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Conformal Semi-Slant Riemannian Maps from Almost Hermitian
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Abstract. In this study, we define the notion of conformal semi-slant Riemannian maps from almost
Hermitian manifolds onto Riemannian manifolds as a generalization of conformal semi-slant submersions.
We give examples for this type maps. We study integrability conditions of distributions. In addition, we
apply pluriharmonic maps to investigate being horizontally homothetic map. Moreover, we examine that
under which cases, the distributions can define totally geodesic foliations.

1. Introduction

Firstly, the concept of submersion was introduced by O’Neill [11] and Gray [8]. Then, this concept was
studied in various types [6] as a semi-invariant [17], a slant [15], a semi-slant [13], etc [20, 23]. Then, this
concept generalized to the notion of Riemannian map by Fischer [7]. Riemannian maps between Riemannian
manifolds are generalization of isometric immersions and Riemannian submersions. Let F : (M1, 11) −→
(M2, 12) be a smooth map between Riemannian manifolds such that 0 < rankF < min{dim(M1), dim(M2)}.
Then the tangent bundle TM1 of M1 has the following decomposition:

TM1 = kerF∗ ⊕ (kerF∗)⊥.

Since rankF < min{dim(M1), dim(M2)}, always we have (ran1eF∗)⊥. In this way, tangent bundle TM2 of M2
has the following decomposition:

TM2 = (ran1eF∗) ⊕ (ran1eF∗)⊥.

A smooth map F : (Mm
1 , 11) −→ (Mm

2 , 12) is called Riemannian map at p1 ∈ M1 if the horizontal restriction
Fh
∗p1

: (kerF∗p1 )⊥ −→ (ran1eF∗) is a linear isometry. Hence a Riemannian map satisfies the equation

11(X,Y) = 12(F∗(X),F∗(Y)) (1)

for X,Y ∈ Γ((kerF∗)⊥). So that isometric immersions and Riemannian submersions are particular Riemannian
maps, respectively, with kerF∗ = {0} and (ran1eF∗)⊥ = {0} [7].

Moreover, Şahin and the others introduced any other types of Riemannian maps [12, 14, 16, 18]. After
this studies, especially Akyol, Şahin and Yanan searched conformality case of this type submersions [1–4]
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and Riemannian maps [24, 25]. We say that F : (Mm, 1M) −→ (Nn, 1N) is a conformal Riemannian map at
p ∈ M if 0 < rankF∗p ≤ min{m,n} and F∗p maps the horizontal space (ker(F∗p)⊥) conformally onto ran1e(F∗p),
i.e., there exist a number λ2(p) , 0 such that

1N(F∗p(X),F∗p(Y)) = λ2(p)1M(X,Y) (2)

for X,Y ∈ Γ((ker(F∗p)⊥). Also F is called conformal Riemannian if F is conformal Riemannian at each p ∈ M
[19]. Here, λ is the dilation of F at a point p ∈M and it is a continuous function as λ : M→ [0,∞).

An even-dimensional Riemannian manifold (M, 1M, J) is called an almost Hermitian manifold if there
exists a tensor field J of type (1, 1) on M such that J2 = −I where I denotes the identity transformation of
TM and

1M(X,Y) = 1M(JX, JY),∀X,Y ∈ Γ(TM). (3)

Let (M, 1M, J) is an almost Hermitian manifold and its Levi-Civita connection is ∇with respect to 1M. If J is
parallel with respect to ∇, i.e.

(∇X J)Y = 0, (4)

we say M is a Kähler manifold [27].
Let (M, 1M, J) is an almost Hermitian manifold and (N, 1N) is a Riemannian manifold. A Riemannian

map F : (M, 1M, J) −→ (N, 1N) is called a semi-slant Riemannian map if there is a distribution D1 ⊂ kerF∗
such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for nonzero X ∈ (D2)p and p ∈M, where
D2 is the orthogonal complement ofD1 in kerF∗. We call the angle θ a semi-slant angle [12].

Therefore, we will study conformal semi-slant Riemannian maps from almost Hermitian manifolds
onto Riemannian manifolds as a generalization of conformal semi-slant submersions which includes semi-
slant submersions. We know that conformal semi-slant Riemannian maps include conformal invariant
Riemannian maps, conformal anti-invariant Riemannian maps [21], conformal semi-invariant Riemannian
maps [22] and conformal slant Riemannian maps [26]. Geometric properties were investigated and examples
were given for this type maps. Also, several conditions for conformal semi-slant Riemannian maps to be
horizontally homothetic maps were obtained by using the notion of pluriharmonic maps. Moreover, certain
geodesicity conditions for conformal semi-slant Riemannian maps were obtained.

2. Preliminaries

In this section, we give several definitions and results to be used throughout the study for conformal
semi-slant Riemannian maps. Let F : (M, 1M ) −→ (N, 1N ) be a smooth map between Riemannian manifolds.
The second fundamental form of F is defined by

(∇F∗)(X,Y) =
N

∇
F
XF∗(Y) − F∗(

M
∇XY) (5)

for X,Y ∈ Γ(TM). The second fundamental form ∇F∗ is symmetric [9]. Recall that F is said to be totally
geodesic map if (∇F∗)(X,Y) = 0 for all X,Y ∈ Γ(TM).

Then we define O’Neill’s tensor fields T andA for Riemannian submersions as

AXY = h
M
∇hXvY + v

M
∇hXhY, (6)

TXY = h
M
∇vXvY + v

M
∇vXhY, (7)

for X,Y ∈ Γ(TM) with the Levi-Civita connection
M
∇ of 1M [11]. As usual, we denote by v and h the

projections on the vertical distribution kerF∗ and the horizontal distribution (kerF∗)⊥ , respectively. For any
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X ∈ Γ(TM),TX andAX are skew-symmetric operators on (Γ(TM), 1) reversing the horizontal and the vertical
distributions. Also, T is vertical, TX = TvX, andA is horizontal,AX = AhX. Note that the tensor field T is
symmetric on the vertical distribution [11]. Additionally, from (6) and (7) we have

M
∇UV = TUV + ∇̂UV, (8)
M
∇UX = h

M
∇UX + TUX, (9)

M
∇XV = AXV + v

M
∇XV, (10)

M
∇XY = h

M
∇XY +AXY (11)

for X,Y ∈ Γ((ker F∗)⊥) and U,V ∈ Γ(kerF∗), where ∇̂UV = v
M
∇UV [6].

If a vector field X on M is related to a vector field X′

on N, we say X is a projectable vector field. If X is
both a horizontal and a projectable vector field, we say X is a basic vector field on M. From now on, when
we mention a horizontal vector field, we always consider a basic vector field [5].

On the other hand, let F : (Mm, 1M ) −→ (Nn, 1N ) be a conformal Riemannian map between Riemannian
manifolds. Then, we have

(∇F∗)(X,Y) |ran1eF∗ = X(lnλ)F∗(Y) + Y(lnλ)F∗(X) − 1M(X,Y)F∗(1rad(lnλ)), (12)

where X,Y ∈ Γ((kerF∗)⊥). Hence from (12), we obtain
N
∇

F
XF∗(Y) as

N

∇
F
XF∗(Y) = F∗(h

M
∇XY) + X(lnλ)F∗(Y) + Y(lnλ)F∗(X) − 1M(X,Y)F∗(1rad(lnλ)) + (∇F∗)⊥(X,Y) (13)

where (∇F∗)⊥(X,Y) is the component of (∇F∗)(X,Y) on (ran1eF∗)⊥ for X,Y ∈ Γ((kerF∗)⊥) [21, 22]. Here, F is
said to be horizontally homothetic map if h(1rad(lnλ)) = 0 [5].

Now, a map F from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N) is a pluriharmonic
map if F satisfies the following equation

(∇F∗)(X,Y) + (∇F∗)(JX, JY) = 0 (14)

for X,Y ∈ Γ(TM) [10].
Lastly, we remark some relations on semi-slant Riemannian maps which will be same for conformal

semi-slant Riemannian maps. Let F : (M, 1M , J) −→ (N, 1N ) be a semi-slant Riemannian map from a Kähler
manifold to a Riemannian manifold with the semi-slant angle θ. Then we obtain

ϕ2X = − cos2 θ.X (15)

for X ∈ D2. If the tensor ω is parallel, then we get

TϕXϕX = − cos2 θ.TXX (16)

for X ∈ D2 [12].

3. Conformal Semi-slant Riemannian Maps

In this section, we will define the notion of conformal semi-slant Riemannian maps and give examples.
Then, some useful results will be given used in forward calculations.

Definition 3.1. Let (M, 1M, J) is an almost Hermitian manifold and (N, 1N) is a Riemannian manifold. A conformal
Riemannian map F : (M, 1M, J) −→ (N, 1N) is called a conformal semi-slant Riemannian map if there is a distribution
D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for nonzero X ∈ (D2)p and p ∈ M, whereD2 is
the orthogonal complement ofD1 in kerF∗. We call the angle θ a semi-slant angle.
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Then for U ∈ Γ(kerF∗), we get

U = P̃U + Q̃U, (17)

where P̃ and Q̃ are projections from kerF∗ ontoD1 andD2, respectively. For U ∈ Γ(kerF∗), we get

JU = ΦU + ψU, (18)

where ΦU ∈ Γ(kerF∗) and ψU ∈ Γ((kerF∗)⊥). For X ∈ Γ((kerF∗)⊥), we have

JX = BX + CX, (19)

where BX ∈ Γ(kerF∗) and CX ∈ Γ((kerF∗)⊥). Lastly, we have

(kerF∗)⊥ = ψD2 ⊕ µ (20)

where µ is the orthogonal complement of ψD2 in (kerF∗)⊥. µ is an invariant distribution under J. From
equations (17) - (20), we get followings:

ΦD1 = D1, ψD1 = 0, ΦD2 ⊂ D2, B((kerF∗)⊥) = D2. (21)

From now on, we will call this type maps CSSRM for convenience. Now, we will give examples for
CSSRM.

Example 3.2. Define a map F : (R8, 18, J) −→ (R5, 15) by

F(x1, x2, x3, x4, x5, x6, x7, x8) = e(x5, γ,
x7 − x8
√

2
,

x1 − x2
√

2
, x6)

where γ is a constant. We have the horizontal and the vertical distributions, respectively, as:

(kerF∗)⊥ = span{X1 = e
∂
∂x5

,X2 =
e
√

2
(
∂
∂x7
−

∂
∂x8

),X3 =
e
√

2
(
∂
∂x1
−

∂
∂x2

),X4 = e
∂
∂x6
}

and

kerF∗ = span{V1 =
∂
∂x3

,V2 =
∂
∂x4

,V3 =
∂
∂x1
+

∂
∂x2

,V4 =
∂
∂x7
+

∂
∂x8
}.

Hence, F is a conformal Riemannian map with λ = e and 0 < rankF∗ = 4 ≤ min{dim(R8), dim(R5)}. The complex
structure J on R8 as follows (−a2, a1,−a4, a3,−a6, a5,−a8, a7) where ai ∈ R, i = 1, 2, ..., 8. Now, we get

J(V1) = V2, J(V3) = −

√
2

e
X3, J(V4) = −

√
2

e
X2, J(X1) = X4, J(X2) =

e
√

2
V4, J(X3) =

e
√

2
V3. (22)

We obtain from (22) that D1 = span{V1,V2}, D2 = span{V3,V4}, ψD2 = span{X2,X3} and µ = span{X1,X4}. For
V3,V4 ∈ D2, by using

Vi.J(Vi) = cosθ∥Vi∥∥J(Vi)∥, i = 3, 4

we obtain semi-slant angle θ = π
2 . Therefore, F is a CSSRM with λ = e, rankF∗ = 4 and semi-slant angle θ = π

2 .

In a similar way, we have another example.

Example 3.3. Define a map F : (R10, 110, J) −→ (R5, 15) by

F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = π(x5, γ, x7 cosα − x8 sinα, x1,−x2)

where γ is a constant. The map F is a CSSRM such that

D1 = span{V1 =
∂
∂x3

,V2 =
∂
∂x4

,V4 =
∂
∂x9

,V5 =
∂
∂x10
}, D2 = span{V3 =

∂
∂x6

,V6 = sinα
∂
∂x7
+ cosα

∂
∂x8
},

ψD2 = span{X1 = π
∂
∂x5

,X2 = π(cosα
∂
∂x7
− sinα

∂
∂x8

)}, µ = span{X3 = π
∂
∂x1

,X4 = −π
∂
∂x2
}

with λ = π, rankF∗ = 4 and semi-slant angle θ = π
2 .
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Proposition 3.4. Let F be a CSSRM from an almost Hermitian manifold (M, 1M, J) to a Riemannian manifold
(N, 1N). Then the slant distributionD2 is integrable if and only if

Φ2
{∇̂U2 U1 − ∇̂U1 U2} ∈ Γ(D2)

for U1,U2 ∈ Γ(D2) and V ∈ Γ(D1).

Proof. Since vertical distribution is always integrable, we have 1M([U1,U2],X) = 0 for X ∈ Γ((kerF∗)⊥) and
U1,U2 ∈ Γ(D2). By using equations (3), (8), (18) and (19) we get

1M(
M
∇U1 U2,V) = 1M(J

M
∇U1 U2, JV)

= −1M(ΦBTU1 U2 + Φ
2
∇̂U2 U1,V)

for U1,U2 ∈ Γ(D2) and V ∈ Γ(D1). Changing the roles of U1 and U2, we obtain

1M([U1,U2],V) = 1M(ΦB{TU2 U1 − TU1 U2} + Φ
2
{∇̂U2 U1 − ∇̂U1 U2},V). (23)

Since T is symmetric we have ΦB{TU2 U1 − TU1 U2} = 0. From (23), the proof is clear.

Similarly, we get following proposition.

Proposition 3.5. Let F be a CSSRM from an almost Hermitian manifold (M, 1M, J) to a Riemannian manifold
(N, 1N). Then the complex distributionD1 is integrable if and only if

Φ{∇̂V1 V2 − ∇̂V2 V1} ∈ Γ(D1), ψ{∇̂V1 V2 − ∇̂V2 V1} ∈ Γ(µ)

for V1,V2 ∈ Γ(D1) and U ∈ Γ(D2).

If we take M as a Kähler manifold instead of an almost Hermitian manifold in Proposition 3.1. and
Proposition 3.2., we get next propositions.

Proposition 3.6. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
slant distributionD2 is integrable if and only if

λ2
{1M(∇̂U1 JV,ΦU2) − 1M(∇̂U2 JV,ΦU1)} = 1N((∇F∗)(U1, JV),F∗(ψU2)) − 1N((∇F∗)(U2, JV),F∗(ψU1))

for U1,U2 ∈ Γ(D2) and V ∈ Γ(D1).

Proof. Since M is a Kähler manifold, from equations (2), (4), (5), (8), we get

1M(
M
∇U1 U2,V) = −1M(

M
∇U1 V,U2)

= 1M(
M
∇U1 JV, JU2)

= −1M(TU1 JV, ψU2) − 1M(∇̂U1 JV,ΦU2)

for U1,U2 ∈ Γ(D2) and V ∈ Γ(D1). Changing the roles of U1 and U2, we obtain

1M([U1,U2],V) =
1
λ2 1N((∇F∗)(U1, JV),F∗(ψU2)) −

1
λ2 1N((∇F∗)(U2, JV),F∗(ψU1))

+ 1M(∇̂U2 JV,ΦU1) − 1M(∇̂U1 JV,ΦU2). (24)

From equation (24), the proof is clear.

Similarly, we get following.
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Proposition 3.7. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
complex distributionD1 is integrable if and only if

λ21M(∇̂V2 JV1 − ∇̂V1 JV2,ΦU) = 1N((∇F∗)(V2, JV1) − (∇F∗)(V1, JV2),F∗(ψU))

for V1,V2 ∈ Γ(D1) and U ∈ Γ(D2).

Proposition 3.8. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
horizontal distribution (kerF∗)⊥ is integrable if and only if

i- AX1 CX2 −AX2 CX1 + v
M
∇X1 BX2 − v

M
∇X2 BX1 ∈ Γ(D2),

ii- 1N((∇F∗)(X1,BX2) − (∇F∗)(X2,BX1),F∗(ψU))

= λ2
{1M(h

M
∇X1 CX2 − h

M
∇X2 CX1, ψU) + 1M(AX1 CX2 −AX2 CX1 + v

M
∇X1 BX2 − v

M
∇X2 BX1,ΦU)}

for X1,X2 ∈ Γ((kerF∗)⊥), V ∈ Γ(D1) and U ∈ Γ(D2).

Proof. First, we will examine 0 = 1M([X1,X2],V) for X1,X2 ∈ Γ((kerF∗)⊥) and V ∈ Γ(D1). By using equations
(4), (10) and (11), we have

1M(
M
∇X1 X2,V) = 1M(AX1 CX2 + v

M
∇X1 BX2, JV)

for X1,X2 ∈ Γ((kerF∗)⊥) and V ∈ Γ(D1). Changing the roles of X1 and X2, we obtain

1M([X1,X2],V) = 1M(AX1 CX2 −AX2 CX1 + v
M
∇X1 BX2 − v

M
∇X2 BX1, JV). (25)

One can see (i) from (25). In a similar way, we obtain

1M([X1,X2],U) = 1M(AX1 BX2 −AX2 BX1 + h
M
∇X1 CX2 − h

M
∇X2 CX1, ψU)

+ 1M(v
M
∇X1 BX2 − v

M
∇X2 BX1 +AX1 CX2 −AX2 CX1,ΦU) (26)

for X1,X2 ∈ Γ((kerF∗)⊥) and U ∈ Γ(D2). From equations (5) and (26), we get

1M([X1,X2],U) = −
1
λ2 {1N((∇F∗)(X1,BX2) − (∇F∗)(X2,BX1),F∗(ψU))}

+ 1M(h
M
∇X1 CX2 − h

M
∇X2 CX1, ψU)

+ 1M(AX1 CX2 −AX2 CX1 + v
M
∇X1 BX2 − v

M
∇X2 BX1,ΦU). (27)

One can see (ii) from (27). The proof is complete.

We already have the notion of pluriharmonic map [10] and its other cases such that if we take components
fromD1 (D2, µ, (kerF∗)⊥ − kerF∗, respectively) in (14), we say F is aD1-pluriharmonic map (D2, µ, (kerF∗)⊥ −
kerF∗, respectively) [21, 22]. Now, we use pluriharmonicity to introduce some geometric properties.

Theorem 3.9. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then any
one condition below implies the second condition;

i- F is aD1-pluriharmonic map,

ii- C{TV1 JV2 − TJV1 V2} = ψ{∇̂JV1 V2 − ∇̂V1 JV2}

for any V1,V2 ∈ Γ(D1).
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Proof. By using notion ofD1-pluriharmonic map and equations (5), (8) and (21), we write

0 = (∇F∗)(V1,V2) + (∇F∗)(JV1, JV2)

= F∗(J
M
∇V1 JV2) − F∗(J

M
∇JV1 V2)

= F∗(CTV1 JV2 + ψ∇̂V1 JV2) − F∗(CTJV1 V2 + ψ∇̂JV1 V2) (28)

for any V1,V2 ∈ Γ(D1). If F is aD1-pluriharmonic map, then we have

0 = F∗(CTV1 JV2 + ψ∇̂V1 JV2) − F∗(CTJV1 V2 + ψ∇̂JV1 V2).

Hence, one can see C{TV1 JV2 − TJV1 V2} = ψ{∇̂JV1 V2 − ∇̂V1 JV2}. If (ii) is provided, we obtain from (28)

0 = (∇F∗)(V1,V2) + (∇F∗)(JV1, JV2).

It means F is aD1-pluriharmonic map for any V1,V2 ∈ Γ(D1). The proof is complete.

Recall that F is said to be horizontally homothetic map if h(1rad(lnλ)) = 0 [5].

Theorem 3.10. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then any
two conditions below imply the third condition;

i- F is aD2-pluriharmonic map,

ii- F is a horizontally homothetic map and (∇F∗)⊥(ψU1, ψU2) = 0,

iii- sin2 θTU1 U2 +AψU2ΦU1 +AψU1ΦU2 = 0

for any U1,U2 ∈ Γ(D2).

Proof. Since second fundamental form of a map (∇F∗) is a symmetric, from equations (5), (13) and (14), we
have

0 = (∇F∗)(U1,U2) + (∇F∗)(JU1, JU2)
= (∇F∗)(U1,U2) + (∇F∗)(ΦU1,ΦU2) + (∇F∗)(ψU2,ΦU1)
+ (∇F∗)(ψU1,ΦU2) + (∇F∗)(ψU1, ψU2)

= −F∗(
M
∇U1 U2) − F∗(

M
∇ΦU1ΦU2) − F∗(

M
∇ψU2ΦU1) − F∗(

M
∇ψU1ΦU2)

+ ψU1(lnλ)F∗(ψU2) + ψU2(lnλ)F∗(ψU1) − 1M(ψU1, ψU2)F∗(1rad(lnλ))
+ (∇F∗)⊥(ψU1, ψU2) (29)

for any U1,U2 ∈ Γ(D2). By using equations (8), (10) and (16) in (29), we have

0 = −F∗(TU1 U2) + cos2 θF∗(TU1 U2) − F∗(AψU2ΦU1 +AψU1ΦU2)
+ ψU1(lnλ)F∗(ψU2) + ψU2(lnλ)F∗(ψU1) − 1M(ψU1, ψU2)F∗(1rad(lnλ))
+ (∇F∗)⊥(ψU1, ψU2)
= − sin2 θF∗(TU1 U2) − F∗(AψU2ΦU1 +AψU1ΦU2)
+ ψU1(lnλ)F∗(ψU2) + ψU2(lnλ)F∗(ψU1) − 1M(ψU1, ψU2)F∗(1rad(lnλ))
+ (∇F∗)⊥(ψU1, ψU2). (30)

Now, we suppose that (i) and (iii) are provided in (30). We get

0 = ψU1(lnλ)F∗(ψU2) + ψU2(lnλ)F∗(ψU1) − 1M(ψU1, ψU2)F∗(1rad(lnλ))
+ (∇F∗)⊥(ψU1, ψU2). (31)



Ş. Yanan / Filomat 36:5 (2022), 1719–1732 1726

Clearly, one can see (∇F∗)⊥(ψU1, ψU2) = 0. For ψU1 ∈ Γ(ψD2) by using (2) in (31), we obtain

0 = λ2ψU1(lnλ)1M(ψU2, ψU1) + λ2ψU2(lnλ)1M(ψU1, ψU1)
− 1M(ψU1, ψU2)λ2ψU1(lnλ)
= λ2ψU2(lnλ)1M(ψU1, ψU1). (32)

In (32), we have ψU2(lnλ) = 0. It means λ is a constant on ψD2. For Y ∈ Γ(µ) by using equations (2), (20) in
(31), we obtain

0 = λ2ψU1(lnλ)1M(ψU2,Y) + λ2ψU2(lnλ)1M(ψU1,Y)
− 1M(ψU1, ψU2)λ2Y(lnλ)
= −λ2Y(lnλ)1M(ψU1, ψU2). (33)

In (33), we have Y(lnλ) = 0 with ψU1 = ψU2. It means λ is a constant on µ. So, we say λ is a constant on
(kerF∗)⊥. Therefore, F is a horizontally homothetic map and (∇F∗)⊥(ψU1, ψU2) = 0. Suppose that (i) and (ii)
are provided in (30). So, from (30), we obtain

0 = − sin2 θF∗(TU1 U2) − F∗(AψU2ΦU1 +AψU1ΦU2)

which gives the proof of (iii). Therefore, if (ii) and (iii) are provided in (30), easily we obtain

0 = (∇F∗)(U1,U2) + (∇F∗)(JU1, JU2)

for any U1,U2 ∈ Γ(D2). So, F is aD2-pluriharmonic map. The proof is complete.

Theorem 3.11. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then any
one condition below implies the second condition;

i- F is a µ-pluriharmonic map,

ii- F is a horizontally homothetic map and (∇F∗)⊥(Y1,Y2) = 0

for any Y1,Y2 ∈ Γ(µ).

Proof. Firstly, suppose that (i) is provided. By using equations (12) and (14), we get

0 = (∇F∗)(Y1,Y2) + (∇F∗)(JY1, JY2)
= Y1(lnλ)F∗(Y2) + Y2(lnλ)F∗(Y1) − 1M(Y1,Y2)F∗(1rad(lnλ))
+ JY1(lnλ)F∗(JY2) + JY2(lnλ)F∗(JY1) − 1M(JY1, JY2)F∗(1rad(lnλ))
+ (∇F∗)⊥(Y1,Y2) + (∇F∗)⊥(JY1, JY2) (34)

for any Y1,Y2 ∈ Γ(µ). Since µ is invariant under J we can take Y1 = JY2 and Y2 = JY1 in (34). We obtain

0 = 2{Y1(lnλ)F∗(Y2) + Y2(lnλ)F∗(Y1) − 1M(Y1,Y2)F∗(1rad(lnλ)) + (∇F∗)⊥(Y1,Y2)}. (35)

One can see (∇F∗)⊥(Y1,Y2) = 0 in (35). Lastly, we have

0 = 2{Y1(lnλ)F∗(Y2) + Y2(lnλ)F∗(Y1) − 1M(Y1,Y2)F∗(1rad(lnλ))}. (36)

Now, for any Y1 ∈ Γ(µ) in (36), we obtain

0 = 2{Y1(lnλ)λ21M(Y2,Y1) + Y2(lnλ)λ21M(Y1,Y1)
− 1M(Y1,Y2)λ2Y1(lnλ)}
= 2λ2Y2(lnλ)1M(Y1,Y1). (37)
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In (37), we have Y2(lnλ) = 0. It means λ is a constant on µ. For ψU ∈ Γ(ψD2) from equations (2) and (20) in
(36), we obtain

0 = 2{Y1(lnλ)λ21M(Y2, ψU) + Y2(lnλ)λ21M(Y1, ψU)
− 1M(Y1,Y2)λ2ψU(lnλ)}
= −2λ2ψU(lnλ)1M(Y1,Y2). (38)

In (38), we have ψU(lnλ) = 0 with Y1 = Y2. It means λ is a constant on ψD2. So, we say λ is a constant on
(kerF∗)⊥. Therefore, F is a horizontally homothetic map and (∇F∗)⊥(Y1,Y2) = 0. Clearly, if F is a horizontally
homothetic map and (∇F∗)⊥(Y1,Y2) = 0 we obtain (i) from (34).

Theorem 3.12. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then any
two conditions below imply the third condition;

i- F is a {(kerF∗)⊥ − kerF∗}-pluriharmonic map,

ii- F is a horizontally homothetic map and (∇F∗)⊥(CX, ψU) = 0,

iii- AXU +AψUBX + TBXΦU +ACXΦU = 0

for any U ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)⊥).

Proof. Now, by using symmetry property of second fundamental form of a map (∇F∗) and from equations
(14), (18) and (19), we get

0 = (∇F∗)(X,U) + (∇F∗)(JX, JU)

= −F∗(
M
∇XU) + (∇F∗)(ψU,BX) + (∇F∗)(BX,ΦU) + (∇F∗)(CX, ψU) + (∇F∗)(CX,ΦU) (39)

for any U ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)⊥). By using (8), (9) and (12) in (39), we obtain

0 = −F∗(AXU +AψUBX + TBXΦU +ACXΦU)
+ CX(lnλ)F∗(ψU) + ψU(lnλ)F∗(CX)
− 1M(CX, ψU)F∗(1rad(lnλ)) + (∇F∗)⊥(CX, ψU). (40)

Suppose that (i) and (iii) are provided in (40). So, we have

0 = CX(lnλ)F∗(ψU) + ψU(lnλ)F∗(CX) − 1M(CX, ψU)F∗(1rad(lnλ))
+ (∇F∗)⊥(CX, ψU). (41)

Clearly, we see (∇F∗)⊥(CX, ψU) = 0. Lastly, we have

0 = CX(lnλ)F∗(ψU) + ψU(lnλ)F∗(CX) − 1M(CX, ψU)F∗(1rad(lnλ)). (42)

By using (2) in (42) and for CX ∈ Γ((kerF∗)⊥), we obtain

0 = CX(lnλ)λ21M(ψU,CX) + ψU(lnλ)λ21M(CX,CX)
− 1M(CX, ψU)λ2CX(lnλ)
= λ2ψU(lnλ)1M(CX,CX). (43)

In (43), we have ψU(lnλ) = 0. For ψU ∈ Γ((kerF∗)⊥) in (42) from (2), we obtain

0 = CX(lnλ)λ21M(ψU, ψU) + ψU(lnλ)λ21M(CX, ψU)
− 1M(CX, ψU)λ2ψU(lnλ)
= λ2CX(lnλ)1M(ψU, ψU). (44)
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In (44), we have CX(lnλ) = 0. Because of ψU(lnλ) = 0 and CX(lnλ) = 0, λ is a constant on (kerF∗)⊥.
Therefore, F is a horizontally homothetic map and (∇F∗)⊥(CX, ψU) = 0. If (i) and (ii) are provided in (40),
we obtain

0 = −F∗(AXU +AψUBX + TBXΦU +ACXΦU).

So, we get the proof of (iii). If (ii) and (iii) are provided in (40), we easily see

0 = (∇F∗)(X,U) + (∇F∗)(JX, JU)

for any U ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)⊥). Hence, F is a {(kerF∗)⊥ − kerF∗}-pluriharmonic map.

4. Totally Geodesic Distributions

In this section, we give some conditions for distributions to be define totally geodesic foliation in M.

Theorem 4.1. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
slant distributionD2 defines a totally geodesic foliation in M if and only if

i- −λ21M(∇̂U1ΦU2,ΦV) = 1N((∇F∗)(U1,ΦV),F∗(ψU2))

ii- λ2
{1M(∇̂U1ΦU2 + TU1ψU2,BX) + 1M(h

M
∇U1ψU2,CX)} = 1N((∇F∗)(U1,ΦU2),F∗(CX))

are provided for any U1,U2 ∈ Γ(D2), V ∈ Γ(D1) and X ∈ Γ((kerF∗)⊥).

Proof. If the slant distributionD2 defines a totally geodesic foliation in M, the equations 1M(
M
∇U1 U2,V) and

1M(
M
∇U1 U2,X) must be vanished for any U1,U2 ∈ Γ(D2), V ∈ Γ(D1) and X ∈ Γ((kerF∗)⊥). Firstly, by using

equations (4), (8), (9), (18) and (21), we have

1M(
M
∇U1 U2,V) = 1M(∇̂U1ΦU2 + TU1ψU2,ΦV)

for any U1,U2 ∈ Γ(D2) and V ∈ Γ(D1). SinceT is an anti-symmetric tensor field, we have 1M(TU1ψU2,ΦV) =
−1M(TU1ΦV, ψU2). In addition, we know (∇F∗)(U1,ΦV) = −F∗(TU1ΦV). Using equation (2), we get

1M(
M
∇U1 U2,V) = 1M(∇̂U1ΦU2,ΦV) +

1
λ2 1N((∇F∗)(U1,ΦV),F∗(ψU2)). (45)

We obtain (i) from equation (45). Now, in a similar way, we have

1M(
M
∇U1 U2,X) = 1M(TU1ψU2 + h

M
∇U1ψU2,CX) + 1M(∇̂U1ΦU2 + TU1ψU2,BX)

for any U1,U2 ∈ Γ(D2) and X ∈ Γ((kerF∗)⊥). We know (∇F∗)(U1,ΦU2) = −F∗(TU1ΦU2). Using equation (2),
we get

1M(
M
∇U1 U2,X) = −

1
λ2 1N((∇F∗)(U1,ΦU2),F∗(CX)) + 1M(h

M
∇U1ψU2,CX)

+ 1M(∇̂U1ΦU2 + TU1ψU2,BX). (46)

We obtain (ii) from (46).

Theorem 4.2. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
complex distributionD1 defines a totally geodesic foliation in M if and only if

i- P̃{Φ{∇̂V1 BX + TV1 CX}} = 0

ii- −λ21M(∇̂V1ΦU,ΦV2) = 1N((∇F∗)(V1,ΦV2),F∗(ψU))

are provided for any V1,V2 ∈ Γ(D1), U ∈ Γ(D2) and X ∈ Γ((kerF∗)⊥).
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Proof. If the complex distribution D1 defines a totally geodesic foliation in M, the equations 1M(
M
∇V1 V2,X)

and 1M(
M
∇V1 V2,U) must be vanished for any V1,V2 ∈ Γ(D1), X ∈ Γ((kerF∗)⊥) and U ∈ Γ(D2). By using

equations (4), (8), (9), (18) and (19), we have

1M(
M
∇V1 V2,X) = −1M(

M
∇V1 JX, JV2)

= −1M(∇̂V1 BX, JV2) − 1M(TV1 CX, JV2)
= 1M(Φ∇̂V1 BX + ΦTV1 CX,V2) (47)

for any V1,V2 ∈ Γ(D1) and X ∈ Γ((kerF∗)⊥). We obtain (i) from (47). In a similar way, we have from equation
(21)

1M(
M
∇V1 V2,U) = −1M(

M
∇V1 JU, JV2)

= −1M(∇̂V1ΦU,ΦV2) − 1M(TV1ψU,ΦV2) (48)

for any V1,V2 ∈ Γ(D1) and U ∈ Γ(D2). Since T is an anti-symmetric tensor field and by using equation (5),
we have −1M(TV1ψU,ΦV2) = 1M(TV1ΦV2, ψU) and (∇F∗)(V1,ΦV2) = −F∗(TV1ΦV2). Hence, we obtain from
(2)

1M(
M
∇V1 V2,U) = −1M(∇̂V1ΦU,ΦV2) −

1
λ2 1N((∇F∗)(V1,ΦV2),F∗(ψU)). (49)

We obtain (ii) from (49).

Theorem 4.3. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
horizontal distribution (kerF∗)⊥ defines a totally geodesic foliation in M if and only if

λ2
{1M(h

M
∇X1ψQ̃W,CX2) + 1M(v

M
∇X1ΦW +AX1ψQ̃W,BX2)} = 1N((∇F∗)(X1,ΦW),F∗(CX2))

for any X1,X2 ∈ Γ((kerF∗)⊥) and W ∈ Γ(kerF∗).

Proof. Here, we examine 0 = 1M(
M
∇X1 X2,W) for any X1,X2 ∈ Γ((kerF∗)⊥) and W ∈ Γ(kerF∗). By using equations

(4) and (17), we have

1M(
M
∇X1 X2,W) = −1M(

M
∇X1 P̃W + Q̃W,X2)

= −1M(
M
∇X1 JP̃W, JX2) − 1M(

M
∇X1 JQ̃W, JX2)

for any X1,X2 ∈ Γ((kerF∗)⊥) and W ∈ Γ(kerF∗). Using equations (18), (19) and (21), we have

1M(
M
∇X1 X2,W) = −1M(AX1ΦP̃W,CX2) − 1M(v

M
∇X1ΦP̃W,BX2)

− 1M(AX1ΦQ̃W + h
M
∇X1ψQ̃W,CX2)

− 1M(v
M
∇X1ΦQ̃W +AX1ψQ̃W,BX2).

Since Φ{P̃W + Q̃W} = ΦW and (∇F∗)(X1,ΦW) = −F∗(AX1ΦW) we obtain,

1M(
M
∇X1 X2,W) = −1M(v

M
∇X1ΦW +AX1ψQ̃W,BX2)

− 1M(h
M
∇X1ψQ̃W,CX2) − 1M(AX1ΦW,CX2)

= −1M(v
M
∇X1ΦW +AX1ψQ̃W,BX2) − 1M(h

M
∇X1ψQ̃W,CX2)

+
1
λ2 1N((∇F∗)(X1,ΦW),F∗(CX2)). (50)
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We complete the proof from (50).

Theorem 4.4. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then the
vertical distribution kerF∗ defines a totally geodesic foliation in M if and only if

i- −λ21M(h
M
∇U1 JX, ψU2) = 1N((∇F∗)(U1,ΦU2),F∗(JX))

ii- λ2
{1M(h

M
∇U1ψU2,CY) + 1M(∇̂U1ΦU2 + TU1ψU2,BY)} = 1N((∇F∗)(U1,ΦU2),F∗(CY))

are provided for any U1,U2 ∈ Γ(kerF∗), X ∈ Γ(µ) and Y ∈ Γ(ψD2).

Proof. Since µ is an invariant distribution and vertical tensor field T is an anti-symmetric tensor field by
using equations (4), (9) and (18), we have

1M(
M
∇U1 U2,X) = −1M(TU1 JX,ΦU2) − 1M(h

M
∇U1 JX, ψU2)

= 1M(TU1ΦU2, JX) − 1M(h
M
∇U1 JX, ψU2)

for any U1,U2 ∈ Γ(kerF∗) and X ∈ Γ(µ). We know that (∇F∗)(U1,ΦU2) = −F∗(TU1ΦU2), so we obtain

1M(
M
∇U1 U2,X) = −

1
λ2 1N((∇F∗)(U1,ΦU2),F∗(JX)) − 1M(h

M
∇U1 JX, ψU2). (51)

We obtain (i) from (51). In a similar way, from equations (8), (9), (18) and (19), we get

1M(
M
∇U1 U2,Y) = 1M(TU1ΦU2 + h

M
∇U1ψU2,CY) + 1M(∇̂U1ΦU2 + TU1ψU2,BY)

= −
1
λ2 1N((∇F∗)(U1,ΦU2),F∗(CY)) + 1M(h

M
∇U1ψU2,CY)

+ 1M(∇̂U1ΦU2 + TU1ψU2,BY) (52)

for any U1,U2 ∈ Γ(kerF∗) and Y ∈ Γ(ψD2). Therefore, we obtain (ii) from (52). The proof is complete.

Theorem 4.5. Let F be a CSSRM from a Kähler manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F
defines totally geodesic map if and only if

i- F is a horizontally homothetic map and (∇F∗)⊥(X1,X2) = 0

ii- C{TU1ΦU2 + h
M
∇U1ψQ̃U2} + ψ{∇̂U1ΦU2 + TU1ψQ̃U2} = 0

iii- C{AX1ΦU1 + h
M
∇X1ψU1} + ψ{v

M
∇X1ΦU1 +AX1ψU1} = 0

are provided for any X1,X2 ∈ Γ((kerF∗)⊥) and U1,U2 ∈ Γ(kerF∗).

Proof. By using notion of totally geodesic map with respect to second fundamental form of a map for
E,G ∈ Γ(TM) we have (∇F∗)(E,G) = 0. Firstly, we want to show (i). From equations (5), (12) and (13), we
have

(∇F∗)(X1,X2) = X1(lnλ)F∗(X2) + X2(lnλ)F∗(X1)
− 1M(X1,X2)F∗(1rad(lnλ)) + (∇F∗)⊥(X1,X2)

for any X1,X2 ∈ Γ((kerF∗)⊥). Clearly, we can see (∇F∗)⊥(X1,X2) = 0 since (∇F∗)⊥ is a component of (ran1eF∗)⊥.
So, we have

0 = X1(lnλ)F∗(X2) + X2(lnλ)F∗(X1)
− 1M(X1,X2)F∗(1rad(lnλ)). (53)
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For any X1 ∈ Γ((kerF∗)⊥) from (2), we obtain in (53)

0 = λ2X1(lnλ)1M(X2,X1) + λ2X2(lnλ)1M(X1,X1)
− λ2X1(lnλ)1M(X1,X2)

0 = λ2X2(lnλ)1M(X1,X1). (54)

We have X2(lnλ) = 0 from (54). It means λ is a constant on horizontal distribution. Therefore, F is a
horizontally homothetic map and (∇F∗)⊥(X1,X2) = 0. Similarly, by using (4), (5), (17), (18) and (21) we have

(∇F∗)(U1,U2) = F∗(J
M
∇U1 JU2)

= F∗(J
M
∇U1 JP̃U2 + J

M
∇U1 JQ̃U2)

= F∗(JTU1 JP̃U2 + J∇̂U1 JP̃U2)
+ F∗(JTU1ΦQ̃U2 + J∇̂U1ΦQ̃U2)

+ F∗(JTU1ψQ̃U2 + Jh
M
∇U1ψQ̃U2) (55)

for any U1,U2 ∈ Γ(kerF∗). By using equations (18) and (19) in (55), we obtain

0 = F∗(CTU1ΦP̃U2 + ψ∇̂U1ΦP̃U2)
+ F∗(CTU1ΦQ̃U2 + ψ∇̂U1ΦQ̃U2)

+ F∗(ψTU1ψQ̃U2 + Ch
M
∇U1ψQ̃U2). (56)

Since Φ{P̃U2 + Q̃U2} = ΦU2 in (56), we obtain

0 = F∗(CTU1ΦU2 + ψ∇̂U1ΦU2)

+ F∗(ψTU1ψQ̃U2 + Ch
M
∇U1ψQ̃U2). (57)

We obtain from equation (57)

C{TU1ΦU2 + h
M
∇U1ψQ̃U2} + ψ{∇̂U1ΦU2 + TU1ψQ̃U2} = 0.

Lastly, by using uations (4), (5), (11), (12), (18) and (19), we have

(∇F∗)(X1,U1) = F∗(J
M
∇X1 JU1)

= F∗(J
M
∇X1ΦU1 + J

M
∇X1ψU1)

= F∗(JAX1ΦU1 + Jv
M
∇X1ΦU1) + F∗(JAX1ψU1 + Jh

M
∇X1ψU1)

= F∗(CAX1ΦU1 + ψv
M
∇X1ΦU1)

+ F∗(ψAX1ψU1 + Ch
M
∇X1ψU1) (58)

for any X1 ∈ Γ((kerF∗)⊥) and U1 ∈ Γ(kerF∗). We obtain from equation (58)

C{AX1ΦU1 + h
M
∇X1ψU1} + ψ{v

M
∇X1ΦU1 +AX1ψU1} = 0.

The proof is complete.
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[14] Park, K.S., Şahin, B.: Semi-slant Riemannian maps into almost Hermitian manifolds. Czechoslovak Mathematical Journal. 64, 1045-1061

(2014).
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