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Abstract. Combination of real and imaginary parts (CRI) works well for solving complex symmetric linear
systems. This paper develops a generalization of CRI method to determine the solution of Sylvester matrix
equation. We show that this, regardless of condition, converges to solution of the Sylvester equation. At
the end we test the new scheme by solving a numerical example.

1. Introduction

Algebraic Sylvester matrix equations are observed in many areas from different regions such as, control
theory and many other branches of engineering [12–14, 16, 17, 34].

The so-called bilinear control system can be described by the following state-spaceẋ(t) = Ax(t) +
∑m

j=1N jx(t)u j(t) +Bu(t),
y(t) = C̃x(t), x(0) = x0,

(1)

where t is the time variable, x(t) ∈ Cn, u(t) = [u1(t), ...,um(t)]T
∈ Cm and y(t) ∈ Cn are the stable, input

and output vectors, respectively. Also B(t) ∈ Cn×m, C̃, A ∈ Cn×n. Reachability and observability are two
important issues for system (1), such that the reachability is defined by

R =

∞∑
k=1

∫
∞

0
...

∫
∞

0
RkR

T
k dt1...dtk,

that is the solution of Eq. (2), where

R1 = eAt1B and Rk(t1, ..., tk) = eAtk [N1Rk−1, ...,NmRk−1], k = 2, 3, ....
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Also the observability is the solution of the dual equation for

AY +YAT +

m∑
j=1

N jYN
T
j = C̃

T
C̃,

where Y ∈ Cn×n must be determined. Some useful paper about matrix equations can be found in [9–
11, 18, 22–24, 26, 28, 30, 31, 35–37, 37, 40].

Here we focus on the Sylvester matrix equation of the form

AZ +ZB = C, (2)

whereA andB are complex matrices of the formA =W+ iT ∈ Cm×m,B =U+ iV ∈ Cn×n, whereW, T , U
andV are real symmetric positive semi-definite matrices and i =

√
−1. If there is no common eigenvalues

ofA and −B, then Eq. (2) has a unique solution [2]. This fact can be proved by using the Kronecker sum.
Eq. (2) can be transformed to problem

Az = c, (3)

where A = In ⊗ A + B
T
⊗ Im, c = vec(C) and z = vec(Z), where ⊗ is Kronecker product, In is identity

matrix of dimension n×n and for any matrixA = (a1, ..., an) with the columns ak, vec(A) is an operator such
that vec(A) = (aT

1 , ..., a
T
n )T
∈ Cmn. Obtaining the solution of equation (2), by solving linear system (3) is not a

suitable method and it can have a computational cost, since the dimension of problem (3) may be very large.
We can solve Eq. (2) by the use of direct methods such as Bartels-Stewart [1] and the Hessenberg-Schur
methods [21]. But for solving efficiently Sylvester matrix Eq. (2), iterative methods can be used. In [2] Bai
proposed HSS approach for solving Eq. (2).

Authors of [41] generalized the method of Bai [2] by introducing the MHSS iterative method for solving
Sylvester equations. Authors of [20] applied PMHSS approach for solving Eq. (2). Salkuyeh and Bastani
[33] introduced two-parameter generalized Hermitian and skew-Hermitian splitting (TGHSS) iteration
method. Dehghan and Shirilord [15] introduced two parameters in MHSS method to obtain a generalized
MHSS (GMHSS) iteration method. Hence for different values of the parameters in GMHSS scheme, we
obtain different methods. Authors of [15] show that there is least one regionΩ ∈ R2, where GMHSS iterative
scheme is convergent. For more work on the HSS method see [4–8].

In the following we will summarize the iterative method CRI for approximating the output of linear
systems. The focus in the current manuscript is on the following problem to illustrate this approach.

Az = c, (4)

where A ∈ Cn×n and z, c ∈ Cn. Suppose F , G ∈ Rn×n are two real, symmetric and positive semi-definite
matrices. Moreover supposeA = F + iG. Then CRI method [39] can be expressed as follows.

1.1. CRI method [39]:

For a given initial approximation z(0) ∈ Cn, we obtain next iterate z( j+1) from:(αG + F )z( j+1/2) = (α − i)Gz( j) + c,
(αF +G)z( j+1) = (α + i)Wz( j+1/2) − ic, j = 0, 1, 2, ...,

(5)

where α > 0. Based on the introduction of an additional parameter, authors of [27] applied a generalisation
of CRI method for solving complex symmetric linear systems. In the following, a generalization of CRI
method (5) will be applied to solve large sparse complex Sylvester matrix Eq. (2).
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2. A generalization of CRI method

In the first stage write Eq. (2) as

WZ +ZU = −iZV− iTZ + C. (6)

Assume that α > 0 is an arbitrary number. Then, adding αTZ and αZV to both sides of the above relation
yields

(αT +W)Z +Z (αV +U) = (α − i) [TZ +ZV] + C. (7)

On the other hand multiplying both sides of (6) by −i and then, adding βWX and βZU to both sides of it
yield:(

βW + T
)
Z +Z

(
βU +V

)
=
(
β + i
)

[WZ +ZU] − iC. (8)

Now by considering relations (7) and (8) we arrive at the following method to solve Eq. (2).

2.1. The GCRI Procedure for Solving Sylvester Matrix Eq. (2)

ComputeZ(k+1) ∈ C
m×n for k = 0, 1, 2, .... by using the following procedure:(αT +W)Z(k+ 1

2 ) +Z(k+ 1
2 ) (αV +U) = (α − i)

[
TZ(k) +Z(k)V

]
+ C,(

βW + T
)
Z(k+1) +Z(k+1)

(
βU +V

)
=
(
β + i
) [
WZ(k+ 1

2 ) +Z(k+ 1
2 )U
]
− iC,

(9)

where α, β > 0 are constant and Z(0) ∈ Cm×n is an initial guess. It can be easily seen that αW + T , αU +
V, βT +W and βV +U are symmetric positive definite. Therefore, the two half-steps of this method can
be effectively solved using fast and direct algorithms.

Here we introduce the convergence analysis of new iteration method (9). Suppose the matricesW and
T are semi-positive definite, so before introducing the convergence theorem of the new method, we should
pay attention to useful information about these matrices. To do so first recall the following lemma [39].

Lemma 2.1. Let W ∈ Rn×n and T ∈ Rn×n be symmetric positive semi-definite matrices satisfying null(W) ∩
null(T ) = {0}, where null(A) denotes null space of any matrix A. Then there exists a nonsingular matrix P ∈ Rn×n

such that

W = PT
DWP, T = PT

DTP,

whereDW = Diag(µ1, ..., µn), DT = Diag(λ1, ..., λn), λl and µl satisfy

µl + λl = 1, λl ≥ 0, µl ≥ 0, l = 1, ...,n.

Based on [2, Theorem 2.1] and [39, Theorem 2.1], the following theorem can be used to analyze the
convergence of the new method.

Theorem 2.2. Let A =W + iT ∈ Cm×m and B = U + iV ∈ Cn×n, where W,T ,U and V are real symmetric
positive semi-definite matrices and let α, β > 0. Denote

Q = In ⊗W +U ⊗Im ∈ R
nm×nm, R = In ⊗ T +V⊗Im ∈ R

nm×nm. (10)

Define

Ω1 = {(α, β)| − 1 +
√

1 + α2 < β < α},

and

Ω2 = {(α, β)| − 1 +
√

1 + β2 < α < β}.
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Then the iteration matrix of CRI method (9) is

Π(α, β) =
√

(α2 + 1)(β2 + 1)(βQ + R)−1
Q(αR + Q)−1

R, (11)

and the spectral radius of the matrix Π(α, β) satisfies

ρ(Π(α, β)) ≤


θ1(α, β) :=

α2 + 1
(β + 1)2 < 1, ∀ (α, β) ∈ Ω1,

θ2(α, β) :=
β2 + 1

(α + 1)2 < 1, ∀ (α, β) ∈ Ω2,

(12)

then the CRI iteration (9) converges unconditionally to the unique exact solutionZ∗ ∈ Cm×n of Eq. (2) for any initial
guessZ(0).

Proof. By using Kronecker product, we can write scheme (9) in the following form:
[
In ⊗ (αT +W) + (αV +U)T

⊗ Im
]

z(k+ 1
2 ) = (α − i)

[
In ⊗ T +VT

⊗ Im
]

z(k) + c,[
In ⊗ (βW + T) + (βU +V)T

⊗ Im
]

z(k+1) = (β + i)
[
In ⊗W +UT

⊗ Im
]

z(k+ 1
2 ) − ic,

(13)

where c = vec(C) and z = vec(Z). Note that

In ⊗ (αT +W) + (αV +U)T
⊗ Im = α(In ⊗ T +V⊗Im) + (In ⊗W +U ⊗Im) = αR + Q,

and

In ⊗ (βW + T) + (βU +V)T
⊗ Im = β(In ⊗W +U ⊗Im) + (In ⊗ T +V⊗Im) = βQ + R,

where R and Q are defined in (10). Then Eq. (13) can be rewritten as(αR + Q)z(k+ 1
2 ) = (α − i)Rz(k) + c,

(βQ + R)z(k+1) = (β + i)Qz(k+ 1
2 ) − ic.

(14)

It is clear that, scheme (14) is the CRI method [39] for solving Eq. (4), with A = Q + iR. Suppose that
λQp,q, λ

R
p,q, λ

W
p , λ

T
p , λ

U
p and λVq denote the eigenvalues of Q, R, W, T , U andV (p = 1, ...,m, q = 1, ...,n),

respectively. Since

λQp,q = λ
W

p + λ
U

q ≥ 0, λRp,q = λ
T

p + λ
V

q ≥ 0, p = 1, ...,m, q = 1, ...,n,

then Q and R are symmetric positive semi-definite matrices. On the other hand we assume that Eq. (2) has
a unique solution, therefore the matrix

I ⊗A +BT
⊗ I = I ⊗ (W + iT ) + (U + iV)T

⊗ I = Q + iR = A,

is nonsingular, this yields null(R)∩ null(Q) = {0}, hence according to Lemma 2.1, there exists a nonsingular
matrix P ∈ Rnm×nm such that

Q = PT
DQP, R = PT

DRP, (15)

whereDQ = Diag(µQ1 , ..., µ
Q
nm) andDR = Diag(ηR1 , ..., η

R
nm) are diagonal ηRl and µQl satisfy

µQl + η
R

l = 1, ηRl ≥ 0, µQl ≥ 0, l = 1, ...,nm.
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Remove z(k+ 1
2 ) from (14) to obtain z(k+1) = Π(α, β)z(k) +K (α, β; c), where Π(α, β) is iteration matrix for new

method (9) and is defined in (11) and K (α, β; c) is a nm × 1 vector. We know that GCRI procedure (9) is
convergent if ρ(Π(α, β)) < 1. But

(βQ + R)−1
Q(αR + Q)−1

R

= (βPT
DQP +P

T
DRP)−1

P
T
DQP(αPT

DRP +P
T
DQP)−1

P
T
DRP

= P−1(βDQ +DR)−1
DQ(αDR +DQ)−1

DRP.

Therefore

ρ(Π(α, β)) = |(β + i)(α − i)|ρ(P−1(βDQ +DR)−1
DQ(αDR +DQ)−1

DRP)

=
√

(α2 + 1)(β2 + 1)ρ((βDQ +DR)−1
DQ(αDR +DQ)−1

DR)

=
√

(α2 + 1)(β2 + 1) max
0≤µQl ,η

R

l ≤1

 µQl η
R

l(
βµQl + η

R

l

) (
αηRl + µ

Q

l

)
=
√

(α2 + 1)(β2 + 1) max
0≤µQl ,η

R

l ≤1

 µQl η
R

l(
αβ + 1

)
µQl η

R

l + α
(
ηRl

)2
+ β
(
µQl

)2
 .

In [39] it was proved that when α = β > 0 then ρ(Π(α, β)) = ρ(Π(α, α)) < 1. Now suppose that α , β and
(α, β) ∈ Ω1, then 1 + α2 < (β + 1)2 and

√
(α2 + 1)(β2 + 1) < α2 + 1. Moreover(

αβ + 1
)
µQl η

R

l + α
(
ηRl
)2
+ β
(
µQl
)2
≥

(
β2 + 1

)
µQl η

R

l + β
((
ηRl
)2
+
(
µQl
)2)
≥ (β + 1)2µQl η

R

l .

Hence

ρ(Π(α, β)) ≤ θ1(α, β) =
α2 + 1

(β + 1)2 <
α2 + 1
α2 + 1

= 1.

If α , β and (α, β) ∈ Ω2, then 1 + β2 < (α + 1)2 and
√

(α2 + 1)(β2 + 1) < β2 + 1. Moreover(
αβ + 1

)
µQl η

R

l + α
(
ηRl
)2
+ β
(
µQl
)2
≥

(
α2 + 1

)
µQl η

R

l + α
((
ηRl
)2
+
(
µQl
)2)
≥ (α + 1)2µQl η

R

l .

Thus

ρ(Π(α, β)) ≤ θ2(α, β) =
β2 + 1

(α + 1)2 <
β2 + 1
β2 + 1

= 1.

The recent result definitely shows that GCRI method converges to the unique solution of Eq. (2) for any
(α, β) ∈ Ω1 ∪Ω2 and any initial guess.

3. Numerical Results

Consider the equationAZ +ZB = C,with

T = I ⊗V +V⊗I, and W = 10(I ⊗Vc +Vc ⊗ I) + 9(e1eT
m + emeT

1 ) ⊗ I,

where

V = Tri(−1, 2,−1) =



2 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


m×m

,
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andVc = V − e1eT
m − emeT

1 ∈ R
m×m, e1 = (1, 0, 0, ..., 0)T

∈ Rm, em = (0, 0, ..., 1)T
∈ Rm and B = A. Therefore,

the dimension of the matricesW, T , U andV will be n = m2. Also right hand side matrix C is such that
Z∗ = (zi, j) with

zi, j = exp
[
−

(
x2

i + y2
j

)]
, i, j = 1, 2, ...,n, (16)

can be exact solution, where xi = −1 + 2(i − 1)/(n − 1) and y j = −1 + 2( j − 1)/(n − 1), i, j = 1, 2, ...,n.
In numerical results initial guess is taken X(0) = O (zero matrix) and the stopping criteria for outer

iterations is
∥C −AX(k) − X(k)B∥F/∥C∥F ≤ 5 × 10−6.

The optimal parameters for PMHSS, CRI and GCRI methods are tabulated in Table 1. Also some numerical
results such as, running time to seconds, iterations and logarithm of residual error are listed in Table 2.
According to Table 2, we see that the number of iterations of these methods has not changed much with
increasing the dimension of the problem, which shows that these methods are effective when increasing
the dimension of the problem.

Also according to Table 2, the number of iterations and CPU time for GCRI method (9) is less than CRI
and PMHSS methods, which shows the fast convergence of new method.

In Figure 1 we can see that (almost) locations of the optimal parameters for GCRI method when the sizes
of matricesW and T are 64 × 64. Moreover at Figure 2 we can observe (almost) locations of the optimal
parameters for PMHSS and CRI methods for n = 64.

We plotted the dispersion of the eigenvalues of iteration matrices in Fig. 3. According to this figure, the
modulus of the eigenvalues of the iteration matrices for PMHSS and CRI schemes are large, which affects
the modulus of the spectral radius of the iteration matrices. On the contrary, this figure shows the higher
speed of GCRI method.

Figure 4 shows the logarithm of the residual error against the iterations number. The result of this graph
is that the CRI method is faster than the PMHSS method.

In Figure 5 we plotted approximate solutions for imaginary and real parts. As one can see, by increasing
the number of iterations, the solution obtained from GCRI method converges to the exact solution (16). In
addition, it is observed that the imaginary part of the solution converges to the zero matrix, and this is in
accordance with predetermined solution (16).

4. Conclusion

This paper studies an iterative method for solving complex Sylvester equation. A detailed convergence
analysis was provided for the new method. We proved that on the regionΩ1∪Ω2, the spectral radius of the
matrix Π(α, β) is less than one. Finally, we tried to support the theoretical results discussed in this article
via examining two numerical examples. We see that for large size of coefficient matrices two CRI and GCRI
methods have similar rate of convergence.

Acknowledgments: The authors would like to thank the editor and referees for their helpful comments
and suggestions.
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Table 1: The values of optimal parameters.

n × n 64 × 64 100 × 100 400 × 400 900 × 900

PMHSS method

α∗ 0.65 0.69 0.70 0.73

CRI method

α∗ 1 1 1 1

GCRI method

α∗ 0.3 0.3 0.8 1

β∗ 4 4 1.5 1.2

Figure 1: The almost locations of the optimal parameters for GCRI method.
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Table 2: The comparison of iteration number, CPU time and residual error.

n × n 64 × 64 100 × 100 400 × 400 900 × 900

PMHSS method

IT 32 32 31 31

Time 0.2561 0.6684 52.5192 610.1070

R(X(k)) -3.7472 -3.6493 -3.2091 -3.0157

CRI method

IT 16 17 20 20

Time 0.1262 0.4431 31.3413 384.2159

R(X(k)) -3.8081 -3.7094 -3.2001 -2.9972

GCRI method

IT 12 14 18 19

Time 0.1027 0.3154 31.3413 365.0932

R(X(k)) -3.4639 -3.5806 -3.5258 -2.3902

Figure 2: The almost locations of the optimal parameters for PMHSS and CRI methods.
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Figure 3: The eigenvalue distribution of the iteration matrices.
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Figure 4: The logarithm of the residual error versus iteration number; Up (n = 64) and Bottom (n = 100).
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Figure 5: Approximate solutions for imaginary and real parts by GCRI method; Top (after 3 iterations); Middle (after 10 iterations);
Bottom (after 30 iterations).


