p-metric if there exists a function Ω ∈ Ψ such that ρ satisfies the following conditions:

(i) ρ(ξ, η) = 0 if and only if ξ = η;
(ii) ρ(ξ, η) = ρ(η, ξ) for all (ξ, η) ∈ (X ∩Y)2;
(iii) ρ(ξ1, η2) ≤ Ω[ρ(ξ1, η1) + ρ(ξ2, η1) + ρ(ξ2, η2)] for all (ξ1, η1), (ξ2, η2) ∈ X ×Y.

The triplet (X,Y, ρ) is called a bipolar p-metric space.
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Example 2.2. (i) Let X = [0,+∞),Y = (−∞, 0] and ρ : X ×Y → [0,∞) be given by ρ(ξ, η) = exp(|ξ − η|) − 1 for
all 0 ≤ ξ < +∞ and −∞ < η ≤ 0. Then ρ is a bipolar p-metric on (X,Y) for the function Ω(t) = exp(t) − 1 for all
t ≥ 0.

(ii) Let Un(R) and Ln(R) be the sets of all upper and lower triangular matrices of order n respectively. Suppose
ρ : Un(R) × Ln(R)→ [0,∞) is defined as follows:

ρ(A,B) = sinh


√√√ n∑

i, j=1

|ai j − bi j|
2

 (1)

for all A = (ai j)n×n ∈ Un(R) and B = (bi j)n×n ∈ Ln(R). Then (Un(R),Ln(R), ρ) is a bipolar p-metric space for the
mapping Ω(t) = sinh(

√
3t) for all t ≥ 0.

(iii) Let L be the set of all Lebesgue measurable functions on [0, 1], such that
∫ 1

0 | f (x)|dx < ∞. Now let,
X = { f ∈ L : f (x) ≥ 0 for all x ∈ [0, 1

2 ] and f (x) ≤ 0 for all x ∈ ( 1
2 , 1]} and Y = {1 ∈ L : 1(x) ≤ 0 for all x ∈ [0, 1

2 ]
and 1(x) ≥ 0 for all x ∈ ( 1

2 , 1]}. Let ρ : X ×Y → [0,∞) be given by

ρ( f , 1) =

(1 + ∫ 1

0
| f (x) − 1(x)|dx

)2

− 1

 for all ( f , 1) ∈ (X,Y). (2)

Then (X,Y, ρ) is a bipolar p-metric space with the function Ω(t) = (1 + t)2
− 1 for all t ≥ 0.

Remark 2.3. Any metric space, b-metric space (See Definition 1.1), p-metric space (See Definition 1.2), bipolar
metric space (See Definition 1.3) and bipolar b-metric space (See Definition 1.4) are also bipolar p-metric space.

Proposition 2.4. Let (X,Y, ρ) be a bipolar b-metric space with co-efficient κ ≥ 1. Let σ(ξ, η) := Γ(ρ(ξ, η)), where Γ
is a strictly increasing continuous function with t ≤ Γ(t) for all t ≥ 0 and Γ(0) = 0. Then σ is a bipolar p-metric for
Ω(t) = Γκ(t) = Γ(κt) for all t ≥ 0.

Proof. Here we show that σ satisfies all the conditions of Definition 2.1.
(a) σ(ξ, η) = 0 gives Γ(ρ(ξ, η)) = 0. Then ρ(ξ, η) = Γ−1(0) = 0, implies ξ = η.
(b) σ(ξ, η) = σ(η, ξ) holds trivially.
(c) For all (ξ1, η1), (ξ2, η2) ∈ X ×Y we have,

σ(ξ1, η2) = Γ(ρ(ξ1, η2))
≤ Γ(κ{ρ(ξ1, η1) + ρ(ξ2, η1) + ρ(ξ2, η2)})
≤ Γ(κ{Γ(ρ(ξ1, η1)) + Γ(ρ(ξ2, η1)) + Γ(ρ(ξ2, η2))})
= Γ(κ{σ(ξ1, η1) + σ(ξ2, η1) + σ(ξ2, η2)})
= Γκ({σ(ξ1, η1) + σ(ξ2, η1) + σ(ξ2, η2)}). (3)

This proves our proposition.

Definition 2.5. i) The opposite of a bipolar p-metric space (X,Y, ρ) is defined as the bipolar p-metric space (Y,X, ρ̄),
where the function ρ̄ : Y ×X → [0,∞] is defined as ρ̄(η, ξ) = ρ(ξ, η).
ii) Let (X1,Y1) and (X2,Y2) be two pairs of sets.

The function Λ : X1 ∪ Y1 → X2 ∪ Y2 is called a covariant mapping if Λ(X1) ⊂ X2 and Λ(Y1) ⊂ Y2 and we
denote this as Λ : (X1,Y1)⇒ (X2,Y2).

The function Λ : X1 ∪Y1 → X2 ∪Y2 is called a contravariant mapping if Λ(X1) ⊂ Y2 and Λ(Y1) ⊂ X2 and we
denote this as Λ : (X1,Y1)⇌ (X2,Y2).

If (X1,Y1, ρ1) and (X2,Y2, ρ2) are two bipolar p-metric spaces then we use the notations Λ : (X1,Y1, ρ1) ⇒
(X2,Y2, ρ2) and Λ : (X1,Y1, ρ1)⇌ (X2,Y2, ρ2) for covariant mappings and contravariant mappings respectively.
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Definition 2.6. Let (X,Y, ρ) be a bipolar p-metric space. A point ζ ∈ X ∪ Y is said to be a left point if ζ ∈ X, a
right point if ζ ∈ Y and a central point if both hold.

A sequence {ξn} ⊂ X is called a left sequence and a sequence {ηn} ⊂ Y is called a right sequence.
A sequence {νn} ⊂ X∪Y is said to converge to a point ν if and only if {νn} is a left sequence, ν is a right point and

ρ(νn, ν)→ 0 as n→∞ or {νn} is a right sequence, ν is a left point and ρ(ν, νn)→ 0 as n→∞.

Definition 2.7. A sequence {(ξn, ηn)} ⊂ X × Y is called a bisequence. If the sequences {ξn} and {ηn} both converge
then the bisequence {(ξn, ηn)} is called convergent in X ×Y.

If {ξn} and {ηn} both converge to a point ν ∈ X ∩Y then the bisequence {(ξn, ηn)} is called biconvergent.
A sequence {(ξn, ηn)} is a Cauchy bisequence if ρ(ξn, ηm)→ 0 whenever n,m→∞.
A bipolar p-metric space is said to be complete if every Cauchy bisequence is convergent.

Definition 2.8. Let (X1,Y1, ρ1) and (X2,Y2, ρ2) be two bipolar p-metric spaces:
i) The mapping Λ : (X1,Y1, ρ1)⇒ (X2,Y2, ρ2) is called left-continuous at a point ξ0 ∈ X1 if for every sequence

{ηn} ⊂ Y1 with ηn → ξ0 we have Λ(ηn)→ Λ(ξ0) in (X2,Y2, ρ2).
ii) The mappingΛ : (X1,Y1, ρ1)⇒ (X2,Y2, ρ2) is called right-continuous at a point η0 ∈ Y1 if for every sequence

{ξn} ⊂ X1 with ξn → η0 we have Λ(ξn)→ Λ(η0) in (X2,Y2, ρ2).
iii) The mapping Λ : (X1,Y1, ρ1) ⇒ (X2,Y2, ρ2) is said to be continuous, if it is left-continuous at each point

ξ ∈ X1 and right-continuous at each point η ∈ Y1.
iv) A contravariant mapping Λ : (X1,Y1, ρ1) ⇌ (X2,Y2, ρ2) is continuous if and only if it is continuous as a

covariant map Λ : (X1,Y1, ρ1)⇒ (Y2,X2, ρ̄2).

Proposition 2.9. Let (X,Y, ρ) be a bipolar p-metric space. If a central point is a limit of a sequence then it is the
unique limit of this sequence.

Proof. Let {ξn} be a left sequence in (X,Y, ρ) which converges to some ζ ∈ X ∩Y. If η ∈ Y be a limit of this
sequence then we get

ρ(ζ, η) ≤ Ω[ρ(ζ, ζ) + ρ(ξn, ζ) + ρ(ξn, η)]
= Ω[ρ(ξn, ζ) + ρ(ξn, η)]→ 0 as n→∞. (4)

Thus (4) shows that ζ = η. Therefore ζ is the unique limit of {ξn}. In a similar way if {ηn} is a right sequence
in (X,Y, ρ) which converges to ζ ∈ X ∩Y then also ζ is the unique limit of {ηn}.

Proposition 2.10. In a bipolar p-metric space (X,Y, ρ) every convergent Cauchy bisequence is biconvergent.

Proof. Let {(ξn, ηn)} be a Cauchy bisequence converges to (ξ, η) ∈ X×Y that is ξn → η and ηn → ξ as n→∞.
Then

ρ(ξ, η) ≤ Ω[ρ(ξ, ηm) + ρ(ξn, ηm) + ρ(ξn, η)] (5)

Taking n,m → ∞ in the right hand side of (5) we get ρ(ξ, η) = 0 and therefore ξ = η ∈ X ∩ Y. Hence the
bisequence {(ξn, ηn)} is biconvergent.

Proposition 2.11. In a bipolar p-metric space (X,Y, ρ) every biconvergent bisequence is a Cauchy bisequence.

Proof. Let {(ξn, ηn)} be a biconvergent bisequence which is biconvergent to some ζ ∈ X ∩Y. Then

ρ(ξn, ηm) ≤ Ω[ρ(ξn, ζ) + ρ(ζ, ζ) + ρ(ζ, ηm)]
= Ω[ρ(ξn, ζ) + ρ(ζ, ηm)]→ 0 as n,m→∞. (6)

Therefore {(ξn, ηn)} is a Cauchy bisequence.

Proposition 2.12. In a bipolar p-metric space (X,Y, ρ) if a Cauchy bisequence has a convergent bisubsequence then
it is also convergent.
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Proof. Let {(ξn, ηn)} be a Cauchy bisequence which has a convergent bisubsequence {(ξnp , ηnp )} converging
to (ξ, η) ∈ X ×Y. Then we have

ρ(ξm, η) ≤ Ω[ρ(ξm, ηnr ) + ρ(ξnr , ηnr ) + ρ(ξnr , η)] for all m, r ∈N. (7)

Taking m, r → ∞ from (7) we see that ξm → η. Similarly we can show that ηm → ξ as m → ∞. Hence our
proposition.

Proposition 2.13. Let (X,Y, ρ) be a bipolar p-metric space and let the bisequence {(ξn, ηn)} converges to some (ξ, η)
then

Ω−1(ρ(ξ, η)) ≤ lim inf
n→∞

ρ(ξn, ηn) ≤ lim sup
n→∞

ρ(ξn, ηn) ≤ Ω(ρ(ξ, η)). (8)

Proof. Using condition (iii) of Definition 2.1 we get

ρ(ξ, η) ≤ Ω[ρ(ξ, ηn) + ρ(ξn, ηn) + ρ(ξn, η)] and
ρ(ξn, ηn) ≤ Ω[ρ(ξn, η) + ρ(ξ, η) + ρ(ξ, ηn)] for all n ≥ 1. (9)

Therefore from (9) it follows that

ρ(ξ, η) ≤ Ω[lim inf
n→∞

ρ(ξn, ηn)] implies Ω−1(ρ(ξ, η)) ≤ lim inf
n→∞

ρ(ξn, ηn) (10)

also, since limn→∞ ρ(ξ, ηn) = 0 and limn→∞ ρ(ξn, η) = 0, we obtain

lim sup
n→∞

ρ(ξn, ηn) ≤ Ω(ρ(ξ, η)). (11)

3. Some covariant and contravariant fixed point theorems

For every Ω ∈ Ψwe consider a subset of (0, 1) denoted as ∆Ω, which is given by

∆Ω = {λ ∈ (0, 1) : lim
n→∞

Ω(p+1)

n+p∑
i=n

Ω−(n+p−i)[λiΘ]

 = 0 for any (12)

p = 1, 2, 3, . . . and any fixed Θ > 0}.

Lemma 3.1. Let (X,Y, ρ) be a bipolar p-metric space for some Ω ∈ Ψ∗ and {(ξn, ηn)} a bisequence in (X,Y). If for
some λ ∈ ∆Ω and M1,M2 ≥ 0, {(ξn, ηn)} satisfies (i) ρ(ξn, ηn) ≤ λnM1 and (ii) ρ(ξn+1, ηn) ≤ λnM2 for all n ∈ N
then {(ξn, ηn)} is a Cauchy bisequence.

Proof. If M1 = 0 = M2 then clearly the bisequence {(ξn, ηn)} is Cauchy. So let us assume that atleast one of
M1 and M2 is strictly greater than zero.

For any 1 ≤ n < m we get,

ρ(ξn, ηm) ≤ Ω[ρ(ξn, ηn) + ρ(ξn+1, ηn) + ρ(ξn+1, ηm)]. (13)

So,

Ω−1(ρ(ξn, ηm)) ≤ ρ(ξn, ηn) + ρ(ξn+1, ηn) + ρ(ξn+1, ηm)
≤ λn(M1 +M2) + ρ(ξn+1, ηm).
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Ω−1(ρ(ξn, ηm)) ≤ ρ(ξn, ηn) + ρ(ξn+1, ηn)+
Ω[ρ(ξn+1, ηn+1) + ρ(ξn+2, ηn+1) + ρ(ξn+2, ηm)]

⇒ Ω−2(ρ(ξn, ηm)) ≤ Ω−1[ρ(ξn, ηn) + ρ(ξn+1, ηn)]+
ρ(ξn+1, ηn+1) + ρ(ξn+2, ηn+1) + ρ(ξn+2, ηm)

≤ Ω−1[λn(M1 +M2)] + λn+1(M1 +M2) + ρ(ξn+2, ηm). (14)

Proceeding in a similar way we get,

Ω−(m−n+1)(ρ(ξn, ηm)) ≤ Ω−(m−n)[λn(M1 +M2)] +Ω−(m−n−1)[λn+1(M1 +M2)]+

... +Ω−1[λm−1(M1 +M2)] + ρ(ξm+1, ηm)

≤

m∑
i=n

Ω−(m−i)[λi(M1 +M2)]. (15)

From which it follows that

ρ(ξn, ηm) ≤ Ω(m−n+1)

 m∑
i=n

Ω−(m−i)[λi(M1 +M2)]

 . (16)

Also by a similar calculation as before we can show that for any 1 ≤ m < n

ρ(ξn, ηm) ≤ Ω(n−m+1)

 n∑
i=m

Ω−(n−i)[λi(λM1 +M2)]

 . (17)

Since λ ∈ ∆Ω then from (16) and (17) we can conclude that {(ξn, ηn)} is a Cauchy bisequence in (X,Y).

Theorem 3.2. (Covariant Banach type fixed point theorem) Let (X,Y, ρ) be a complete bipolar p-metric space for
some Ω ∈ Ψ∗ and Υ : (X,Y, ρ)⇒ (X,Y, ρ) a mapping satisfying

ρ(Υξ,Υη) ≤ αρ(ξ, η) for all (ξ, η) ∈ X ×Y and (18)

for some α ∈ ∆Ω. Then Υ : X ∪Y → X∪Y has a unique fixed point.

Proof. Let (ξ0, η0) ∈ X×Y.We construct two iterative sequences {ξn} ⊂ X and {ηn} ⊂ Y by ξn = Tξn−1 = Tnξ0
and ηn = Tηn−1 = Tnη0 for all n ∈N. Now

ρ(ξn, ηn) = ρ(Υξn−1,Υηn−1) ≤ αρ(ξn−1, ηn−1)

≤ α2ρ(ξn−2, ηn−2)
...

≤ αnρ(ξ0, η0) for all n ≥ 1. (19)

Similarly ρ(ξn+1, ηn) ≤ αnρ(ξ1, η0) for all n ∈N. Since α ∈ ∆Ω, then by Lemma 3.1 it follows that {(ξn, ηn)} is
Cauchy bisequence in (X,Y). As (X,Y, ρ) is complete then {(ξn, ηn)} biconverges to some ζ ∈ X ∩ Y. Then
we see that

ρ(ξn,Υζ) = ρ(Υξn−1,Υζ) ≤ αρ(ξn−1, ζ)→ 0 as n→∞. (20)

Therefore we have Υζ = ζ. Let ν ∈ X be another fixed point of Υ. So that Υν = ν and we have
ρ(ν, ζ) = ρ(Υν,Υζ) ≤ αρ(ν, ζ), where 0 < α < 1, showing that ν = ζ. If ν ∈ Y then we can also we see that
ν = ζ, implying that Υ has a unique fixed point in (X,Y, ρ).
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Example 3.3. Consider Un(R) and Ln(R) as the sets of all upper and lower triangular matrices of order n respectively.
Let ρ : Un(R) × Ln(R)→ [0,∞) be defined by

ρ(A,B) =

√√√ n∑
i, j=1

|ai j − bi j|
2 (21)

for all A = (ai j)n×n ∈ Un(R) and B = (bi j)n×n ∈ Ln(R). Then (Un(R),Ln(R), ρ) is a complete bipolar p-metric
space for the mapping Ω(t) =

√
3t for all t ≥ 0. Also let Υ : (Un(R),Ln(R), ρ) ⇒ (Un(R),Ln(R), ρ) be given by

Υ((ai j)n×n) =
( ai j

4

)
n×n

for all (ai j)n×n ∈ Un(R) ∪ Ln(R). Then Υ is a covariant Banach type mapping for α = 1
4 . Now

lim
n→∞

Ω(p+1)

n+p∑
i=n

Ω−(n+p−i)[αiΘ] = 0


implies

lim
n→∞

(
1
√

3

)n−1 ( √
3

4

)n


1 −

( √
3

4

)p+1

1 −
( √

3
4

)
Θ = 0,

for any fixed Θ > 0. Therefore 1
4 ∈ ∆Ω. So all the conditions of Theorem 3.2 are satisfied and On×n is the unique fixed

point of Υ, where On×n is the null matrix of order n.

Theorem 3.4. (Contravariant Reich type fixed point theorem) Let (X,Y, ρ) be a complete bipolar p-metric space for
some Ω ∈ Ψ∗ and Υ : (X,Y, ρ)⇌ (X,Y, ρ) a mapping satisfying

ρ(Υη,Υξ) ≤ αρ(ξ, η) + βρ(ξ,Υξ) + γρ(Υη, η) (22)

for all (ξ, η) ∈ X ×Y, where α, β, γ ≥ 0 such that α + β + γ < 1 and
(
α+γ
1−β

) (
α+β
1−γ

)
∈ ∆Ω. Then Υ : X ∪Y → X∪Y

has a unique fixed point, provided that γt < Ω−1(t) for all t > 0.

Proof. Let ξ0 ∈ X be arbitrary. For any non-negative integer n, we define ηn = Υξn and ξn+1 = Υηn. Then
we have,

ρ(ξn, ηn) = ρ(Υηn−1,Υξn) ≤ αρ(ξn, ηn−1) + βρ(ξn,Υξn) + γρ(Υηn−1, ηn−1)
= (α + γ)ρ(ξn, ηn−1) + βρ(ξn, ηn) for all n ≥ 1. (23)

Therefore ρ(ξn, ηn) ≤
(
α+γ
1−β

)
ρ(ξn, ηn−1) for all n ∈N. Also we get,

ρ(ξn, ηn−1) = ρ(Υηn−1,Υξn−1) ≤ αρ(ξn−1, ηn−1) + βρ(ξn−1,Υξn−1)
+ γρ(Υηn−1, ηn−1)
= (α + β)ρ(ξn−1, ηn−1) + γρ(ξn, ηn−1) for all n ≥ 1. (24)

Thus ρ(ξn, ηn−1) ≤
(
α+β
1−γ

)
ρ(ξn−1, ηn−1) for all n ∈N. So from the above two inequalities we get,

ρ(ξn, ηn) ≤ λnρ(ξ0, η0) and ρ(ξn+1, ηn) ≤ λn
(
α + β

1 − γ

)
ρ(ξ0, η0), (25)

for all n ≥ 0, where λ =
(
α+γ
1−β

) (
α+β
1−γ

)
. Therefore by the Lemma 3.1 it follows that {(ξn, ηn)} is Cauchy

bisequence in (X,Y). By the completeness of (X,Y, ρ), {(ξn, ηn)} biconverges to some ζ ∈ X ∩ Y. Then we
see that

ρ(Υζ,Υξn) ≤ αρ(ξn, ζ) + βρ(ξn, ηn) + γρ(Υζ, ζ) for all n ≥ 1. (26)
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Moreover we have,

ρ(Υζ, ζ) ≤ Ω[ρ(Υζ,Υξn) + ρ(ξn, ηn) + ρ(ξn, ζ)]
≤ Ω[αρ(ξn, ζ) + βρ(ξn, ηn) + γρ(Υζ, ζ) + ρ(ξn, ηn) + ρ(ξn, ζ)], (27)

for all n ∈ N. Taking limit as n → ∞ we obtain ρ(Υζ, ζ) ≤ Ω[γρ(Υζ, ζ)]. If Υζ , ζ then ρ(Υζ, ζ) ≤
Ω[γρ(Υζ, ζ)] < ρ(Υζ, ζ), a contradiction. Hence ζ is a fixed point of Υ.

Now if ϑ and ν are two fixed points of Υ then ϑ, ν ∈ X ∩Y we have

ρ(ϑ, ν) = ρ(Υϑ,Υν) ≤ αρ(ν, ϑ) + βρ(ν,Υν) + γρ(Υϑ, ϑ) < ρ(ϑ, ν).

This shows that ρ(ϑ, ν) = 0 that is ϑ = ν. Hence Υ has a unique fixed point in (X,Y, ρ).

Example 3.5. LetX = [0, 1],Y = [1, 2] and ρ : X×Y → [0,∞) be given by ρ(ξ, η) = |ξ−η|2 for all (ξ, η) ∈ X×Y.
Then (X,Y, ρ) is a complete bipolar p-metric space for the mapping Ω(t) = 3t for all t ≥ 0. Now let Υ : (X,Y, ρ)⇒

(X,Y, ρ) be given by Υ(ν) = (
√

2+1)−ν
√

2
for all ν ∈ X ∪Y.

Then Υ is a contravariant Reich type mapping for α = 1
2 and β = 0 = γ. Now

lim
n→∞

Ω(p+1)

n+p∑
i=n

Ω−(n+p−i)
[(1

4

)i

Θ

] = 0

implies

lim
n→∞

(1
3

)n−1 (3
4

)n
1 −

(
3
4

)p+1

1 −
(

3
4

)
Θ = 0,

for any fixedΘ > 0. Therefore 1
4 ∈ ∆Ω. So all the conditions of Theorem 3.4 are satisfied and ν = 1 is the unique fixed

point of Υ.

Theorem 3.6. (Contravariant Reich-Bianchini type fixed point theorem) Let (X,Y, ρ) be a complete bipolar p-metric
space for some Ω ∈ Ψ∗ and Υ : (X,Y, ρ)⇌ (X,Y, ρ) a mapping satisfying

ρ(Υη,Υξ) ≤ δmax{ρ(ξ, η), ρ(ξ,Υξ), ρ(Υη, η)}, (28)

for all (ξ, η) ∈ X × Y, where δ ∈ [0, 1) such that δ2
∈ ∆Ω. Then Υ : X ∪ Y → X ∪ Y has a unique fixed point,

provided that δt < Ω−1(t) for all t > 0.

Proof. The proof is similar to the proof of Theorem 3.4 and therefore we omit the proof.

Theorem 3.7. (Contravariant Jaggi type fixed point theorem) Let (X,Y, ρ) be a complete bipolar p-metric space for
some Ω ∈ Ψ∗ and Υ : (X,Y, ρ)⇌ (X,Y, ρ) a mapping satisfying

ρ(Υη,Υξ) ≤ µ1ρ(ξ, η) + µ2
ρ(ξ,Υξ)ρ(Υη, η)

ρ(ξ, η)
for all (ξ, η) ∈ X ×Y (29)

with ξ , η and for µ1, µ2 ≥ 0, µ1 + µ2 < 1 such that
(
µ1

1−µ2

)2
∈ ∆Ω. Then Υ : X ∪ Y → X ∪Y has a unique fixed

point, provided that Υ is continuous in (X,Y).

Proof. We construct the iterative sequence {(ξn, ηn)} as in Theorem 3.4. If either ξn = ηn for some n ≥ 1 or
ξn+1 = ηn for some n ≥ 0 then Υ has atleast one fixed point in X ∪ Y. So without loss of generality we
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assume that ξn , ηn and ξn+1 , ηn for all positive integer n. Now,

ρ(ξn, ηn) = ρ(Υηn−1,Υξn)

≤ µ1ρ(ξn, ηn−1) + µ2
ρ(ξn,Υξn)ρ(Υηn−1, ηn−1)

ρ(ξn, ηn−1)

= µ1ρ(ξn, ηn−1) + µ2
ρ(ξn, ηn)ρ(ξn, ηn−1)

ρ(ξn, ηn−1)
= µ1ρ(ξn, ηn−1) + µ2ρ(ξn, ηn) for all n ≥ 1. (30)

Therefore for any n ∈N, ρ(ξn, ηn) ≤ µ1

1−µ2
ρ(ξn, ηn−1) = µρ(ξn, ηn−1). Also

ρ(ξn+1, ηn) = ρ(Υηn,Υξn)

≤ µ1ρ(ξn, ηn) + µ2
ρ(ξn,Υξn)ρ(Υηn, ηn)

ρ(ξn, ηn)

= µ1ρ(ξn, ηn) + µ2
ρ(ξn, ηn)ρ(ξn+1, ηn)

ρ(ξn, ηn)
= µ1ρ(ξn, ηn) + µ2ρ(ξn+1, ηn) for all n ≥ 1, i.e. (31)

ρ(ξn+1, ηn) ≤ µ1

1−µ2
ρ(ξn, ηn) = µρ(ξn, ηn). So from the previous two inequalities we get

ρ(ξn, ηn) ≤ (µ2)nρ(ξ0, η0) and

ρ(ξn+1, ηn) ≤ (µ2)nµρ(ξ0, η0) for all n ≥ 0, (32)

Therefore by the Lemma 3.1 it follows that {(ξn, ηn)} is Cauchy bisequence in (X,Y). By the completeness
of (X,Y, ρ), {(ξn, ηn)} biconverges to some ζ ∈ X ∩ Y. Since Υ is continuous it follows that Υξn = ηn → Υζ
as n→∞ and therefore Υζ = ζ.

Now if ϑ and ν are two distinct fixed points of Υ then ϑ, ν ∈ X ∩ Y and we have ρ(ϑ, ν) = ρ(Υϑ,Υν) ≤
µ1ρ(ν, ϑ) + µ2

ρ(ν,Υν)ρ(Υϑ,ϑ)
ρ(ν,ϑ) = µ1ρ(ν, ϑ) < ρ(ν, ϑ), a contradiction. Hence Υ has a unique fixed point in

(X,Y, ρ).

4. An application to Ulam-Hyers stability

Let (X,Y, ρ) be a bipolar p-metric space for some Ω ∈ Ψ and Υ : (X,Y, ρ) ⇌ (X,Y, ρ) be a given
mapping. Let us consider the fixed point equation

Υξ = ξ, ξ ∈ X ∩Y (33)

and for some ϵ > 0

ρ(η,Υη) < ϵ for η ∈ X or ρ(Υη, η) < ϵ for η ∈ Y. (34)

Any point η ∈ X ∪ Y which satisfies the above equation (34) is called an ϵ−solution of the mapping Υ.
We say that the fixed point problem (33) is Ulam-Hyers stable in a bipolar p-metric space if there exists
a function χ : [0,+∞) → [0,+∞) with χ(t) > 0 for all t > 0 such that for each ϵ > 0 and an ϵ−solution
η ∈ X ∪Y, there exists a solution ξ of the fixed point equation (33) such that

ρ(η, ξ) < χ(ϵ) or ρ(ξ, η) < χ(ϵ). (35)

Theorem 4.1. Let (X,Y, ρ) be a complete bipolar p-metric space for some Ω ∈ Ψ∗ and Υ : (X,Y, ρ)⇌ (X,Y, ρ) a
mapping satisfying

ρ(Υη,Υξ) ≤ αρ(ξ, η) for all (ξ, η) ∈ X ×Y and (36)

for 0 < α < 1 with α2
∈ ∆Ω. If the function

(
Ω−1
− αI

)−1
(≡ χ) : [0,+∞) → [0,+∞) exists and strictly increasing

(I is the identity mapping on [0,+∞)) then the fixed point equation (33) of Υ is Ulam-Hyers stable.
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Proof. Theorem 3.4 shows that Υ has a unique fixed point in X ∩Y, that is the fixed point equation (33) of
Υ has a unique solution say ξ. Let ϵ > 0 be arbitrary and η be an ϵ−solution with η ∈ X that is ρ(η,Υη) < ϵ.

Since Υ satisfies the contractive condition (36) therefore

ρ(η, ξ) ≤ Ω[ρ(η,Υη) + ρ(ξ,Υη) + ρ(ξ, ξ)]
= Ω[ρ(η,Υη) + ρ(Υξ,Υη)]
= Ω[ρ(η,Υη) + αρ(η, ξ)]

⇒ Ω−1(ρ(η, ξ)) − αρ(η, ξ) ≤ ρ(η,Υη) < ϵ. (37)

Therefore ρ(η, ξ) <
(
Ω−1
− αI

)−1
(ϵ) = χ(ϵ). Similarly we can show that if η be an ϵ−solution with η ∈ Y then

also ρ(ξ, η) <
(
Ω−1
− αI

)−1
(ϵ) = χ(ϵ). Hence the fixed point equation (33) of Υ is Ulam-Hyers stable.

Further, let us give a numerical example to put in evidence the utility of the previous given theorem.

Example 4.2. Let us consider the bipolar p-metric space (X,Y, ρ) and the contravariant mapping Υ defined in
Example 3.5. Here Υ has the unique fixed point 1 in X ∩ Y. Now let ξ ∈ [0, 1] be an ϵ−solution of the mapping

Υ. Then ρ(ξ,Υξ) < ϵ that is (
√

2+1)2

2 |ξ − 1|2 < ϵ. From which it follows that ρ(ξ, 1) = |ξ − 1|2 < χ(ϵ), where
χ(t) = 2

(
√

2+1)2
t for all t ≥ 0. Similarly for an ϵ−solution η ∈ [1, 2] of the mapping Υ we can show that ρ(1, η) < χ(ϵ).

Hence the fixed point problem of Υ is Ulam-Hyers stable.

5. Application to Electric Circuit Differential Equation

It is not a novelty the fact that fixed point theory provides interesting results to prove the existence
and uniqueness of a solution of integral, differential or fractional equations, used in modelling of the real
phenomena. This section is devoted to an application of one of our main fixed point theorem for proving the
existence and uniqueness of a solution for the electric circuit equation, given in the second-order differential
equation form.

Let us consider a series electric circuit which contain a resistor (R, Ohms) a capacitor (C, Faradays), an
inductor (L, Henries) a voltage (V, Volts) and an electromotive force (E, Volts), as in the following scheme,
Figure 1.

Figure 1: Series RLC

Considering the definition of the intensity of electric current I = dq
dt , where q denote the electric charge

and t-the time, let us recall the following usually formulas

• V = IR;
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• V = q
C

;

• V = L dI
dt .

Since in a series circuit there is only one current flowing, then I have the same value in the entire circuit.
Kirchhoff’s Voltage Law is the second of his fundamental laws we can use for circuit analysis. His

voltage law states that for a closed loop series path the algebraic sum of all the voltages around any closed
loop in a circuit is equal to zero. The Kirchhoff’s Voltage Law states: ”The algebraic sum of all the voltages
around any closed loop in a circuit is equal to zero.”

The main idea of the Kirchhoff’s Voltage Law is that as you move around a closed loop/circuit, you will
end up back to where you started in the circuit. Therefore you back to the same initial potential without
voltage losses around the loop. Therefore, any voltage drop around the loop must be equal to any voltage
source encountered along the way. Mathematical expression of this consequence of the Kirchhoff’s Voltage
Law is: ”the sum of voltage rises across any loops is equal to the sum of voltage drops across that loop”.
Then we have the following relation:

IR =
q
C
+L

dI
dt
=V(t).

We can write this voltage equation in the parameters of a second-order differential equation as follows.

L
d2q
dt2 + R

dq
dt
+

q
C
=V(t), with the boundary conditions, q(0) = 0, q′(0) = 0. (38)

where C = 4L
R2 and τ = R

2L - the nondimensional time for the resonance case in Physics.
The Green function associated with equation (38) is the following:

G(t, s) =
{
−se−τ(s−t), if 0 ≤ s ≤ t ≤ 1;
−te−τ(s−t), if 0 ≤ t ≤ s ≤ 1.

In this conditions, the differential problem (38) can be written as the following integral equation.

ξ(t) =

t∫
0

G(t, s) f (s, ξ(s))ds, where t ∈ [0, 1] (39)

and f (s, ·) : [0, 1] ×R→ R is a monotone nondecreasing mapping for all s ∈ [0, 1].
LetX = (C[0, 1], [0,+∞)) be the set of all continuous functions defined on [0, 1] with values in the interval

[0,+∞) and Y = (C[0, 1], (−∞, 0]) be the set of all continuous functions defined on [0, 1] with values in the
interval (−∞, 0].

The triple (X,Y, ρ) is a complete bipolar p-metric space with respect to the bipolar p-metric ρ : X×Y →
[0,∞] defined by

ρ(ξ, η) = ∥ξ − η∥∞ = exp( sup
t∈[0,1]

|ξ(t) − η(t)|) − 1, for all (ξ(t), η(t)) ∈ (X,Y),

for Ω ∈ Ψ∗ defined as Ω ∈ Ψ∗ as Ω(t) = exp(t) − 1 for all t ≥ [0, 1].
Further, let us give the main result of this section.

Theorem 5.1. Let Υ : (X,Y, ρ)⇒ (X,Y, ρ) be a mapping such that the following assertions hold:

(i) G : [0, 1]2
→ [0,∞) is a continuous function;

(ii) f (s, ·) : [0, 1] ×R→ R is a monotone nondecreasing function for all s ∈ [0, 1].;
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(iii) there exists α ∈ ∆Ω such that, for all (t, s) ∈ [0, 1]2 and (ξ, η) ∈ (X,Y), we have the inequality:

| f (t, ξ) − f (t, η)| ≤ |ξ(t) − η(t)| − α,

where ∆Ω ∈ (0, 1) such that

∆Ω = {λ ∈ (0, 1) : lim
n→∞

Ω(p+1)

n+p∑
i=n

Ω−(n+p−i)[λiΘ]

 = 0 for any

p = 1, 2, 3, . . . and any fixed Θ > 0}.

Then the voltage differential equation (38) has a unique solution.

Proof. Let us define the function Υ : (X,Y, ρ)⇒ (X,Y, ρ) by

Υξ(t) =

t∫
0

G(t, s) f (s, ξ(s))ds.

Then, we should proof the function Υ respect all the conditions of the Theorem 3.2; hence Υ : X ∪Y →
X∪Y admits a unique fixed point. Then, there exists a unique solution for the differential problem (38).

We have the following estimations

∣∣∣Υξ(t) − Υη(t)
∣∣∣2 =

∣∣∣∣∣∣∣∣
t∫

0

G(t, s) f (s, ξ(s))ds −

t∫
0

G(t, s) f (s, η(s))ds

∣∣∣∣∣∣∣∣
2

≤


t∫

0

G(t, s)
∣∣∣ f (s, ξ(s)) − f (s, η(s))

∣∣∣ ds


2

≤


t∫

0

G(t, s)
(∣∣∣ξ(t) − η(t)

∣∣∣ − α) ds


2

≤

(∣∣∣ξ(t) − η(t)
∣∣∣ − α)2


t∫

0

G(t, s)ds


2

.

Taking the supremum on both sides in the previous inequality we get

sup
t∈[0,1]

∣∣∣Υξ(t) − Υη(t)
∣∣∣2 ≤ sup

t∈[0,1]

(∣∣∣ξ(t) − η(t)
∣∣∣ − α)2

.

Obviously, the following inequality is true

sup
t∈[0,1]

∣∣∣Υξ(t) − Υη(t)
∣∣∣ ≤ sup

t∈[0,1]

∣∣∣ξ(t) − η(t)
∣∣∣ − α.

Applying the exponential function on both sides we get

exp( sup
t∈[0,1]

∣∣∣Υξ(t) − Υη(t)
∣∣∣) ≤ 1

eα
exp( sup

t∈[0,1]

∣∣∣ξ(t) − η(t)
∣∣∣).
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Decreasing 1 on both sides we get

exp( sup
t∈[0,1]

∣∣∣Υξ(t) − Υη(t)
∣∣∣) − 1 ≤

1
eα

exp( sup
t∈[0,1]

∣∣∣ξ(t) − η(t)
∣∣∣) − 1

≤
1
eα

exp( sup
t∈[0,1]

∣∣∣ξ(t) − η(t)
∣∣∣) − 1

 ,
which means

ρ(Υξ,Υη) ≤
1
eα
ρ(ξ, η).

Since 1
eα ≤ α ∈ ∆Ω then all the conditions of Theorem 3.2 are true. Thus, the differential voltage equation

(38) has a unique solution.
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