A Note on Class $p-w A(s, t)$ Operators

M.H.M.Rashid ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics-Faculty of Science P.O.Box(7)- Mu'tah university- Al-Karak -Jordan

Abstract

Let A and B be positive operators and $0<q \leq 1$. In this paper, we shall show that if

$$
A^{q \alpha_{0}} \geq\left(A^{\alpha_{0} / 2} B^{\beta_{0}} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta_{0}}}
$$

and
$\left(B^{\beta_{0} / 2} A^{\alpha_{0}} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha_{0}+\beta_{0}}} \geq B^{q \beta_{0}}$
hold for fixed $\alpha_{0}>0$ and $\beta_{0}>0$. Then the following inequalities hold:
$A^{q_{1} \alpha} \geq\left(A^{\alpha / 2} B^{\beta} A^{\alpha / 2}\right)^{\frac{q_{1} \alpha}{\alpha+\beta}}$
and
$\left(B^{\beta / 2} A^{\alpha} B^{\beta / 2}\right)^{\frac{q_{1} \beta}{\alpha+\beta}} \geq B^{q_{1} \beta}$
for all $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$ and $0<q_{1} \leq q$. Also, we shall show a normality of class $p-A(s, t)$ for $s>0, t>0$ and $0<p \leq 1$. Moreover, we shall show that if T or T^{*} belongs to class $p-w A(s, t)$ for some $s>0, t>0$ and $0<p \leq 1$ and S is an operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is self-adjoint.

1. Introduction

In what follows, an operator means a bounded linear operator on a complex Hilbert space \mathcal{H} and $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. An operator T is said to be positive (denoted $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in \mathcal{H}$, and also T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. As a recent development on order preserving operator inequalities, it is known the following Theorem.

Theorem 1.1 (Furuta's inequality[10]). If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{r+p}{q}}$ and
(ii) $A^{\frac{r+p}{q}} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{1}{q}}$

[^0]hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.
Theorem 1.1 yields the famous Löwner-Heinz theorem " $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$ " by putting $r=0$ in (i) or (ii) of Theorem 1.1.
As an application of Theorem 1.1, in [8] and [11], it was shown the following: For positive invertible operators A and $B, \log A \geq \log B$ (this order is called chaotic order) if and only if $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ for all $p \geq 0$ and $r \geq 0$ if and only if $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ for all $p \geq 0$ and $r \geq 0$. We remark that this result is an extension of [2] in case $p=r$. Related to these operator inequalities, the following assertions are well-known: Let A and B be strictly positive operators. Then
(a) $A \geq B \Rightarrow \log A \geq \log B$.
(b) $\log A \geq \log B \Rightarrow\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ for all $p \geq 0$ and $r \geq 0$.
(c) For each $p \geq 0$ and $r \geq 0,\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r} \Leftrightarrow A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}$ [11].

Related to these results, it is shown in [23] that the invertibility in (a) and (b) can be replaced with the condition $\operatorname{ker}(A)=\operatorname{ker}(B)=\{0\}$, that is, (a) and (b) hold for some non-invertible operators A and B. In [15], the authors studied relations between

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r} \quad \text { and } \quad A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}}
$$

when A and B are not invertible.
Every operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into $T=U|T|$ with a partial isometry U where $|T|$ is the square root of $T^{*} T$. If U is determined uniquely by the kernel condition $\operatorname{ker} U=\operatorname{ker}|T|$, then this decomposition is called the polar decomposition of T. In this paper, $T=U|T|$ denotes the polar decomposition satisfying the kernel condition $\operatorname{ker} U=\operatorname{ker}|T|$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if $T^{*} T \geq T T^{*}$. The Aluthge transformation introduced by Aluthge[1] is defined by $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ where $T=U|T|$ is the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. The generalized Aluthge transformation $\tilde{T}_{s, t}$ with $0<s, t$ is defined by $\widetilde{T}_{s, t}=|T|^{s} U|T|^{t}$. Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, and class $w A(s, t)$ if $\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t}{s+t}} \geq\left|T^{*}\right|^{2 t}$ and $|T|^{2 s} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s}{s+t}}$ ([14]). Furuta el al. [9] introduced class $A(k)$ for $k>0$ as a class of operators including p-hyponormal and log-hyponormal operators, where $A(1)$ coincides with class A operator. We say that an operator T is class $A(k), k>0$ if $\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \geq|T|^{2}$.

Definition 1.2. Let $s>0, t>0,0<p \leq 1$ and $T=U|T|$ be the polar decomposition of T.
(i) T belongs to class $p-A(s, t) \Leftrightarrow\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{p t}{s+t}} \geq\left|T^{*}\right|^{2 t p}[16]$.
(ii) T belongs to class $p-w A(s, t)$

$$
\begin{aligned}
& \Leftrightarrow \quad\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{p t}{s+t}} \geq\left|T^{*}\right|^{2 t p} \quad \text { and } \quad|T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}} \\
& \Leftrightarrow \quad\left|\tilde{T}_{s, t}\right|^{\frac{2 p p}{t+s}} \geq|T|^{2 t p} \quad \text { and } \quad|T|^{2 s p} \geq\left|\left(\tilde{T}_{s, t}\right)^{*}\right|^{\frac{2 s p}{s+t}},
\end{aligned}
$$

where $\tilde{T}_{s, t}=|T|^{s} U|T|^{t}$ is the generalized Aluthge transformation [16].
(iii) T belongs to class $p-A \Leftrightarrow\left|T^{2}\right|^{p} \geq|T|^{2 p}$, that is, T belongs to class $p-A(1,1)[16]$.
(iv) T is p-w-hyponormal $\Leftrightarrow|\tilde{T}|^{\frac{p}{2}} \geq|T|^{p} \geq\left|(\tilde{T})^{*}\right|^{\frac{p}{2}}$, that is, T belongs to class $p-w A\left(\frac{1}{2}, \frac{1}{2}\right)$, where $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is the Aluthge transformation[3].
(v) T is (s,p)-w-hyponormal $\Leftrightarrow\left|\tilde{T}_{s, s}\right|^{\frac{p}{2}} \geq|T|^{2 s p} \geq\left|\left(\tilde{T}_{s, s}\right)^{*}\right|^{\frac{p}{2}}$, that is, T belongs to class p-w $A(s, s)$, where $\tilde{T}_{s, s}=$ $|T|^{s} U|T|^{s}$ is the generalized Aluthge transformation [12].
It is well known that class $p-w A(s, t)$ operators enjoy many interesting properties as hyponormal operators, for example, Fuglede-Putnam type theorem, Weyl type theorem, subscalarity and Putnam's inequality ([5],[6],[17], [18],[22]). We remark that Aluthge transformation has many interesting properties, and many authors study this transformation, for instance, [1], [5], [7] and [25]. These classes are included in normaloid (i.e., $\|T\|=r(T)$, where $r(T)$ is the spectral radius of T) (see [17],[3] and [12]). It has been shown that for $s>0, t>0$ and $0<p \leq 1$, class $p-A(s, t)$ includes class $p-w A(s, t)$ by the definition 1.2 (i) and (ii). and also for each $s>0, t>0$ and $0<p \leq 1$, class $p-A(s, t)$ and class $p-w A(s, t)$ are invertible which was shown in [16]. More precise inclusion relations among class $p-w A(s, t)$ were already shown as follows:

Theorem 1.3. [5] If $T \in B(\mathcal{H})$ is class $p-w A(s, t)$ and $0<s \leq \alpha, 0<t \leq \beta, 0<p_{1} \leq p \leq 1$, then T is class $p_{1}-w A(\alpha, \beta)$.

In this paper, we shall show a normality of class $p-A(s, t)$ for $s>0, t>0$ and $0<p \leq 1$. Moreover, we shall show that if T or T^{*} belongs to class $p-w A(s, t)$ for some $s>0, t>0$ and $0<p \leq 1$ and S is an operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is self-adjoint.

2. Main results

In order to give the proof of our results. We need the following lemmas.
Lemma 2.1. [13, Löwner-Heinz inequality] $A \geq B \geq 0$ ensure $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.
Lemma 2.2. [25] Let $A>0$ and B be an invertible operator. Then

$$
\left(B A B^{*}\right)^{\lambda}=B A^{1 / 2}\left(A^{1 / 2} B^{*} B A^{1 / 2}\right)^{\lambda-1} A^{1 / 2} B^{*}
$$

holds for any real number λ.
Proposition 2.3. Let A and B be positive operators. Then the following assertions hold:
(i) If $\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{0}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\beta_{0} p}{\alpha_{0}+\beta_{0}}} \geq B^{\beta_{0} p}$ holds for fixed $\alpha_{0}>0, \beta_{0}>0$ and $0<p \leq 1$, then

$$
\begin{equation*}
\left(B^{\frac{\beta}{2}} A^{\alpha_{0}} B^{\frac{\beta}{2}}\right)^{\frac{\beta p_{1}}{\alpha_{0}+\beta}} \geq B^{\beta p_{1}} \tag{1}
\end{equation*}
$$

holds for any $\beta \geq \beta_{0}$ and $0<p_{1} \leq p \leq 1$. Moreover, for each fixed $\gamma \geq-\alpha_{0}$,

$$
f_{\alpha_{0}, \gamma}(\beta)=\left(A^{\frac{\alpha_{0}}{2}} B^{\beta} A^{\frac{\alpha_{0}}{2}}\right)^{\frac{\left(\alpha_{0}+\gamma\right) p_{1}}{\alpha_{0}+\beta}}
$$

is a decreasing function for $\beta \geq \max \left\{\beta_{0}, \gamma\right\}$. Hence the inequality

$$
\begin{equation*}
\left(A^{\frac{\alpha_{0}}{2}} B^{\beta_{1}} A^{\frac{\alpha_{0}}{2}}\right)^{p_{1}} \geq\left(A^{\frac{\alpha_{0}}{2}} B^{\beta_{2}} A^{\frac{\alpha_{0}}{2}}\right)^{\frac{p_{1}\left(\alpha_{0}+\beta_{1}\right)}{\alpha_{0}+\beta_{2}}} \tag{2}
\end{equation*}
$$

holds for any β_{1} and β_{2} such that $\beta_{2} \geq \beta_{1} \geq \beta_{0}$ and $0<p_{1} \leq p$.
(ii) If $A^{\alpha_{0} p} \geq\left(A^{\frac{\alpha_{0}}{2}} B^{\beta_{0}} A^{\frac{\alpha_{0}}{2}}\right)^{\frac{\alpha_{0} p}{\alpha_{0}+\beta_{0}}}$ holds for fixed $\alpha_{0}>0$ and $\beta_{0}>0$ and $0<p \leq 1$, then

$$
\begin{equation*}
A^{\alpha p_{1}} \geq\left(A^{\frac{\alpha}{2}} B^{\beta_{0}} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha p_{1}}{\alpha+\beta_{0}}} \tag{3}
\end{equation*}
$$

holds for any $\alpha \geq \alpha_{0}$ and $0<p_{1} \leq p \leq 1$. Moreover, for each fixed $\delta \geq-\beta_{0}$,

$$
g_{\beta_{0}, \delta}(\alpha)=\left(B^{\frac{\beta_{0}}{2}} A^{\alpha} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+\beta_{0}}}
$$

is an increasing function for $\alpha \geq \max \left\{\alpha_{0}, \delta\right\}$. Hence the inequality

$$
\begin{equation*}
\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{2}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{p_{1}\left(\alpha_{1}+\beta_{0}\right)}{\alpha_{2}+\beta_{0}}} \geq\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{1}} B^{\frac{\beta_{0}}{2}}\right)^{p_{1}} \tag{4}
\end{equation*}
$$

holds for any α_{1} and α_{2} such that $\alpha_{2} \geq \alpha_{1} \geq \alpha_{0}$ and $0<p_{1} \leq p$.
Proposition 2.3 can be obtained as an application of Furuta inequality 1.1. We actually use the following form which is the essential part of Furuta inequality 1.1.
Lemma 2.4. If $A \geq B \geq 0$, then
(i) $\left(B^{x / 2} A^{y} B^{x / 2}\right)^{\frac{1 x+y}{x+y}} \geq B^{1+x}$ and
(ii) $A^{1+x} \geq\left(A^{x / 2} B^{y} A^{x / 2}\right)^{\frac{1+x}{x+y}}$
hold for $x \geq 0$ and $y \geq 1$.
Proof. [Proof of Proposition 2.3] (i) Put $A_{1}=\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{0}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\beta_{0} p}{\alpha_{0}+\beta_{0}}}$ and $B_{1}=B^{\beta_{0} p}$, then $A_{1} \geq B_{1} \geq 0$ holds by the hypothesis. By applying (i) of Lemma 2.4 to A_{1} and B_{1}, we have

$$
\begin{equation*}
\left(B_{1}^{x_{1} / 2} A_{1}^{y_{1}} B_{1}^{x_{1} / 2}\right)^{\frac{1+x_{1}}{x_{1}+y_{1}}} \geq B_{1}^{1+x_{1}} \text { for any } y_{1} \geq 1 \text { and } x_{1} \geq 0 \tag{5}
\end{equation*}
$$

Let $\beta \geq \beta_{0}, y_{1}=\frac{\alpha_{0}+\beta_{0}}{\beta_{0} p}$ and $x_{1}=\frac{\beta-\beta_{0}}{\beta_{0} p} \geq 0$. Then

$$
\begin{equation*}
\left(B^{\beta / 2} A^{\alpha_{0}} B^{\beta / 2}\right)^{\frac{\beta_{0} p+\beta-\beta_{0}}{\beta_{0}+\beta}} \geq B^{\beta_{0} p+\beta-\beta_{0}} \text { for any } \beta \geq \beta_{0} \tag{6}
\end{equation*}
$$

Since $\frac{p_{1} \beta}{\beta_{0} p+\beta-\beta_{0}} \in(0,1]$, applying Löwner-Heinz theorem to (6), we have

$$
\begin{equation*}
\left(B^{\beta / 2} A^{\alpha_{0}} B^{\beta / 2}\right)^{\frac{p_{1} \beta}{\alpha_{0}+\beta}} \geq B^{p_{1} \beta} \text { for any } \beta \geq \beta_{0} \text { and } 0<p_{1} \leq p \tag{7}
\end{equation*}
$$

By applying Löwner-Heinz theorem to (7), we have

$$
\begin{equation*}
\left(B^{\beta / 2} A^{\alpha_{0}} B^{\beta / 2}\right)^{\frac{w}{\alpha_{0}+\beta}} \geq B^{w} \text { for any } 0<w \leq p_{1} \beta . \tag{8}
\end{equation*}
$$

For each $\gamma \geq-\alpha_{0}, \beta \geq \max \left\{\beta_{0}, \gamma\right\}$ and w such that $p_{1} \beta \geq w \geq 0$, we have

$$
\begin{aligned}
f_{\alpha_{0}, \gamma}(\beta) & =\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta}} \\
& =\left\{\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{\alpha_{0}+\beta+w}{\alpha_{0}+\beta}}\right\}^{\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta+w}} \\
& =\left\{A^{\alpha_{0} / 2} B^{\beta / 2}\left(B^{\beta / 2} A^{\alpha_{0}} B^{\beta / 2}\right)^{\frac{w}{\alpha_{0}+\beta}} B^{\beta / 2} A^{\alpha_{0} / 2}\right\}^{\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta+w}} \\
& \geq\left\{A^{\alpha_{0} / 2} B^{\beta / 2} B^{w} B^{\beta / 2} A^{\alpha_{0} / 2}\right\}^{\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta+w}} \\
& =\left(A^{\alpha_{0} / 2} B^{\beta+w} A^{\alpha_{0} / 2}\right)^{\frac{\left(\gamma+\alpha_{0}\right.}{\alpha_{0}+\beta+p+w}} \\
& =f_{\alpha_{0}, \gamma}(\beta+w) .
\end{aligned}
$$

The above inequality holds by (8) and Löwner-Heinz theorem for $\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta+w} \in[0,1]$. Hence $f_{\alpha_{0}, \gamma}(\beta)$ is decreasing for $\beta \geq \max \left\{\beta_{0}, \gamma\right\}$. Moreover, in case $\gamma \geq \beta_{0}$,

$$
\left(A^{\alpha_{0} / 2} B^{\gamma} A^{\alpha_{0} / 2}\right)^{p_{1}}=f_{\alpha_{0}, \gamma}(\gamma) \geq f_{\alpha_{0}, \gamma}(\beta)=\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{\left(\gamma+\alpha_{0}\right) p_{1}}{\alpha_{0}+\beta}}
$$

holds for any $\beta \geq \gamma$, so that we have (2) by replacing γ and β with β_{1} and β_{2}, respectively.
(ii) Put $A_{2}=A^{\alpha_{0} p}$ and $B_{2}=\left(A^{\alpha_{0} / 2} B^{\beta_{0}} A^{\alpha_{0} / 2}\right)^{\frac{a_{0} p}{\alpha_{0}+\beta_{0}}}$, then $A_{2} \geq B_{2}$ holds by hypothesis. By applying (ii) of Lemma 2.4 to A_{2} and B_{2}, we have

$$
\begin{equation*}
A_{2}^{1+x_{2}} \geq\left(A_{2}^{x_{2} / 2} B_{2}^{y_{2}} A_{2}^{x_{2} / 2}\right)^{\frac{1+x_{2}}{y_{2}+x_{2}}} \text { for any } y_{2} \geq 1 \text { and } x_{2} \geq 0 \tag{9}
\end{equation*}
$$

Put $y_{2}=\frac{\alpha_{0}+\beta_{0}}{\alpha_{0} p}$ and $x_{2}=\frac{\alpha-\alpha_{0}}{\alpha_{0} p} \geq 0$ in (9). Then we have

$$
\begin{equation*}
A^{\alpha_{0} p+\alpha-\alpha_{0}} \geq\left(A^{\alpha / 2} B^{\beta_{0}} A^{\alpha / 2}\right)^{\frac{\alpha_{0} p+\alpha-\alpha_{0}}{\alpha+\beta_{0}}} \text { for any } \alpha \geq \alpha_{0} \tag{10}
\end{equation*}
$$

Since $\frac{p_{1} \alpha}{\alpha_{0} p+\alpha-\alpha_{0}} \in(0,1]$, applying Löwner-Heinz theorem to (10), we have

$$
\begin{equation*}
A^{p_{1} \alpha} \geq\left(A^{\alpha / 2} B^{\beta_{0}} A^{\alpha / 2}\right)^{\frac{p_{1} \alpha}{\alpha+\beta_{0}}} \text { for any } \alpha \geq \alpha_{0} \text { and } 0<p_{1} \leq p \tag{11}
\end{equation*}
$$

By applying Löwner-Heinz theorem to (11), we have

$$
\begin{equation*}
A^{u} \geq\left(A^{\alpha / 2} B^{\beta_{0}} A^{\alpha / 2}\right)^{\frac{u}{\alpha+\beta_{0}}} \text { for any } 0<u \leq p_{1} \alpha \tag{12}
\end{equation*}
$$

For each $\delta \geq-\beta_{0}, \alpha \geq \max \left\{\alpha_{0}, \delta\right\}$ and u such that $p_{1} \alpha \geq u \geq 0$, we have

$$
\begin{aligned}
g_{\beta_{0}, \delta}(\alpha) & =\left(B^{\frac{\beta_{0}}{2}} A^{\alpha} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+\beta_{0}}} \\
& =\left\{\left(B^{\frac{\beta_{0}}{2}} A^{\alpha} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\alpha+u+\beta_{0}}{\alpha+\beta_{0}}}\right\}^{\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+u+\beta_{0}}} \\
& =\left\{B^{\beta_{0} / 2} A^{\alpha / 2}\left(A^{\alpha / 2} B^{\beta_{0}} A^{\alpha / 2}\right)^{\frac{u}{\alpha+\beta_{0}}} A^{\alpha / 2} B^{\beta_{0} / 2}\right\}^{\frac{\left(\delta+\beta_{0} p_{1}\right.}{\alpha+u+p_{1}}} \\
& \leq\left\{B^{\beta_{0} / 2} A^{\alpha / 2} A^{u} A^{\alpha / 2} B^{\beta_{0} / 2}\right\}^{\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+u+\beta_{0}}} \\
& =\left(B^{\beta_{0} / 2} A^{u+\alpha} B^{\beta_{0} / 2}\right)^{\frac{\left(\delta+\beta_{0} p_{1}\right.}{\alpha+u+\beta_{0}}} \\
& =g_{\beta_{0}, \delta}(\alpha+u) .
\end{aligned}
$$

The above inequality holds by (12) and Löwner-Heinz theorem for $\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+u+\beta_{0}} \in[0,1]$. Hence $g_{\beta_{0}, \delta}(\alpha)$ is increasing for $\alpha \geq \max \left\{\alpha_{0}, \delta\right\}$. Moreover, in case $\delta \geq \alpha_{0}$,

$$
\begin{equation*}
\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{\left(\delta+\beta_{0}\right) p_{1}}{\alpha+\beta_{0}}}=g_{\beta_{0}, \delta}(\alpha) \geq g_{\beta_{0}, \delta}(\delta)=\left(B^{\beta_{0} / 2} A^{\delta} B^{\beta_{0} / 2}\right)^{p_{1}} \tag{13}
\end{equation*}
$$

holds for any $\alpha \geq \delta$, so that we have (4) by replacing δ and α with α_{1} and α_{2}, respectively.
Theorem 2.5. Let $0<q \leq 1$ and let A and B be positive operators such that

$$
\begin{equation*}
A^{q \alpha_{0}} \geq\left(A^{\alpha_{0} / 2} B^{\beta_{0}} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta_{0}}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{\beta_{0} / 2} A^{\alpha_{0}} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha_{0} \beta_{0}}} \geq B^{q \beta_{0}} \tag{15}
\end{equation*}
$$

hold for fixed $\alpha_{0}>0$ and $\beta_{0}>0$. Then the following inequalities hold:

$$
\begin{equation*}
A^{q_{1} \alpha} \geq\left(A^{\alpha / 2} B^{\beta} A^{\alpha / 2}\right)^{\frac{q_{1} \alpha}{\alpha+\beta}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{\beta / 2} A^{\alpha} B^{\beta / 2}\right)^{\frac{q_{1} \beta}{\alpha+\beta}} \geq B^{q_{1} \beta} \tag{17}
\end{equation*}
$$

for all $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$ and $0<q_{1} \leq q$.
Proof. [Proof of (16)] Applying Lemma 2.4 to (15), we have

$$
\begin{equation*}
\left\{B^{\frac{q \beta_{0} r_{1}}{2}}\left(B^{\beta_{0} / 2} A^{\alpha_{0}} B^{\beta_{0} / 2}\right)^{\frac{p_{1} q \beta_{0}}{\alpha_{0}+\beta_{0}}} B^{\frac{q \beta_{0} r_{1}}{2}}\right\}^{\frac{1+r_{1}}{p_{1}+r_{1}}} \geq B^{q \beta_{0}\left(1+r_{1}\right)} \tag{18}
\end{equation*}
$$

for any $p_{1} \geq 1$ and $r_{1} \geq 0$. Putting $p_{1}=\frac{\alpha_{0}+\beta_{0}}{q \beta_{0}}$ in (18), we have

$$
\begin{equation*}
\left(B^{\frac{\beta_{0}\left(1+q r_{1}\right)}{2}} A^{\alpha_{0}} B^{\frac{\beta_{0}\left(1+q r_{1}\right)}{2}}\right)^{\frac{q \beta_{0}\left(1+r_{1}\right)}{\alpha_{0}+\beta_{0}+r_{1} \beta_{0}}} \geq B^{q \beta_{0}\left(1+r_{1}\right)} \tag{19}
\end{equation*}
$$

for any $r_{1} \geq 0$. Put $\beta=\beta_{0}\left(1+q r_{1}\right) \geq \beta_{0}$ in (19). Then we have

$$
\begin{equation*}
\left(B^{\frac{\beta}{2}} A^{\alpha_{0}} B^{\frac{\beta}{2}}\right)^{\frac{\beta-(1-q) \beta_{0}}{\alpha_{0}+\beta}} \geq B^{\beta-(1-q) \beta_{0}} \tag{20}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\left(B^{\frac{\beta}{2}} A^{\alpha_{0}} B^{\frac{\beta}{2}}\right)^{\frac{w}{\alpha_{0}+\beta}} \geq B^{w} \text { for } 0<w \leq \beta-(1-q) \beta_{0} \tag{21}
\end{equation*}
$$

Next we show $f(\beta)=\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta}}$ is decreasing for $\beta \geq \beta_{0}$. By Löwner-Heinz theorem, (21) ensures the following (22)

$$
\begin{equation*}
\left(B^{\frac{\beta}{2}} A^{\alpha_{0}} B^{\frac{\beta}{2}}\right)^{\frac{w}{\alpha_{0}+\beta}} \geq B^{w} \text { for } 0<w \leq \beta-(1-q) \beta_{0} \tag{22}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
f(\beta) & =\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta}} \\
& =\left\{\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{\alpha_{0}+\beta+w}{\alpha_{0}+\beta}}\right\}^{\frac{q \alpha_{0}}{\alpha_{0}+\beta+w}} \\
& =\left\{A^{\alpha_{0} / 2} B^{\beta / 2}\left(B^{\beta / 2} A^{\alpha_{0}} B^{\beta / 2}\right)^{\frac{w}{\alpha_{0}+\beta}} B^{\beta / 2} A^{\alpha_{0} / 2}\right\}^{\frac{q \alpha_{0}}{\alpha_{0}+\beta+w}}(\text { by Lemma 2.2) } \\
& \geq\left(A^{\alpha_{0} / 2} B^{\beta+w} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta+w}} \\
& =f(\beta+w) .
\end{aligned}
$$

Hence $f(\beta)$ is decreasing for $\beta \geq \beta_{0}$. Therefore

$$
\begin{equation*}
A^{q \alpha_{0}} \geq\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta}} \text { for } \beta \geq \beta_{0} \tag{23}
\end{equation*}
$$

holds since

$$
A^{q \alpha_{0}} \geq\left(A^{\alpha_{0} / 2} B^{\beta_{0}} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta_{0}}}=f\left(\beta_{0}\right) \geq f(\beta)=\left(A^{\alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{q \alpha_{0}}{\alpha_{0}+\beta}}
$$

Again applying Lemma 1.1 to (23), we have

$$
\begin{equation*}
A^{q \alpha_{0}\left(1+r_{2}\right)} \geq\left(A^{\frac{q r_{2} \alpha_{0}}{2}}\left(A^{q r_{2} \alpha_{0} / 2} B^{\beta} A^{\alpha_{0} / 2}\right)^{\frac{p_{2} q \alpha_{0}}{\alpha_{0}+\beta}} A^{\frac{q r_{2} \alpha_{0}}{2}}\right)^{\frac{1+r_{2}}{p_{2}+r_{2}}} \tag{24}
\end{equation*}
$$

for any $p_{2} \geq 1$ and $r_{2} \geq 0$. Putting $p_{2}=\frac{\alpha_{0}+\beta}{q \alpha_{0}} \geq 1$ in (24), we have

$$
\begin{equation*}
A^{q \alpha_{0}\left(1+r_{2}\right)} \geq\left(A^{\frac{\alpha_{0}\left(1+q r_{2}\right)}{2}} B^{\beta} A^{\frac{\alpha_{0}\left(1+q r_{2}\right)}{2}}\right)^{\frac{q \alpha_{0}\left(1+r_{2}\right)}{\alpha_{0} \beta+q+r_{2} \alpha_{0}}} \tag{25}
\end{equation*}
$$

for any $r_{2} \geq 0$. Put $\alpha=\alpha_{0}\left(1+q r_{2}\right) \geq \alpha_{0}$ in (25). Then we have

$$
\begin{equation*}
A^{\alpha+\alpha_{0}(q-1)} \geq\left(A^{\frac{\alpha}{2}} B^{\beta} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha+\alpha_{0}(q-1)}{\beta+\alpha}} \tag{26}
\end{equation*}
$$

for all $\alpha \geq \alpha_{0}$ and $\beta \geq \beta_{0}$. Now, since $\frac{q_{1} \alpha}{\alpha+\alpha_{0}(q-1)} \in(0,1]$, applying Löwner-Heinz theorem to (26), we have

$$
A^{q_{1} \alpha} \geq\left(A^{\frac{\alpha}{2}} B^{\beta} A^{\frac{\alpha}{2}}\right)^{\frac{q_{1} \alpha}{\beta+\alpha}}
$$

for all $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$ and $0<q_{1} \leq q$.
Proof of (17). Applying Lemma 2.4 to (14), we have

$$
\begin{equation*}
A^{q \alpha_{0}\left(1+r_{3}\right)} \geq\left(A^{\frac{q r_{3} \alpha_{0}}{2}}\left(A^{\alpha_{0} / 2} B^{\beta_{0}} A^{\alpha_{0} / 2}\right)^{\frac{p_{3} g \alpha_{0}}{\alpha_{0}+\beta_{0}}} A^{\frac{q r_{3} \alpha_{0}}{2}}\right)^{\frac{1+r_{3}}{p_{3}+r_{3}}} \tag{27}
\end{equation*}
$$

for any $p_{3} \geq 1$ and $r_{3} \geq 0$. Putting $p_{3}=\frac{\alpha_{0}+\beta_{0}}{q \alpha_{0}} \geq 1$ in (27), we have

$$
\begin{equation*}
A^{q \alpha_{0}\left(1+r_{3}\right)} \geq\left(A^{\frac{\alpha_{0}\left(1+q r_{3}\right)}{2}} B^{\beta_{0}} A^{\left.\frac{\alpha_{0}\left(1+q r_{3}\right)}{2}\right)^{\frac{q \alpha_{0}\left(1+r_{3}\right)}{\alpha_{0}+\beta_{0}+q_{3} \alpha^{2} \alpha_{0}}}}\right. \tag{28}
\end{equation*}
$$

for any $r_{3} \geq 0$. Put $\alpha=\alpha_{0}\left(1+q r_{3}\right) \geq \alpha_{0}$ in (28). Then we have

$$
\begin{equation*}
A^{\alpha+\alpha_{0}(q-1)} \geq\left(A^{\frac{\alpha}{2}} B^{\beta_{0}} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha+\alpha_{0}(q-1)}{\beta_{0}+\alpha}} \text { for } \alpha \geq \alpha_{0} \tag{29}
\end{equation*}
$$

Next we show that $g(\alpha)=\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha_{0}+\beta_{0}}}$ is increasing for $\alpha \geq \alpha_{0}$. By Löwner-Heinz theorem, (29) ensures the following (30).

$$
\begin{equation*}
A^{u} \geq\left(A^{\frac{\alpha}{2}} B^{\beta_{0}} A^{\frac{\alpha}{2}}\right)^{\frac{u}{\beta_{0}+\alpha}} \text { for } 0 \leq u \leq \alpha+\alpha_{0}(q-1) \tag{30}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
g(\alpha) & =\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha+\beta_{0}}} \\
& =\left\{\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{\alpha+\beta_{0}+u}{\alpha+\beta_{0}}}\right\}^{\frac{q \beta_{0}}{\alpha+\beta_{0}+\alpha}} \\
& =\left\{B^{\beta_{0} / 2} A^{\alpha / 2}\left(A^{\alpha / 2} B^{\beta_{0}} A^{\alpha / 2}\right)^{\frac{u}{\alpha+\beta_{0}}} A^{\alpha / 2} B^{\beta_{0} / 2}\right\}^{\frac{q \beta_{0}}{u+\beta_{0}+\alpha}} \\
& \leq\left(B^{\beta_{0} / 2} A^{\alpha+u} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{u+\beta_{0}+\alpha}} \\
& =g(\alpha+u) .
\end{aligned}
$$

Hence $g(\alpha)$ is increasing for $\alpha \geq \alpha_{0}$. Therefore

$$
\begin{equation*}
\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha+\beta_{0}}} \geq B^{q \beta_{0}} \text { for } \alpha \geq \alpha_{0} \tag{31}
\end{equation*}
$$

holds since

$$
\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha+\beta_{0}}}=g(\alpha) \geq g\left(\alpha_{0}\right)=\left(B^{\beta_{0} / 2} A^{\alpha_{0}} B^{\beta_{0} / 2}\right)^{\frac{q \beta_{0}}{\alpha_{0}+\beta_{0}}} \geq B^{q \beta_{0}} .
$$

Again applying Lemma 1.1 to (31), we have

$$
\begin{equation*}
\left\{B^{\frac{q r_{4} \beta_{0}}{2}}\left(B^{\beta_{0} / 2} A^{\alpha} B^{\beta_{0} / 2}\right)^{\frac{p_{4} q \beta_{0}}{\alpha+\beta_{0}}} B^{\frac{q r_{4} \beta_{0}}{2}}\right\}^{\frac{1+r_{4}}{p_{4}+r_{4}}} \geq B^{q \beta_{0}\left(1+r_{4}\right)} \tag{32}
\end{equation*}
$$

for any $p_{4} \geq 1$ and $r_{4} \geq 0$. Putting $p_{4}=\frac{\alpha+\beta_{0}}{q \beta_{0}} \geq 1$ in (32), we have

$$
\begin{equation*}
\left(B^{\frac{\beta_{0}\left(1+q r_{4}\right)}{2}} A^{\alpha} B^{\frac{\beta_{0}\left(1+q r_{4}\right)}{2}}\right)^{\frac{q \beta_{0}\left(1+r_{4}\right)}{\alpha+\beta_{0}+q \beta_{0} r_{4}}} \geq B^{q \beta_{0}\left(1+r_{4}\right)} \tag{33}
\end{equation*}
$$

for any $r_{4} \geq 0$. Put $\beta=\beta_{0}\left(1+q r_{4}\right) \geq \beta_{0}$ in (33). Then we have

$$
\begin{equation*}
\left(B^{\frac{\beta}{2}} A^{\alpha} B^{\frac{\beta}{2}}\right)^{\frac{\beta+\beta_{0}(q-1)}{\alpha+\beta}} \geq B^{\beta+\beta_{0}(q-1)} \text { for } \alpha \geq \alpha_{0} \text { and } \beta \geq \beta_{0} \tag{34}
\end{equation*}
$$

Now, since $\frac{q_{1} \beta}{\beta+\beta_{0}(q-1)} \in(0,1$], applying Löwner-Heinz theorem to (34), we have

$$
\left(B^{\frac{\beta}{2}} A^{\alpha} B^{\frac{\beta}{2}}\right)^{\frac{q_{1} \beta}{\alpha+\beta}} \geq B^{q_{1} \beta}
$$

for all $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$ and $0<q_{1} \leq q$, so the proof is complete.
By using Theorem 2.5, We shall give simplified proof of Theorem 1.3.
Corollary 2.6. If $T \in B(\mathcal{H})$ is class $p-w A(s, t)$ and $0<s \leq \alpha, 0<t \leq \beta, 0<p_{1} \leq p \leq 1$, then T is class $p_{1}-w A(\alpha, \beta)$. Proof. Suppose that T is class $p-w A(s, t)$ for $s>0, t>0$ and $0<p \leq 1$, i.e., the following (35) and (36) hold.

$$
\begin{align*}
& \left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{t}\right)^{\frac{t p}{s+t}} \geq\left|T^{*}\right|^{2 t p} \tag{35}\\
& |T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{s p}{s+t}} \tag{36}
\end{align*}
$$

By Theorem 2.5, we have

$$
\left(\left|T^{*}\right|^{\beta}|T|^{2 \alpha}\left|T^{*}\right|^{\beta}\right)^{\frac{p_{1} \beta}{\alpha+\beta}} \geq\left|T^{*}\right|^{2 p_{1} \beta} \text { and }|T|^{2 p_{1} \alpha} \geq\left(|T|^{\alpha}\left|T^{*}\right|^{2 \beta}|T|^{\alpha}\right)^{\frac{p_{\alpha} \alpha}{\alpha+\beta}}
$$

for any $\alpha \geq s, \beta \geq t$ and $0<p_{1} \leq p$. Therefore T is class $p_{1}-w A(\alpha, \beta)$ for any $\alpha \geq s, \beta \geq t$ and $0<p_{1} \leq p$.

In this section, we shall show a normality of some non-normal operators. It is known that if T and T^{*} are class A, then T is normal. But in the case T and T^{*} belong to weaker class than class A, the assertion is not obvious. Many authors obtained many results on this problem, and the following result were known until now.

Theorem 2.7 ([19]). Let $T \in \mathcal{B}(\mathcal{H})$. If T and T^{*} are (s, p)-w-hyponormal, then T is normal.
Theorem 2.8. Let $s_{i}, t_{i}>0$ and $0<p_{i} \leq 1$, where $i=1$, 2. If T is a class $p_{1}-w A\left(s_{1}, t_{1}\right)$ operator and T^{*} is is a class $p_{2}-w A\left(s_{2}, t_{2}\right)$ operator, then T is normal.

Theorem 2.9. Let $p, r>0,0<q \leq 1, s \geq p$ and $t \geq r$. If T is a class $q-w A(p, r)$ operator and $\tilde{T}_{s, t}$ is normal, then T is normal.

To prove Theorem 2.8 and Theorem 2.9, we need the following results.
Lemma 2.10 ([14]). Let $A>0$ and $T=U|T|$ be the polar decomposition of T. Then for each $\alpha>0$ and $\beta>0$, the following assertions hold:
(i) $U^{*} U\left(|T|^{\beta} A|T|^{\beta}\right)^{\alpha}=\left(|T|^{\beta} A|T|^{\beta}\right)^{\alpha}$.
(ii) $U U^{*}\left(\left|T^{*}\right|^{\beta} A\left|T^{*}\right|^{\beta}\right)^{\alpha}=\left(\left|T^{*}\right|^{\beta} A\left|T^{*}\right|^{\beta}\right)^{\alpha}$.
(iii) $\left(U|T|^{\beta} A|T|^{\beta} U^{*}\right)^{\alpha}=U\left(|T|^{\beta} A|T|^{\beta}\right)^{\alpha} U^{*}$.
(iv) $\left(U^{*}\left|T^{*}\right|^{\beta} A\left|T^{*}\right|^{\beta} U\right)^{\alpha}=U^{*}\left(\left|T^{*}\right|^{\beta} A\left|T^{*}\right|^{\beta}\right)^{\alpha} U$.

Lemma 2.11 ([15]). Let $A \geq 0$ and $B \geq 0$. If

$$
B^{\frac{1}{2}} A B^{\frac{1}{2}} \geq B^{2} \text { and } A^{\frac{1}{2}} B A^{\frac{1}{2}} \geq A^{2}
$$

then $A=B$.
Lemma 2.12 ([4]). Let $A, B \geq 0$ and $s, t \geq 0$. If $B^{s} A^{2 t} B^{s}=B^{2 t+2 s}$ and $A^{t} B^{2 s} A^{t}=A^{2 t+2 s}$, then $A=B$.
Lemma 2.13. ([26, Proposition 4.5]) Let $A, B \geq 0 ; p_{i}, r_{i}>0 ;-r_{i}<\delta_{i} \leq p_{i}, 0 \leq \bar{\delta}_{i}<p_{i} ; i=1,2$. Then the following assertions are mutually equivalent.
(i) $A=B$.
(ii) $B^{\frac{r_{1}}{2}} A^{p_{1}} B^{\frac{r_{1}}{2}}=B^{r_{1}+p_{1}}$ and $A^{\frac{r_{2}}{2}} B^{p_{2}} A^{\frac{r_{2}}{2}}=A^{r_{2}+p_{2}}$.
(iii) $\begin{cases}\left(B^{\frac{r_{1}}{2}} A^{p_{1}} B^{\frac{r_{1}}{2}}\right)^{\frac{r_{1}+\delta_{1}}{r_{1}+p_{1}}} \geq B^{r_{1}+p_{1}}, & A^{p_{1}-\delta_{1}} \geq\left(A^{\frac{p_{1}}{2}} B^{r_{1}} A^{\frac{p_{1}}{2}}\right)^{\frac{p_{1}-\bar{\delta}_{1}}{p_{1} r_{1}}} \\ \left(B^{\frac{r_{2}}{2}} A^{p_{2}} B^{\frac{r_{2}}{2}}\right)^{\frac{r_{2}+\delta_{2}}{r_{2}+p_{2}}} \geq B^{r_{2}+p_{2}}, & A^{p_{2}-\bar{\delta}_{2}} \geq\left(A^{\frac{p_{2}}{2}} B^{r_{2}} A^{\frac{p_{2}}{2}}\right)^{\frac{p_{2}-\delta_{1}}{p_{2}+r_{2}}}\end{cases}$

Proof. [Proof of Theorem 2.8] Let $s=\max \left\{s_{1}, t_{1}, s_{2}, t_{2}\right\}$ and $p=\min \left\{p_{1}, p_{2}\right\}$.
Firstly, if T belongs to class $p_{1}-w A\left(s_{1}, t_{1}\right)$, then T belongs to class $p-w A(s, s)$ by Theorem 1.3. Hence we have

$$
\begin{equation*}
\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{\frac{p}{2}} \geq\left|T^{*}\right|^{2 s p} \quad \text { and } \quad|T|^{2 s p} \geq\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{2}} \tag{37}
\end{equation*}
$$

Secondly, if T^{*} belongs to class $p_{2}-w A\left(s_{2}, t_{2}\right)$, then T^{*} belongs to class $p-w A(s, s)$ by Theorem 1.3. Hence we have

$$
\begin{equation*}
\left(|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}\right)^{\frac{p}{2}} \geq|T|^{2 s p} \quad \text { and } \quad\left|T^{*}\right|^{2 s p} \geq\left(\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{\frac{p}{2}} \tag{38}
\end{equation*}
$$

Therefore

$$
|T|^{s}\left|T^{*}\right|^{2 s}|T|^{s}=|T|^{4 s} \quad \text { and } \quad\left|T^{*}\right|^{s}|T|^{2 s}\left|T^{*}\right|^{s}=\left|T^{*}\right|^{4 s}
$$

hold by (37) and (38), and then $|T|=\left|T^{*}\right|$ by Lemma 2.12.

Proof. [Proof of Theorem 2.9] By hypothesis T belongs to class $q-w A(s, t)$ by Theorem 1.3. Hence it follows by (ii) of Definition 1.2 that

$$
\left|\tilde{T}_{s, t}\right|^{\frac{2 t q}{1+s}} \geq|T|^{2 t q} \quad \text { and } \quad|T|^{2 s q} \geq\left|\left(\tilde{T}_{s, t}\right)^{*}\right|^{\frac{2 s q}{s+t}}
$$

Hence

$$
\left|\tilde{T}_{s, t}\right|^{\frac{2 r q}{s+t}} \geq|T|^{2 r q} \geq \mid\left(\left.\left.\tilde{T}_{s, t}\right|^{*}\right|^{\frac{2 r q}{s+t}} \quad \text { for all } r \in(0, \min \{s, t\}] .\right.
$$

On the other hand, $\tilde{T}_{s, t}$ is normal, i.e., $\left|\tilde{T}_{s, t}\right|^{2}=\left|\left(\tilde{T}_{s, t}\right)^{*}\right|^{2}$. It follows by Lemma 2.10 that

$$
\left|T^{*}\right|^{t}|T|^{2 s}|T|^{t}=\left|T^{*}\right|^{2(s+t)} \quad \text { and } \quad|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}=|T|^{2(s+t)}
$$

and then $|T|=\left|T^{*}\right|$ by Lemma 2.12.
The numerical range of an operator T, denoted by $W(T)$, is the set defined by

$$
W(T)=\{\langle T x, x\rangle:\|x\|=1\} .
$$

In general, the condition $S^{-1} T S=T^{*}$ and $0 \notin \overline{W(T)}$ do not imply that T is normal. If $T=S B$, where S is positive and invertible, B is self-adjoint, and S and B do not commute, then $S^{-1} T S=T^{*}$ and $0 \notin \overline{W(S)}$, but T is not normal. Therefore the following question arises naturally.
Question: Which operator T satisfying the condition $S^{-1} T S=T^{*}$ and $0 \notin \overline{W(S)}$ is normal?
In 1966, Sheth [21] showed that if T is a hyponormal operator and $S^{-1} T S=T^{*}$ for some operator S, where $0 \notin \overline{W(S)}$, then T is self-adjoint. Recently, Rashid [20] extended the result of Sheth to the class $A(k), k>0$ operators. In this paper, we extend the result of Sheth to the class $p-w A(s, t)$ as follows.
Theorem 2.14. Let $T \in \mathcal{B}(\mathcal{H})$. If T or T^{*} belongs to class $p-w A(s, t)$ for some $s>0, t>0$ and $0<p \leq 1$ and S is an operator for which $0 \notin \overline{W(S)}$ and $S T=T^{*} S$, then T is self-adjoint.

To prove Theorem 2.14 we need the following Lemmas.
Lemma 2.15 ([24]). If $T \in \mathcal{B}(\mathcal{H})$ is any operator such that $S^{-1} T S=T^{*}$, where $0 \notin \overline{W(S)}$, then $\sigma(T) \subseteq \mathbb{R}$.
Lemma 2.16 ([18]). Let $T \in \mathcal{B}(\mathcal{H})$ and let T belongs to the class $p-w A(s, t)$ for some $s>0, t>0$ and $0<p \leq 1$. If $m_{2}(\sigma(T))=0$, where m_{2} means the planer Lebsegue measure, then T is normal .

Proof. [Proof of Theorem 2.14] Suppose that T or T^{*} is a class $p-w A(s, t)$ for $s, t>0$ and $0<p \leq 1$. Since $\sigma(S) \subseteq \overline{W(S)}, S$ is invertible and hence $S T=T^{*} S$ becomes $S^{-1} T^{*} S=T=\left(T^{*}\right)^{*}$. Apply Lemma 2.15 to T^{*} to get $\sigma\left(T^{*}\right) \subseteq \mathbb{R}$. Then $\sigma(T)=\overline{\sigma\left(T^{*}\right)}=\sigma\left(T^{*}\right) \subseteq \mathbb{R}$. Thus $\left.m_{2}(\sigma(T))=m_{2}\left(\sigma\left(T^{*}\right)\right)\right)=0$ for the planer Lebesgue measure m_{2}. It follows from Lemma 2.16 that T or T^{*} is normal. Since $\sigma(T)=\sigma\left(T^{*}\right) \subseteq \mathbb{R}$. Therefore, T is self-adjoint.

Acknowledgement. The author would like to sincerely thank the referee for several useful suggestions and comments improving the paper.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13(1990) 307-315.
[2] T. Ando, On some operator inequalities, Math. Ann. 279 (1987) 157-159.
[3] Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chin Q J Math. 20(2005) 79-84.
[4] C. Yang and Y. Zhao, on class $w F(p, r, q)$ operators and quasisimilarity, J. Ineq. Pure Applied Math. Volume 8 (2007), Issue 3, Article 90, 7 pp.
[5] M. Chō, M.H.M. Rashid, K. Tanahashi and A. Uchiyama, Spectrum of class $p-w A(s, t)$ operators, Acta Sci. Math. (Szeged) 82 (2016) 641-649.
[6] M. Chō, T. Prasad, M.H.M. Rashid, K. Tanahashi and A. Uchiyama, Fuglede-Putnam theorem and quasisimilarity of class $p-w A(s, t)$ operators, Operator and Matrices 13 (1) (2019) 293-299.
[7] M. Chō and K. Tanahashi, Isolated point of spectrum of p-hyponormal, log-hyponormal operators, Integral Equations Operator Theory 43 (2002) 379-384.
[8] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179(1993) 161-169.
[9] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. math. 1(1998) 389-403.
[10] T. Furuta, $A \geq B \geq O$ assures $\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq B^{\frac{p+2 r}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq(p+2 r)$, Proc. Amer. Math. Soc. 101 (1987) 85-88.
[11] T. Furuta, Applications of order preserving operator inequalities, Operator Theory Adv. Appl. 59 (1992) 180-190.
[12] L. Haiying, Powers of an invertible (s, p)-w-hyponormal operator, Acta Math Scientia 20(2008)282-288.
[13] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123(1951) 415-438.
[14] M. Ito, Some classes of operators with generalised Aluthege transformations, SUT J. Math. 35(1999) 149-165.
[15] M. Ito and T. Yamazaki, Relations between two inequalities $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{P+r}} \geq B^{r}$ and $A^{p} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{r}{P+r}}$ and their applications, Integral Equations Operator Theory 44 (2002) 442-450.
[16] T. Prasad and K. Tanahashi, On class $p-w A(s, t)$ operators, Functional Analysis, Approximation and Computation 6 (2) (2014) 39-42.
[17] T. Prasad, M.Chō, M.H.M Rashid, K. Tanahashi and A Uchiyama, On class $p-w A(s, t)$ operators and range kernal orthogonality, Sci. Math. Japon (in Editione Electronica, e-2017, Whole Number 30)
[18] M.H.M Rashid, M. Chō, T. Prasad, K. Tanahashi and A. Uchiyama, Weyls theorem and Putnam's inequality for $p-w A(s, t)$ operators, Acta. Sci. Math. (Szeged) 84 (2018) 573-589.
[19] M.H.M Rashid, Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators, Linear and Multilinear Algebra 65 (8) (2017) 1600-1616.
[20] M.H.M.Rashid, Generalized Fuglede-Putnam Theorem And m-Quasi-Class $A(k)$ Operators, Facta Universitatis (Niš) Ser. Math. Inform. 34 (1) (2019) 73-84.
[21] I. H. Sheth, On hyponormal operators, Proc. Amer. Math. Soc. 17 (1966) 998-1000.
[22] K. Tanahashi, T. Prasad and A Uchiyama, Quasinormality and subscalarity of class $p-w A(s, t)$ operators, Funct. Anal. Approx. Comput. 9 (1)(2017) 61-68.
[23] M. Uchiyama, Inequalities for semibounded operators and their applications to log-hyponormal operators, Operator Theory: Advances and Applications 127(2001) 599-611.
[24] J. P. Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20(1969) 121-123.
[25] M. Yanagida, Powers of class $w A(s, t)$ operators with generalised Aluthge transformation, J. Inequal. Appl. 7 (2002) 143-168.
[26] C. Yang and J. Yuan, On Class $w F(p, q, r)$ operators, Acta Math. Sinica 27 A (5) (2007)769-780.

[^0]: 2020 Mathematics Subject Classification. 47B20, 47A10
 Keywords. class $p-w A(s, t)$,class $p-A(s, t)$, Furuta inequality, Normality, generalized Aluthge transformation
 Received: 23 May 2021; Revised: 18 July 2021; Accepted: 10 October 2021
 Communicated by Fuad Kittaneh
 Email address: malik_okasha@yahoo.com (M.H.M.Rashid)

