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Abstract. The aim of this paper is to study a dimorphic property associated with two different sums
of identically independent Bernoulli random variables having two different families of probability mass
functions. In addition, we give two expressions on sums of products of degenerate Stirling numbers of the
second kind and Stirling numbers of the first kind connected with those two different sums of identically
independent Bernoulli random variables.

1. Introduction

It is well known that Bernoulli random variable is the discrete random variable which takes the value 1
with probability p and the value 0 with probability 1−p, where 0 ≤ p ≤ 1. In this paper, we study a dimorphic
property (see Theorem 2) associated with two different sums of identically independent Bernoulli random
variables having two different families of probability mass functions.

Further, we give two expressions on sums of products of degenerate Stirling numbers of the second
kind and Stirling numbers of the first kind in connection with those two different sums of identically
independent Bernoulli random variables. In fact, one is expressed in terms of the expectation of a random
variable associated with one sum of identically independent Bernoulli random variables (see Theorem 3)
and the other in terms of an integral involving the other sum of identically independent Bernoulli random
variables (see Theorem 4). In the rest of this section, we recall some facts that are needed throughout this
paper.

For any λ ∈ R, the degenerate exponential function is defined as

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
, (see [7, 8, 9, 10, 11, 12]), (1)

where (x)0,λ = 1, (x)n,λ = x(x − λ)
(
x − (n − 1)λ

)
, (n ≥ 1).

When x = 1, for simplicity we write eλ(t) = e1
λ(t). Note that lim

λ→0
ex
λ(t) =

∞∑
n=0

xn

n!
tn = ext.
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The Stirling numbers of the first kind are defined by

(x)n =

n∑
l=0

S1(n, l)xl, (n ≥ 0), (see [1, 3, 4, 14]), (2)

where (x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1). As the inversion formula of (2), the Stirling numbers
of the second kind are defined by

xn =

n∑
l=0

S2(n, l)(x)l, (n ≥ 0), (see [14, 15, 16, 17, 18]). (3)

Moreover, in [8] the degenerate Stirling numbers of the second kind are defined as

(x)n,λ =

n∑
l=0

S2,λ(n, l)(x)l, (n ≥ 0). (4)

Note that lim
λ→0

S2,λ(n, l) = S2(n, l), (n, l ≥ 0). From (4), we note that

1
k!

(
eλ(t) − 1

)k
=

∞∑
n=k

S2,λ(n, k)
tn

n!
, (k ≥ 0), (see [6, 8, 9]). (5)

Let X be a discrete random variable with probability mass function p( j) = P{X = j}, ( j = 1, 2, . . . ). Then
the expectation of X is defined by

E[Xn] =
n∑

i=1

inp(i), (n ∈N), (see [1, 2, 17]). (6)

It is known that that the variance of X is given by

σ2 = Var(X) = E[X2] −
(
E[X]

)2
, (see [17]). (7)

Let (X j)1≤ j≤n be identically independent Bernoulli random variables such that X j has the probability of
success 1

j , ( j = 1, 2, . . . ,n). That is,

X j =

{
1, if success,
0, otherwise, (8)

with P{X j = 1} = 1
j , P{X j = 0} = 1 − P{X j = 1}, where j = 1, 2, 3, . . . ,n, (see [2,5,13,17,18]).

Let us assume that the random variable Yn is defined by

Yn = X1 + X2 + · · · + Xn =

n∑
i=1

Xi. (9)

From (6), (7) and (9), we note that

µn = E[Yn] =
n∑

j=1

E[X j] =
n∑

j=1

1
j
, (10)

and

σ2
n = E[Y2

n] −
(
E[Yn]

)2
=

n∑
j=1

1
j

(
1 −

1
j

)
. (11)
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2. Dimorphic properties of Bernoulli random variables

In this section, we show the dimorphic property (see Theorem 2) associated with the two different sums
Yn =

∑n
j=1 X j (see (9)) and Zn,λ(α) =

∑n
j=1 X j,λ(α) (see (13)) of the identically independent Bernoulli random

variables X j, with the probability of success 1
j , and those X j,λ(α), with the probability of success α

λ j+α .

For α > 0 (α ∈ R), and λ ∈ (0, 1), let
(
X j,λ(α)

)
1≤ j≤n

be identically independent Bernoulli random variables

such that X j,λ(α) has the probability of success α
λ j+α , ( j = 1, 2, . . . ,n).

That is,

X j,λ(α) =
{

1, if success,
0 otherwise, (12)

with P{X j,λ(α) = 1} = α
α+λ j , P{X j,λ(α) = 0} = 1 − P{X j,λ(α) = 1}.

Let us assume that Zn,λ(α) is defined by

Zn,λ(α) = X1,λ(α) + X2,λ(α) + · · · + Xn,λ(α) =
n∑

i=1

Xi,λ(α). (13)

From (6), (7) and (13), we have

µn,λ(α) = E
[
Zn,λ(α)

]
=

n∑
j=1

α
α + λ j

, (14)

and

σ2
n(α) = Var

(
Zn,λ(α)

)
= E

[
Z2

n,λ(α)
]
−

(
E
[
Zn,λ(α)

])2
(15)

=

n∑
j=1

E
[
X2

j,λ(α)
]
+ 2

∑
i< j

E
[
X j,λ(α)

]
E
[
Xi,λ(α)

]
−

{ n∑
j=1

(
α

α + λ j

)2

+ 2
∑
i< j

(
α

α + λ j

)(
α

α + λi

)}
=

n∑
j=1

α
α + λ j

+ 2
∑
i< j

α2

(α + λ j)(α + λi)
−

n∑
j=1

(
α

α + λ j

)2

− 2
∑
i< j

α2

(α + λ j)(α + λi)

=

n∑
j=1

α
α + λ j

(
1 −

α
α + λ j

)
.

Lemma 1. For n ≥ 1, let µn,λ(α) be the mean of Zn,λ(α), and let σ2
n,λ be the variance of Zn,λ(α). Then we have

µn,λ(α) =
n∑

j=1

α
α + λ j

,

and

σ2
n,λ(α) =

n∑
j=1

α
α + λ j

(
1 −

α
α + λ j

)
.
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From (8), we have

E
[
(1 +

z
λ

)X j
]
= (1 +

z
λ

)P{X j = 1} + P{X j = 0}

=
1
j
+

z
λ j
+ 1 −

1
j
= 1 +

z
λ j
.

(16)

By (16), we get

E
[
(1 +

z
λ

)Yn
]
= E

[
(1 +

z
λ

)
∑n

j=1 X j
]

=

n∏
j=1

E
[
(1 +

z
λ

)X j
]
=

n∏
j=1

(
1 +

z
λ j

)
.

(17)

On the other hand,

E
[
zZn,λ(α)

]
= E

[
z
∑n

j=1 X j,λ(α)
]
=

n∏
j=1

E
[
zX j,λ(α)

]
. (18)

Note that

E
[
zX j,λ(α)

]
= zP{X j,λ(α) = 1} + P{X j,λ(α) = 0} (19)

=
αz
α + λ j

+ 1 −
α

α + λ j

=
αz + λ j
α + λ j

, ( j = 1, 2, . . . ,n).

By (18) and (19), we get

E
[
zZn,λ(α)

]
=

n∏
j=1

(αz + λ j
α + λ j

)
. (20)

From (17) and (20), we note that

E
[
(1 +

α
λ

)Yn
]
E
[
zZn,λ(α)

]
(21)

=

n∏
j=1

(
1 +
α
λ j

) n∏
j=1

(αz + λ j
α + λ j

)
=

n∏
j=1

(αz + λ j
λ j

)
=

n∏
j=1

(
1 +
αz
λ j

)
.

By (8), we easily get

E
[(

1 +
αz
λ

)Yn]
=

n∏
j=1

E
[(

1 +
αz
λ

)X j]
=

n∏
j=1

(
1 +
αz
λ j

)
. (22)

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 2. For n ∈N, we have

E
[
(1 +

α
λ

)Yn
]
E
[
zZn,λ(α)

]
= E

[(
1 +
αz
λ

)Yn]
.
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3. Applications to sums of products of degenerate Stirling numbers of the second kind and Stirling
numbers of the first kind

Here, as an application of the dimorphic property in Theorem 2, we derive two different expressions
on the sum

∑n
m=l S2,λ(n + 1,m + 1)S1(m + 1, l + 1), one involving Yn (see Theorem 3) and the other involving

Zn,λ(α) (see Theorem 4).
From (2) and (4), we note that

(x)n+1,λ =

n+1∑
m=0

S2,λ(n + 1,m)(x)m =

n+1∑
m=1

S2,λ(n + 1,m)(x)m (23)

=

n∑
m=0

S2,λ(n + 1,m + 1)(x)m+1

= x
n∑

m=0

S2,λ(n + 1,m + 1)
m∑

l=0

S1(m + 1, l + 1)xl

= x
n∑

l=0

( n∑
m=l

S2,λ(n + 1,m + 1)S1(m + 1, l + 1)
)
xl.

By (1) and (17), we easily get

(x)n+1,λ = x(x − λ)(x − 2λ) · · · (x − nλ) (24)

= n!λn(−1)nx
(
1 −

x
λ

)(
1 −

x
λ2

)
· · ·

(
1 −

x
λn

)
= n!(−1)nλnx

n∏
j=1

(
1 −

x
λ j

)
= n!(−1)nλnxE

[(
1 −

x
λ

)Yn

]
.

From (23) and (24), we note that

z
n∑

l=0

( n∑
m=l

S2,λ(n + 1,m + 1)S1(m + 1, l + 1)
)
zl (25)

= n!(−1)nλnzE
[(

1 −
z
λ

)Yn]
= n!(−1)nλnz

n∑
l=0

(−1)lE
[(Yn

l

)]( z
λ

)l

= z
n∑

l=0

(−1)n−lλn−ln!E
[(Yn

l

)]
zl.

By comparing the coefficients on both sides of (25), we obtain the following theorem.

Theorem 3. For 0 ≤ l ≤ n, we have

n∑
m=l

S2,λ(n + 1,m + 1)S1(m + 1, l + 1) = (−1)n−lλn−ln!E
[(Yn

l

)]
.
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As Yn is taking integer values between 0 and n, we see that

1
2π

∫ π

−π
E
[(

1 +
α
λ

eiθ
)Yn

]
e−imθdθ =

1
2π

∫ π

−π

n∑
j=0

E
[(Yn

j

)](
α
λ

) j

e jiθe−imθdθ (26)

=

n∑
j=0

E
[(Yn

j

)]
α j

2π
λ− j

∫ π

−π
eiθ( j−m)dθ

= λ−mαmE
[(Yn

m

)]
,

where i =
√
−1.

From Theorem 2 and (26), we have

λ−lαlE
[(Yn

l

)]
=

1
2π

∫ π

−π
E
[(

1 +
α
λ

eiθ
)Yn]

e−ilθdθ (27)

=
1

2π
E
[
(1 +

α
λ

)Yn
] ∫ π

−π
E
[
eiθZn,λ(α)

]
e−ilθdθ

=

n∏
j=1

(
1 +
α
λ j

) 1
2π

∫ π

−π
E
[
eiθ(Zn,λ(α)−l)

]
dθ

=
Γ(1 + αλ )(1 + αλ )(2 + αλ ) · · · (n + αλ )

n!Γ(1 + αλ )
1

2π

∫ π

−π
E
[
eiθ(Zn,λ(α)−l)

]
dθ

=
Γ(n + αλ + 1)
n!Γ(1 + αλ )

1
2π

∫ π

−π
E
[
eiθ(Zn,λ(α)−l)

]
dθ.

By Theorem 3 and (27), we get

n∑
m=l

S2,λ(n + 1,m + 1)S1(m + 1, l + 1) = (−1)n−lλn−ln!E
[(Yn

l

)]
(28)

= (−1)n−lλn Γ(n +
α
λ + 1)

αlΓ(1 + αλ )
1

2π

∫ π

−π

[
eiθ(Zn,λ(α)−l)

]
dθ

= (−1)n−lλn+1 Γ(n +
α
λ + 1)

αl+1Γ( αλ )
1

2π

∫ π

−π

[
eiθ(Zn,λ(α)−l)

]
dθ.

Therefore, by (28), we obtain the following theorem.

Theorem 4. For 0 ≤ l ≤ n, α > 0(α ∈ R), λ ∈ (0, 1), and i =
√
−1, we have

1
2π

∫ π

−π

[
eiθ(Zn,λ(α)−l)

]
dθ = (−1)n−l α

l+1

λn+1

Γ( αλ )
Γ(n + αλ + 1)

n∑
m=l

S2,λ(n + 1,m + 1)S1(m + 1, l + 1).

4. Conclusion

There are various ways of studying special numbers and polynomials, to mention a few, generating
functions, combinatorial methods, probability theory, p-adic analysis, umbral calculus, differential equa-
tions, special functions and analytic number theory. In recent years, we have had lively interests in the
study of various degenerate versions of special numbers and polynomials with those diverse tools. As
a fruit of such explorations, we came up with, for example, the degenerate Stirling numbers which are
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degenerate versions of the ordinary Stirling numbers and appear in many different contexts. The novelty
of this paper is that we obtained two different expressions on sums of products of degenerate Stirling
numbers of the second kind and Stirling numbers of the first kind in connection with two different sums of
identically independent Bernoulli random variables. This is one example of our efforts in the applications
of probability theory to the study of some special numbers and polynomials and also of degenerate versions
of those numbers and polynomials.

We would like to continue to find many applications of probability theory to the study of some special
numbers and polynomials and also of their degenerate versions. More generally, it is one of our future
projects to continue to explore various degenerate versions of many special polynomials and numbers with
aforementioned tools.
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