Filomat 36:5 (2022), 1675–1684 https://doi.org/10.2298/FIL2205675R

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Class *p*-*wA*(*s*, *t*) Operators

M.H.M.Rashid^a

^aDepartment of Mathematics-Faculty of Science P.O.Box(7)- Mu'tah university- Al-Karak -Jordan

Abstract. Let *A* and *B* be positive operators and $0 < q \le 1$. In this paper, we shall show that if

 $A^{q\alpha_0} \ge (A^{\alpha_0/2} B^{\beta_0} A^{\alpha_0/2})^{\frac{q\alpha_0}{\alpha_0 + \beta_0}}$

and

 $(B^{\beta_0/2}A^{\alpha_0}B^{\beta_0/2})^{\frac{q\beta_0}{\alpha_0+\beta_0}} \ge B^{q\beta_0}$

hold for fixed $\alpha_0 > 0$ and $\beta_0 > 0$. Then the following inequalities hold:

$$A^{q_1\alpha} \ge (A^{\alpha/2}B^{\beta}A^{\alpha/2})^{\frac{q_1\alpha}{\alpha+\beta}}$$

and

$$(B^{\beta/2}A^{\alpha}B^{\beta/2})^{\frac{q_1\beta}{\alpha+\beta}} \ge B^{q_1\beta}$$

for all $\alpha \ge \alpha_0$, $\beta \ge \beta_0$ and $0 < q_1 \le q$. Also, we shall show a normality of class p-A(s, t) for s > 0, t > 0 and 0 . Moreover, we shall show that if <math>T or T^* belongs to class p-wA(s, t) for some s > 0, t > 0 and 0 and <math>S is an operator for which $0 \notin W(S)$ and $ST = T^*S$, then T is self-adjoint.

1. Introduction

In what follows, an operator means a bounded linear operator on a complex Hilbert space \mathcal{H} and $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . An operator T is said to be positive (denoted $T \ge 0$) if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$, and also T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. As a recent development on order preserving operator inequalities, it is known the following Theorem.

Theorem 1.1 (Furuta's inequality[10]). *If* $A \ge B \ge 0$ *, then for each* $r \ge 0$ *,*

(i)
$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \ge B^{\frac{r+p}{q}}$$
 and
(ii) $A^{\frac{r+p}{q}} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{1}{q}}$

²⁰²⁰ Mathematics Subject Classification. 47B20, 47A10

Keywords. class *p-wA*(*s*, *t*), class *p-A*(*s*, *t*), Furuta inequality, Normality, generalized Aluthge transformation Received: 23 May 2021; Revised: 18 July 2021; Accepted: 10 October 2021 Communicated by Fuad Kittaneh

Email address: malik_okasha@yahoo.com (M.H.M.Rashid)

hold for $p \ge 0$ and $q \ge 1$ with $(1 + r)q \ge p + r$.

Theorem 1.1 yields the famous Löwner-Heinz theorem " $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0,1]$ " by putting r = 0 in (i) or (ii) of Theorem 1.1.

As an application of Theorem 1.1, in [8] and [11], it was shown the following: For positive invertible operators A and B, $\log A \ge \log B$ (this order is called chaotic order) if and only if $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ for all $p \ge 0$ and $r \ge 0$ if and only if $A^p \ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ for all $p \ge 0$ and $r \ge 0$. We remark that this result is an extension of [2] in case p = r. Related to these operator inequalities, the following assertions are well-known: Let A and B be strictly positive operators. Then

- (a) $A \ge B \Rightarrow \log A \ge \log B$.
- (b) $\log A \ge \log B \Rightarrow (B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$ for all $p \ge 0$ and $r \ge 0$.
- (c) For each $p \ge 0$ and $r \ge 0$, $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r} \Leftrightarrow A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$ [11].

Related to these results, it is shown in [23] that the invertibility in (a) and (b) can be replaced with the condition $ker(A) = ker(B) = \{0\}$, that is, (a) and (b) hold for some non-invertible operators A and B. In [15], the authors studied relations between

$$B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$$
 and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{r}{p+r}}$

when A and B are not invertible.

Every operator $T \in \mathcal{B}(\mathcal{H})$ can be decomposed into T = U|T| with a partial isometry U where |T| is the square root of T^*T . If U is determined uniquely by the kernel condition ker $U = \ker |T|$, then this decomposition is called the polar decomposition of T. In this paper, T = U|T| denotes the polar decomposition satisfying the kernel condition ker $U = \ker |T|$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if $T^*T \ge TT^*$. The Aluthge transformation introduced by Aluthge[1] is defined by $\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ where T = U|T| is the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$. The generalized Aluthge transformation $\tilde{T}_{s,t}$ with 0 < s, t is defined by $\tilde{T}_{s,t} = |T|^s U |T|^t$. Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *p*-hyponormal if $(T^*T)^p \ge (TT^*)^p$, and class wA(s,t) if $(|T^*|^t|T|^{2s}|T^*|^t)^{\frac{t}{s+t}} \ge |T^*|^{2t}$ and $|T|^{2s} \ge (|T|^s|T^*|^{2t}|T|^s)^{\frac{s}{s+t}}$ ([14]). Furuta el al. [9] introduced class A(k) for k > 0 as a class of operators including *p*-hyponormal and log-hyponormal operators, where A(1) coincides with class *A* operator. We say that an operator *T* is class A(k), k > 0 if $(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T|^2$.

Definition 1.2. Let s > 0, t > 0, 0 and <math>T = U|T| be the polar decomposition of T.

- (i) T belongs to class p- $A(s,t) \Leftrightarrow (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{pt}{s+t}} \ge |T^*|^{2tp} [16].$
- (*ii*) T belongs to class p-wA(s, t)
 - $\Leftrightarrow \quad (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{pt}{s+t}} \ge |T^*|^{2tp} \quad and \quad |T|^{2sp} \ge (|T|^s |T^*|^{2t} |T|^s)^{\frac{sp}{s+t}}$

$$\Leftrightarrow |\tilde{T}_{st}|^{\frac{2tp}{t+s}} \ge |T|^{2tp} \quad and \quad |T|^{2sp} \ge |(\tilde{T}_{st})^*|^{\frac{2sp}{s+t}},$$

where $\tilde{T}_{s,t} = |T|^s U|T|^t$ is the generalized Aluthge transformation [16].

- (iii) T belongs to class p- $A \Leftrightarrow |T^2|^p \ge |T|^{2p}$, that is, T belongs to class p-A(1, 1)[16].
- (iv) T is p-w-hyponormal $\Leftrightarrow |\tilde{T}|^{\frac{p}{2}} \ge |\tilde{T}|^{p} \ge |(\tilde{T})^{*}|^{\frac{p}{2}}$, that is, T belongs to class p-wA $(\frac{1}{2}, \frac{1}{2})$, where $\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is the Aluthge transformation[3].
- (v) T is (s,p)-w-hyponormal $\Leftrightarrow |\tilde{T}_{s,s}|^{\frac{p}{2}} \ge |T|^{2sp} \ge |(\tilde{T}_{s,s})^*|^{\frac{p}{2}}$, that is, T belongs to class p-wA(s,s), where $\tilde{T}_{s,s} =$ $|T|^{s}U|T|^{s}$ is the generalized Aluthge transformation [12].

It is well known that class p-wA(s, t) operators enjoy many interesting properties as hyponormal operators, for example, Fuglede-Putnam type theorem, Weyl type theorem, subscalarity and Putnam's inequality ([5],[6],[17], [18],[22]). We remark that Aluthge transformation has many interesting properties, and many authors study this transformation, for instance, [1], [5], [7] and [25]. These classes are included in normaloid (i.e., ||T|| = r(T), where r(T) is the spectral radius of *T*) (see [17],[3] and [12]). It has been shown that for s > 0, t > 0 and 0 , class*p*-*A*(*s*,*t*) includes class*p*-*wA*(*s*,*t*) by the definition 1.2 (i) and (ii). and alsofor each s > 0, t > 0 and 0 , class <math>p-A(s, t) and class p-wA(s, t) are invertible which was shown in [16]. More precise inclusion relations among class p-wA(s, t) were already shown as follows:

1676

Theorem 1.3. [5] If $T \in B(\mathcal{H})$ is class p-wA(s,t) and $0 < s \le \alpha, 0 < t \le \beta, 0 < p_1 \le p \le 1$, then T is class p_1 -w $A(\alpha,\beta)$.

In this paper, we shall show a normality of class p-A(s, t) for s > 0, t > 0 and 0 . Moreover, we shall show that if <math>T or T^* belongs to class p-wA(s, t) for some s > 0, t > 0 and 0 and <math>S is an operator for which $0 \notin W(S)$ and $ST = T^*S$, then T is self-adjoint.

2. Main results

In order to give the proof of our results. We need the following lemmas.

Lemma 2.1. [13, Löwner-Heinz inequality] $A \ge B \ge 0$ ensure $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0, 1]$.

Lemma 2.2. [25] Let A > 0 and B be an invertible operator. Then

$$(BAB^*)^{\lambda} = BA^{1/2} (A^{1/2} B^* BA^{1/2})^{\lambda - 1} A^{1/2} B^*$$

holds for any real number λ .

Proposition 2.3. Let A and B be positive operators. Then the following assertions hold:

(*i*) If $(B^{\frac{\beta_0}{2}}A^{\alpha_0}B^{\frac{\beta_0}{2}})^{\frac{\beta_{0p}}{\alpha_0+\beta_0}} \ge B^{\beta_0 p}$ holds for fixed $\alpha_0 > 0$, $\beta_0 > 0$ and 0 , then

$$(B^{\frac{\beta}{2}}A^{\alpha_0}B^{\frac{\beta}{2}})^{\frac{p_1}{\alpha_0+\beta}} \ge B^{\beta p_1} \tag{1}$$

holds for any $\beta \ge \beta_0$ and $0 < p_1 \le p \le 1$. Moreover, for each fixed $\gamma \ge -\alpha_0$,

$$f_{\alpha_0,\gamma}(\beta) = (A^{\frac{\alpha_0}{2}} B^{\beta} A^{\frac{\alpha_0}{2}})^{\frac{(\alpha_0+\gamma)p_1}{\alpha_0+\beta}}$$

is a decreasing function for $\beta \ge \max{\{\beta_0, \gamma\}}$ *. Hence the inequality*

$$(A^{\frac{a_0}{2}}B^{\beta_1}A^{\frac{a_0}{2}})^{p_1} \ge (A^{\frac{a_0}{2}}B^{\beta_2}A^{\frac{a_0}{2}})^{\frac{p_1(a_0+\beta_1)}{a_0+\beta_2}}$$
(2)

holds for any β_1 and β_2 such that $\beta_2 \ge \beta_1 \ge \beta_0$ and $0 < p_1 \le p$. (ii) If $A^{\alpha_0 p} \ge (A^{\frac{\alpha_0}{2}} B^{\beta_0} A^{\frac{\alpha_0}{2}})^{\frac{\alpha_0 p}{\alpha_0 + \beta_0}}$ holds for fixed $\alpha_0 > 0$ and $\beta_0 > 0$ and 0 , then

$$A^{\alpha p_1} \ge \left(A^{\frac{\alpha}{2}}B^{\beta_0}A^{\frac{\alpha}{2}}\right)^{\frac{\alpha p_1}{\alpha + \beta_0}} \tag{3}$$

holds for any $\alpha \ge \alpha_0$ *and* $0 < p_1 \le p \le 1$ *. Moreover, for each fixed* $\delta \ge -\beta_0$ *,*

$$g_{\beta_0,\delta}(\alpha) = (B^{\frac{\beta_0}{2}} A^{\alpha} B^{\frac{\beta_0}{2}})^{\frac{(\delta+\beta_0)p_1}{\alpha+\beta_0}}$$

is an increasing function for $\alpha \geq \max{\{\alpha_0, \delta\}}$ *. Hence the inequality*

$$(B^{\frac{\beta_0}{2}}A^{\alpha_2}B^{\frac{\beta_0}{2}})^{\frac{p_1(\alpha_1+\beta_0)}{\alpha_2+\beta_0}} \ge (B^{\frac{\beta_0}{2}}A^{\alpha_1}B^{\frac{\beta_0}{2}})^{p_1}$$
(4)

holds for any α_1 *and* α_2 *such that* $\alpha_2 \ge \alpha_1 \ge \alpha_0$ *and* $0 < p_1 \le p$ *.*

Proposition 2.3 can be obtained as an application of Furuta inequality 1.1. We actually use the following form which is the essential part of Furuta inequality 1.1.

Lemma 2.4. If $A \ge B \ge 0$, then

(i) $(B^{x/2}A^yB^{x/2})^{\frac{1+x}{x+y}} \ge B^{1+x}$ and

(*ii*)
$$A^{1+x} \ge (A^{x/2}B^y A^{x/2})^{\frac{1+x}{x+y}}$$

hold for $x \ge 0$ *and* $y \ge 1$ *.*

Proof. [Proof of Proposition 2.3] (i) Put $A_1 = (B^{\frac{\beta_0}{2}}A^{\alpha_0}B^{\frac{\beta_0}{2}})^{\frac{\beta_0p}{\alpha_0+\beta_0}}$ and $B_1 = B^{\beta_0p}$, then $A_1 \ge B_1 \ge 0$ holds by the hypothesis. By applying (i) of Lemma 2.4 to A_1 and B_1 , we have

$$(B_1^{x_1/2}A_1^{y_1}B_1^{x_1/2})^{\frac{1+x_1}{x_1+y_1}} \ge B_1^{1+x_1} \text{ for any } y_1 \ge 1 \text{ and } x_1 \ge 0.$$
(5)

Let
$$\beta \ge \beta_0$$
, $y_1 = \frac{\alpha_0 + \beta_0}{\beta_0 p}$ and $x_1 = \frac{\beta - \beta_0}{\beta_0 p} \ge 0$. Then

$$(B^{\beta/2}A^{\alpha_0}B^{\beta/2})^{\frac{\beta_0p+\beta-\beta_0}{\beta_0+\beta}} \ge B^{\beta_0p+\beta-\beta_0} \text{ for any } \beta \ge \beta_0.$$
(6)

Since $\frac{p_1\beta}{\beta_0p+\beta-\beta_0} \in (0, 1]$, applying Löwner-Heinz theorem to (6), we have

$$(B^{\beta/2}A^{\alpha_0}B^{\beta/2})^{\frac{p_1\beta}{\alpha_0+\beta}} \ge B^{p_1\beta} \text{ for any } \beta \ge \beta_0 \text{ and } 0 < p_1 \le p.$$

$$\tag{7}$$

By applying Löwner-Heinz theorem to (7), we have

$$(B^{\beta/2}A^{\alpha_0}B^{\beta/2})^{\frac{w}{\alpha_0+\beta}} \ge B^w \text{ for any } 0 < w \le p_1\beta.$$
(8)

For each $\gamma \ge -\alpha_0$, $\beta \ge \max\{\beta_0, \gamma\}$ and w such that $p_1\beta \ge w \ge 0$, we have

$$f_{\alpha_{0},\gamma'}(\beta) = (A^{\alpha_{0}/2}B^{\beta}A^{\alpha_{0}/2})^{\frac{(\gamma+\alpha_{0})p_{1}}{\alpha_{0}+\beta}} = \{(A^{\alpha_{0}/2}B^{\beta}A^{\alpha_{0}/2})^{\frac{\alpha_{0}+\beta+w}{\alpha_{0}+\beta}}\}^{\frac{(\gamma+\alpha_{0})p_{1}}{\alpha_{0}+\beta+w}} = \{A^{\alpha_{0}/2}B^{\beta/2}(B^{\beta/2}A^{\alpha_{0}}B^{\beta/2})^{\frac{w}{\alpha_{0}+\beta}}B^{\beta/2}A^{\alpha_{0}/2}\}^{\frac{(\gamma+\alpha_{0})p_{1}}{\alpha_{0}+\beta+w}} \geq \{A^{\alpha_{0}/2}B^{\beta/2}B^{w}B^{\beta/2}A^{\alpha_{0}/2}\}^{\frac{(\gamma+\alpha_{0})p_{1}}{\alpha_{0}+\beta+w}} = (A^{\alpha_{0}/2}B^{\beta+w}A^{\alpha_{0}/2})^{\frac{(\gamma+\alpha_{0})p_{1}}{\alpha_{0}+\beta+w}} = f_{\alpha_{0},\gamma'}(\beta+w).$$

The above inequality holds by (8) and Löwner-Heinz theorem for $\frac{(\gamma + \alpha_0)p_1}{\alpha_0 + \beta + w} \in [0, 1]$. Hence $f_{\alpha_0, \gamma}(\beta)$ is decreasing for $\beta \ge \max\{\beta_0, \gamma\}$. Moreover, in case $\gamma \ge \beta_0$,

$$(A^{\alpha_0/2}B^{\gamma}A^{\alpha_0/2})^{p_1} = f_{\alpha_0,\gamma}(\gamma) \ge f_{\alpha_0,\gamma}(\beta) = (A^{\alpha_0/2}B^{\beta}A^{\alpha_0/2})^{\frac{(\gamma+\alpha_0)p_1}{\alpha_0+\beta}}$$

holds for any $\beta \ge \gamma$, so that we have (2) by replacing γ and β with β_1 and β_2 , respectively.

(ii) Put $A_2 = A^{\alpha_0 p}$ and $B_2 = (A^{\alpha_0/2}B^{\beta_0}A^{\alpha_0/2})^{\frac{\alpha_0 p}{\alpha_0 + \beta_0}}$, then $A_2 \ge B_2$ holds by hypothesis. By applying (ii) of Lemma 2.4 to A_2 and B_2 , we have

$$A_2^{1+x_2} \ge (A_2^{x_2/2} B_2^{y_2} A_2^{x_2/2})^{\frac{1+x_2}{y_2+x_2}} \text{ for any } y_2 \ge 1 \text{ and } x_2 \ge 0.$$
(9)

Put $y_2 = \frac{\alpha_0 + \beta_0}{\alpha_0 p}$ and $x_2 = \frac{\alpha - \alpha_0}{\alpha_0 p} \ge 0$ in (9). Then we have

$$A^{\alpha_0 p + \alpha - \alpha_0} \ge \left(A^{\alpha/2} B^{\beta_0} A^{\alpha/2}\right)^{\frac{\alpha_0 p + \alpha - \alpha_0}{\alpha + \beta_0}} \text{ for any } \alpha \ge \alpha_0.$$

$$\tag{10}$$

Since $\frac{p_1\alpha}{\alpha_0p+\alpha-\alpha_0} \in (0, 1]$, applying Löwner-Heinz theorem to (10), we have

$$A^{p_1\alpha} \ge (A^{\alpha/2}B^{\beta_0}A^{\alpha/2})^{\frac{p_1\alpha}{\alpha+\beta_0}} \text{ for any } \alpha \ge \alpha_0 \text{ and } 0 < p_1 \le p.$$

$$\tag{11}$$

1678

By applying Löwner-Heinz theorem to (11), we have

$$A^{u} \ge (A^{\alpha/2}B^{\beta_0}A^{\alpha/2})^{\frac{u}{\alpha+\beta_0}} \text{ for any } 0 < u \le p_1\alpha.$$

$$\tag{12}$$

For each $\delta \ge -\beta_0$, $\alpha \ge \max\{\alpha_0, \delta\}$ and *u* such that $p_1 \alpha \ge u \ge 0$, we have

$$\begin{split} g_{\beta_{0},\delta}(\alpha) &= (B^{\frac{\beta_{0}}{2}}A^{\alpha}B^{\frac{\beta_{0}}{2}})^{\frac{(\delta+\beta_{0})p_{1}}{\alpha+\beta_{0}}} \\ &= \{(B^{\frac{\beta_{0}}{2}}A^{\alpha}B^{\frac{\beta_{0}}{2}})^{\frac{\alpha+u+\beta_{0}}{\alpha+\beta_{0}}}\}^{\frac{(\delta+\beta_{0})p_{1}}{\alpha+u+\beta_{0}}} \\ &= \{B^{\beta_{0}/2}A^{\alpha/2}(A^{\alpha/2}B^{\beta_{0}}A^{\alpha/2})^{\frac{u}{\alpha+\mu+\beta_{0}}}A^{\alpha/2}B^{\beta_{0}/2}\}^{\frac{(\delta+\beta_{0})p_{1}}{\alpha+u+\beta_{0}}} \\ &\leq \{B^{\beta_{0}/2}A^{\alpha/2}A^{u}A^{\alpha/2}B^{\beta_{0}/2}\}^{\frac{(\delta+\beta_{0})p_{1}}{\alpha+u+\beta_{0}}} \\ &= (B^{\beta_{0}/2}A^{u+\alpha}B^{\beta_{0}/2})^{\frac{(\delta+\beta_{0})p_{1}}{\alpha+u+\beta_{0}}} \\ &= g_{\beta_{0},\delta}(\alpha+u). \end{split}$$

The above inequality holds by (12) and Löwner-Heinz theorem for $\frac{(\delta+\beta_0)p_1}{\alpha+u+\beta_0} \in [0, 1]$. Hence $g_{\beta_0,\delta}(\alpha)$ is increasing for $\alpha \ge \max\{\alpha_0, \delta\}$. Moreover, in case $\delta \ge \alpha_0$,

$$(B^{\beta_0/2}A^{\alpha}B^{\beta_0/2})^{\frac{(\delta+\beta_0)p_1}{\alpha+\beta_0}} = g_{\beta_0,\delta}(\alpha) \ge g_{\beta_0,\delta}(\delta) = (B^{\beta_0/2}A^{\delta}B^{\beta_0/2})^{p_1}$$
(13)

holds for any $\alpha \ge \delta$, so that we have (4) by replacing δ and α with α_1 and α_2 , respectively. \Box

Theorem 2.5. Let $0 < q \le 1$ and let A and B be positive operators such that

$$A^{q\alpha_0} \ge (A^{\alpha_0/2} B^{\beta_0} A^{\alpha_0/2})^{\frac{q+0}{\alpha_0 + \beta_0}} \tag{14}$$

and

$$(B^{\beta_0/2}A^{\alpha_0}B^{\beta_0/2})^{\frac{q_{\mu_0}}{\alpha_0+\beta_0}} \ge B^{q\beta_0} \tag{15}$$

hold for fixed $\alpha_0 > 0$ and $\beta_0 > 0$. Then the following inequalities hold:

$$A^{q_1\alpha} \ge (A^{\alpha/2}B^{\beta}A^{\alpha/2})^{\frac{q_1\alpha}{\alpha+\beta}} \tag{16}$$

and

$$(B^{\beta/2}A^{\alpha}B^{\beta/2})^{\frac{q_1\beta}{\alpha+\beta}} \ge B^{q_1\beta}$$
(17)

Proof. [Proof of (16)] Applying Lemma 2.4 to (15), we have

for all $\alpha \ge \alpha_0$, $\beta \ge \beta_0$ and $0 < q_1 \le q$.

$$\{B^{\frac{q\beta_0r_1}{2}}(B^{\beta_0/2}A^{\alpha_0}B^{\beta_0/2})^{\frac{p_1q\beta_0}{\alpha_0+\beta_0}}B^{\frac{q\beta_0r_1}{2}}\}^{\frac{1+r_1}{p_1+r_1}} \ge B^{q\beta_0(1+r_1)}$$
(18)

for any $p_1 \ge 1$ and $r_1 \ge 0$. Putting $p_1 = \frac{\alpha_0 + \beta_0}{q\beta_0}$ in (18), we have

$$\left(B^{\frac{\beta_0(1+qr_1)}{2}}A^{\alpha_0}B^{\frac{\beta_0(1+qr_1)}{2}}\right)^{\frac{q\beta_0(1+r_1)}{2}} \geq B^{q\beta_0(1+r_1)}$$
(19)

for any $r_1 \ge 0$. Put $\beta = \beta_0(1 + qr_1) \ge \beta_0$ in (19). Then we have

$$(B^{\frac{\beta}{2}}A^{\alpha_0}B^{\frac{\beta}{2}})^{\frac{\beta-(1-q)\beta_0}{\alpha_0+\beta}} \ge B^{\beta-(1-q)\beta_0}.$$
(20)

Hence we have

$$(B^{\frac{p}{2}}A^{\alpha_0}B^{\frac{p}{2}})^{\frac{w}{\alpha_0+\beta}} \ge B^w \text{ for } 0 < w \le \beta - (1-q)\beta_0.$$
(21)

Next we show $f(\beta) = (A^{\alpha_0/2}B^{\beta}A^{\alpha_0/2})^{\frac{q\alpha_0}{\alpha_0+\beta}}$ is decreasing for $\beta \ge \beta_0$. By Löwner-Heinz theorem, (21) ensures the following (22)

$$(B^{\frac{\beta}{2}}A^{\alpha_0}B^{\frac{\beta}{2}})^{\frac{w}{\alpha_0+\beta}} \ge B^w \text{ for } 0 < w \le \beta - (1-q)\beta_0.$$
(22)

Then we have

$$f(\beta) = (A^{\alpha_0/2} B^{\beta} A^{\alpha_0/2})^{\frac{q+0}{\alpha_0+\beta}} \\ = \{(A^{\alpha_0/2} B^{\beta} A^{\alpha_0/2})^{\frac{\alpha_0+\beta+w}{\alpha_0+\beta}}\}^{\frac{q+\alpha_0}{\alpha_0+\beta+w}} \\ = \{A^{\alpha_0/2} B^{\beta/2} (B^{\beta/2} A^{\alpha_0} B^{\beta/2})^{\frac{w}{\alpha_0+\beta}} B^{\beta/2} A^{\alpha_0/2}\}^{\frac{q+\alpha_0}{\alpha_0+\beta+w}}$$
(by Lemma 2.2)
$$\geq (A^{\alpha_0/2} B^{\beta+w} A^{\alpha_0/2})^{\frac{q+\alpha_0}{\alpha_0+\beta+w}} \\ = f(\beta+w).$$

Hence $f(\beta)$ is decreasing for $\beta \ge \beta_0$. Therefore

$$A^{q\alpha_0} \ge (A^{\alpha_0/2} B^{\beta} A^{\alpha_0/2})^{\frac{1}{\alpha_0+\beta}} \text{ for } \beta \ge \beta_0$$

$$\tag{23}$$

holds since

$$A^{q\alpha_0} \ge (A^{\alpha_0/2}B^{\beta_0}A^{\alpha_0/2})^{\frac{q+0}{\alpha_0+\beta_0}} = f(\beta_0) \ge f(\beta) = (A^{\alpha_0/2}B^{\beta}A^{\alpha_0/2})^{\frac{q+0}{\alpha_0+\beta}}.$$

Again applying Lemma 1.1 to (23), we have

$$A^{q\alpha_0(1+r_2)} \ge \left(A^{\frac{qr_2\alpha_0}{2}} \left(A^{qr_2\alpha_0/2} B^{\beta} A^{\alpha_0/2}\right)^{\frac{p_2q\alpha_0}{\alpha_0+\beta}} A^{\frac{qr_2\alpha_0}{2}}\right)^{\frac{1+r_2}{p_2+r_2}}$$
(24)

for any $p_2 \ge 1$ and $r_2 \ge 0$. Putting $p_2 = \frac{\alpha_0 + \beta}{q\alpha_0} \ge 1$ in (24), we have

$$A^{q\alpha_0(1+r_2)} \ge \left(A^{\frac{\alpha_0(1+qr_2)}{2}}B^{\beta}A^{\frac{\alpha_0(1+qr_2)}{2}}\right)^{\frac{q\alpha_0(1+r_2)}{\alpha_0+\beta+qr_2\alpha_0}}$$
(25)

for any $r_2 \ge 0$. Put $\alpha = \alpha_0(1 + qr_2) \ge \alpha_0$ in (25). Then we have

$$A^{\alpha+\alpha_0(q-1)} \ge \left(A^{\frac{\alpha}{2}}B^{\beta}A^{\frac{\alpha}{2}}\right)^{\frac{\alpha+\alpha_0(q-1)}{\beta+\alpha}} \tag{26}$$

for all $\alpha \ge \alpha_0$ and $\beta \ge \beta_0$. Now, since $\frac{q_1\alpha}{\alpha + \alpha_0(q-1)} \in (0, 1]$, applying Löwner-Heinz theorem to (26), we have

 $A^{q_1\alpha} \ge (A^{\frac{\alpha}{2}}B^{\beta}A^{\frac{\alpha}{2}})^{\frac{q_1\alpha}{\beta+\alpha}}$

for all $\alpha \ge \alpha_0$, $\beta \ge \beta_0$ and $0 < q_1 \le q$. Proof of (17). Applying Lemma 2.4 to (14), we have

$$A^{q\alpha_0(1+r_3)} \ge (A^{\frac{qr_3\alpha_0}{2}}(A^{\alpha_0/2}B^{\beta_0}A^{\alpha_0/2})^{\frac{p_3q\alpha_0}{\alpha_0+\beta_0}}A^{\frac{qr_3\alpha_0}{2}})^{\frac{1+r_3}{p_3+r_3}}$$
(27)

for any $p_3 \ge 1$ and $r_3 \ge 0$. Putting $p_3 = \frac{\alpha_0 + \beta_0}{q\alpha_0} \ge 1$ in (27), we have

$$A^{q\alpha_0(1+r_3)} \ge (A^{\frac{\alpha_0(1+qr_3)}{2}} B^{\beta_0} A^{\frac{\alpha_0(1+qr_3)}{2}})^{\frac{q\alpha_0(1+r_3)}{\alpha_0+\beta_0+qr_3\alpha_0}}$$
(28)

for any $r_3 \ge 0$. Put $\alpha = \alpha_0(1 + qr_3) \ge \alpha_0$ in (28). Then we have

$$A^{\alpha+\alpha_0(q-1)} \ge \left(A^{\frac{\alpha}{2}}B^{\beta_0}A^{\frac{\alpha}{2}}\right)^{\frac{\alpha+\alpha_0(q-1)}{\beta_0+\alpha}} \text{ for } \alpha \ge \alpha_0.$$

$$\tag{29}$$

aßn

Next we show that $g(\alpha) = (B^{\beta_0/2} A^{\alpha} B^{\beta_0/2})^{\frac{q\beta_0}{\alpha_0 + \beta_0}}$ is increasing for $\alpha \ge \alpha_0$. By Löwner-Heinz theorem, (29) ensures the following (30).

$$A^{u} \ge (A^{\frac{\alpha}{2}} B^{\beta_{0}} A^{\frac{\alpha}{2}})^{\frac{\alpha}{\beta_{0} + \alpha}} \text{ for } 0 \le u \le \alpha + \alpha_{0}(q - 1).$$
(30)

Then we have

$$\begin{split} g(\alpha) &= (B^{\beta_0/2} A^{\alpha} B^{\beta_0/2})^{\frac{q\beta_0}{\alpha+\beta_0}} \\ &= \{ (B^{\beta_0/2} A^{\alpha} B^{\beta_0/2})^{\frac{\alpha+\beta_0+u}{\alpha+\beta_0}} \}^{\frac{q\beta_0}{u+\beta_0+\alpha}} \\ &= \{ B^{\beta_0/2} A^{\alpha/2} (A^{\alpha/2} B^{\beta_0} A^{\alpha/2})^{\frac{u}{\alpha+\beta_0}} A^{\alpha/2} B^{\beta_0/2} \}^{\frac{q\beta_0}{u+\beta_0+\alpha}} \\ &\leq (B^{\beta_0/2} A^{\alpha+u} B^{\beta_0/2})^{\frac{q\beta_0}{u+\beta_0+\alpha}} \\ &= q(\alpha+u). \end{split}$$

Hence $g(\alpha)$ is increasing for $\alpha \ge \alpha_0$. Therefore

aßo

$$(B^{\beta_0/2}A^{\alpha}B^{\beta_0/2})^{\frac{\eta+0}{\alpha+\beta_0}} \ge B^{q\beta_0} \text{ for } \alpha \ge \alpha_0$$
(31)

holds since

$$(B^{\beta_0/2}A^{\alpha}B^{\beta_0/2})^{\frac{n}{\alpha+\beta_0}} = g(\alpha) \ge g(\alpha_0) = (B^{\beta_0/2}A^{\alpha_0}B^{\beta_0/2})^{\frac{n}{\alpha_0+\beta_0}} \ge B^{q\beta_0}$$

Again applying Lemma 1.1 to (31), we have

$$\{B^{\frac{qr_4\beta_0}{2}}(B^{\beta_0/2}A^{\alpha}B^{\beta_0/2})^{\frac{p_4q\rho_0}{\alpha+\beta_0}}B^{\frac{qr_4\beta_0}{2}}\}^{\frac{1+r_4}{p_4+r_4}} \ge B^{q\beta_0(1+r_4)}$$
(32)

for any $p_4 \ge 1$ and $r_4 \ge 0$. Putting $p_4 = \frac{\alpha + \beta_0}{q\beta_0} \ge 1$ in (32), we have

$$\left(B^{\frac{\beta_0(1+qr_4)}{2}}A^{\alpha}B^{\frac{\beta_0(1+qr_4)}{2}}\right)^{\frac{q\beta_0(1+r_4)}{\alpha+\beta_0+q\beta_0r_4}} \ge B^{q\beta_0(1+r_4)}$$
(33)

for any $r_4 \ge 0$. Put $\beta = \beta_0(1 + qr_4) \ge \beta_0$ in (33). Then we have

$$(B^{\frac{p}{2}}A^{\alpha}B^{\frac{p}{2}})^{\frac{p+p(q-1)}{\alpha+\beta}} \ge B^{\beta+\beta_0(q-1)} \text{ for } \alpha \ge \alpha_0 \text{ and } \beta \ge \beta_0.$$
(34)

Now, since $\frac{q_1\beta}{\beta+\beta_0(q-1)} \in (0, 1]$, applying Löwner-Heinz theorem to (34), we have

aßn

$$(B^{\frac{\beta}{2}}A^{\alpha}B^{\frac{\beta}{2}})^{\frac{q_1\beta}{\alpha+\beta}} \ge B^{q_1\beta}$$

for all $\alpha \ge \alpha_0$, $\beta \ge \beta_0$ and $0 < q_1 \le q$, so the proof is complete. \Box

By using Theorem 2.5, We shall give simplified proof of Theorem 1.3.

Corollary 2.6. If $T \in B(\mathcal{H})$ is class p-wA(s, t) and $0 < s \le \alpha, 0 < t \le \beta, 0 < p_1 \le p \le 1$, then T is class p_1 -w $A(\alpha, \beta)$. *Proof.* Suppose that T is class p-wA(s, t) for s > 0, t > 0 and 0 , i.e., the following (35) and (36) hold.

$$(|T^*|^t |T|^{2s} |T^*|^t)^{\frac{q}{s+t}} \ge |T^*|^{2tp}.$$
(35)

$$|T|^{2sp} \ge (|T|^s |T^*|^{2t} |T|^s)^{\frac{sp}{s+t}}.$$
(36)

By Theorem 2.5, we have

$$(|T^*|^{\beta}|T|^{2\alpha}|T^*|^{\beta})^{\frac{p_1\beta}{\alpha+\beta}} \ge |T^*|^{2p_1\beta} \text{ and } |T|^{2p_1\alpha} \ge (|T|^{\alpha}|T^*|^{2\beta}|T|^{\alpha})^{\frac{p_1\alpha}{\alpha+\beta}}$$

for any $\alpha \ge s$, $\beta \ge t$ and $0 < p_1 \le p$. Therefore *T* is class p_1 -*w* $A(\alpha, \beta)$ for any $\alpha \ge s$, $\beta \ge t$ and $0 < p_1 \le p$. \Box

In this section, we shall show a normality of some non-normal operators. It is known that if T and T^* are class A, then T is normal. But in the case T and T^* belong to weaker class than class A, the assertion is not obvious. Many authors obtained many results on this problem, and the following result were known until now.

Theorem 2.7 ([19]). Let $T \in \mathcal{B}(\mathcal{H})$. If T and T^* are (s, p)-w-hyponormal, then T is normal.

Theorem 2.8. Let $s_i, t_i > 0$ and $0 < p_i \le 1$, where i = 1, 2. If T is a class p_1 -wA(s_1, t_1) operator and T^{*} is is a class p_2 -wA(s_2, t_2) operator, then T is normal.

Theorem 2.9. Let $p, r > 0, 0 < q \le 1, s \ge p$ and $t \ge r$. If T is a class q-wA(p, r) operator and $\tilde{T}_{s,t}$ is normal, then T is normal.

To prove Theorem 2.8 and Theorem 2.9, we need the following results.

Lemma 2.10 ([14]). Let A > 0 and T = U|T| be the polar decomposition of T. Then for each $\alpha > 0$ and $\beta > 0$, the following assertions hold:

- (i) $U^*U(|T|^\beta A|T|^\beta)^\alpha = (|T|^\beta A|T|^\beta)^\alpha$.
- (*ii*) $UU^*(|T^*|^\beta A|T^*|^\beta)^\alpha = (|T^*|^\beta A|T^*|^\beta)^\alpha$.
- (*iii*) $(U|T|^{\beta}A|T|^{\beta}U^{*})^{\alpha} = U(|T|^{\beta}A|T|^{\beta})^{\alpha}U^{*}.$
- (*iv*) $(U^*|T^*|^{\beta}A|T^*|^{\beta}U)^{\alpha} = U^*(|T^*|^{\beta}A|T^*|^{\beta})^{\alpha}U.$

Lemma 2.11 ([15]). *Let* $A \ge 0$ *and* $B \ge 0$ *. If*

$$B^{\frac{1}{2}}AB^{\frac{1}{2}} \ge B^2$$
 and $A^{\frac{1}{2}}BA^{\frac{1}{2}} \ge A^2$,

then A = B.

Lemma 2.12 ([4]). Let $A, B \ge 0$ and $s, t \ge 0$. If $B^s A^{2t} B^s = B^{2t+2s}$ and $A^t B^{2s} A^t = A^{2t+2s}$, then A = B.

Lemma 2.13. ([26, Proposition 4.5]) Let $A, B \ge 0$; $p_i, r_i > 0$; $-r_i < \delta_i \le p_i, 0 \le \overline{\delta}_i < p_i$; i = 1, 2. Then the following assertions are mutually equivalent.

(i)
$$A = B$$
.
(ii) $B^{\frac{r_1}{2}}A^{p_1}B^{\frac{r_1}{2}} = B^{r_1+p_1} and A^{\frac{r_2}{2}}B^{p_2}A^{\frac{r_2}{2}} = A^{r_2+p_2}$.
(iii) $\begin{cases} \left(B^{\frac{r_1}{2}}A^{p_1}B^{\frac{r_1}{2}}\right)^{\frac{r_1+\delta_1}{r_1+p_1}} \ge B^{r_1+p_1}, & A^{p_1-\bar{\delta}_1} \ge \left(A^{\frac{p_1}{2}}B^{r_1}A^{\frac{p_1}{2}}\right)^{\frac{p_1-\bar{\delta}_1}{p_1+r_1}} \\ \left(B^{\frac{r_2}{2}}A^{p_2}B^{\frac{r_2}{2}}\right)^{\frac{r_2+\delta_2}{r_2+p_2}} \ge B^{r_2+p_2}, & A^{p_2-\bar{\delta}_2} \ge \left(A^{\frac{p_2}{2}}B^{r_2}A^{\frac{p_2}{2}}\right)^{\frac{p_2-\bar{\delta}_1}{p_2+r_2}} \end{cases}$

Proof. [Proof of Theorem 2.8] Let $s = \max\{s_1, t_1, s_2, t_2\}$ and $p = \min\{p_1, p_2\}$. Firstly, if *T* belongs to class p_1 -*w* $A(s_1, t_1)$, then *T* belongs to class p-*w*A(s, s) by Theorem 1.3. Hence we have

 $(|T^*|^s|T|^{2s}|T^*|^s)^{\frac{p}{2}} \ge |T^*|^{2sp} \quad \text{and} \quad |T|^{2sp} \ge (|T|^s|T^*|^{2s}|T|^s)^{\frac{p}{2}}.$ (37)

Secondly, if T^* belongs to class p_2 - $wA(s_2, t_2)$, then T^* belongs to class p-wA(s, s) by Theorem 1.3. Hence we have

$$(|T|^{s}|T^{*}|^{2s}|T|^{s})^{\frac{p}{2}} \ge |T|^{2sp} \quad \text{and} \quad |T^{*}|^{2sp} \ge (|T^{*}|^{s}|T|^{2s}|T^{*}|^{s})^{\frac{p}{2}}.$$
(38)

Therefore

$$|T|^{s}|T^{*}|^{2s}|T|^{s} = |T|^{4s}$$
 and $|T^{*}|^{s}|T|^{2s}|T^{*}|^{s} = |T^{*}|^{4s}$

hold by (37) and (38), and then $|T| = |T^*|$ by Lemma 2.12. \Box

Proof. [Proof of Theorem 2.9] By hypothesis *T* belongs to class q-wA(s, t) by Theorem 1.3. Hence it follows by (ii) of Definition 1.2 that

 $|\tilde{T}_{s,t}|^{\frac{2tq}{t+s}} \ge |T|^{2tq} \quad \text{and} \quad |T|^{2sq} \ge |(\tilde{T}_{s,t})^*|^{\frac{2sq}{s+t}}.$

Hence

$$|\tilde{T}_{s,t}|^{\frac{2rq}{s+t}} \ge |T|^{2rq} \ge |(\tilde{T}_{s,t})^*|^{\frac{2rq}{s+t}} \quad \text{for all } r \in (0, \min\{s, t\}].$$

On the other hand, $\tilde{T}_{s,t}$ is normal, i.e., $|\tilde{T}_{s,t}|^2 = |(\tilde{T}_{s,t})^*|^2$. It follows by Lemma 2.10 that

$$|T^*|^t |T|^{2s} |T|^t = |T^*|^{2(s+t)}$$
 and $|T|^s |T^*|^{2t} |T|^s = |T|^{2(s+t)}$,

and then $|T| = |T^*|$ by Lemma 2.12. \Box

The numerical range of an operator T, denoted by W(T), is the set defined by

$$W(T) = \{ \langle Tx, x \rangle : ||x|| = 1 \}.$$

In general, the condition $S^{-1}TS = T^*$ and $0 \notin W(T)$ do not imply that T is normal. If T = SB, where S is positive and invertible, B is self-adjoint, and S and B do not commute, then $S^{-1}TS = T^*$ and $0 \notin W(S)$, but T is not normal. Therefore the following question arises naturally.

Question: Which operator *T* satisfying the condition $S^{-1}TS = T^*$ and $0 \notin \overline{W(S)}$ is normal?

In 1966, Sheth [21] showed that if T is a hyponormal operator and $S^{-1}TS = T^*$ for some operator *S*, where $0 \notin \overline{W(S)}$, then *T* is self-adjoint. Recently, Rashid [20] extended the result of Sheth to the class A(k), k > 0 operators. In this paper, we extend the result of Sheth to the class p-wA(s, t) as follows.

Theorem 2.14. Let $T \in \mathcal{B}(\mathcal{H})$. If T or T^* belongs to class p-wA(s, t) for some s > 0, t > 0 and 0 and <math>S is an operator for which $0 \notin W(S)$ and $ST = T^*S$, then T is self-adjoint.

To prove Theorem 2.14 we need the following Lemmas.

Lemma 2.15 ([24]). If $T \in \mathcal{B}(\mathcal{H})$ is any operator such that $S^{-1}TS = T^*$, where $0 \notin \overline{W(S)}$, then $\sigma(T) \subseteq \mathbb{R}$.

Lemma 2.16 ([18]). Let $T \in \mathcal{B}(\mathcal{H})$ and let T belongs to the class p-wA(s, t) for some s > 0, t > 0 and $0 . If <math>m_2(\sigma(T)) = 0$, where m_2 means the planer Lebsegue measure, then T is normal.

Proof. [Proof of Theorem 2.14] Suppose that *T* or *T*^{*} is a class p-wA(s,t) for s, t > 0 and $0 . Since <math>\sigma(S) \subseteq \overline{W(S)}$, *S* is invertible and hence $ST = T^*S$ becomes $S^{-1}T^*S = T = (T^*)^*$. Apply Lemma 2.15 to T^* to get $\sigma(T^*) \subseteq \mathbb{R}$. Then $\sigma(T) = \overline{\sigma(T^*)} = \sigma(T^*) \subseteq \mathbb{R}$. Thus $m_2(\sigma(T)) = m_2(\sigma(T^*)) = 0$ for the planer Lebesgue measure m_2 . It follows from Lemma 2.16 that *T* or T^* is normal. Since $\sigma(T) = \sigma(T^*) \subseteq \mathbb{R}$. Therefore, *T* is self-adjoint. \Box

Acknowledgement. The author would like to sincerely thank the referee for several useful suggestions and comments improving the paper.

References

- [1] A. Aluthge, On *p*-hyponormal operators for 0 , Integral Equations Operator Theory 13(1990) 307–315.
- [2] T. Ando, On some operator inequalities, Math. Ann. 279 (1987) 157-159.
- [3] Y. Changsen and L. Haiying, On p-w-hyponormal operators, Chin Q J Math. 20(2005) 79-84.
- [4] C. Yang and Y. Zhao, on class *wF*(*p*, *r*, *q*) operators and quasisimilarity, J. Ineq. Pure Applied Math. Volume 8 (2007), Issue 3, Article 90, 7 pp.
- [5] M. Chō, M.H.M. Rashid, K. Tanahashi and A. Uchiyama, Spectrum of class *p*-*wA*(*s*, *t*) operators, Acta Sci. Math. (Szeged) 82 (2016) 641–649.
- [6] M. Chō, T. Prasad, M.H.M. Rashid, K. Tanahashi and A. Uchiyama, Fuglede-Putnam theorem and quasisimilarity of class *p*-wA(s, t) operators, Operator and Matrices 13 (1) (2019) 293–299.

1683

- [7] M. Chō and K. Tanahashi, Isolated point of spectrum of *p*-hyponormal, log-hyponormal operators, Integral Equations Operator Theory 43 (2002) 379–384.
- [8] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179(1993) 161–169.
- [9] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of *log*-hyponormal and several related classes, Sci. math. 1(1998) 389–403.
- [10] T. Furuta, $A \ge B \ge O$ assures $(B^r A^p B^r)^{\frac{1}{q}} \ge B^{\frac{p+2r}{q}}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1 + 2r)q \ge (p + 2r)$, Proc. Amer. Math. Soc. 101 (1987) 85–88.
- [11] T. Furuta, Applications of order preserving operator inequalities, Operator Theory Adv. Appl. 59 (1992) 180–190.
- [12] L. Haiying, Powers of an invertible (s, p)-w-hyponormal operator, Acta Math Scientia 20(2008)282–288.
- [13] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123(1951) 415–438.
 [14] M. Ito, Some classes of operators with generalised Aluthege transformations, SUT J. Math. 35(1999) 149-165.
- [15] M. Ito and T. Yamazaki, Relations between two inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{r}{p+r}}$ and their applications, Integral Equations Operator Theory 44 (2002) 442–450.
- [16] T. Prasad and K. Tanahashi, On class *p-wA(s, t)* operators, Functional Analysis, Approximation and Computation 6 (2) (2014) 39–42.
- [17] T. Prasad, M.Chō, M.H.M Rashid, K. Tanahashi and A Uchiyama, On class *p-wA(s, t)* operators and range kernal orthogonality, Sci. Math. Japon (in Editione Electronica, e-2017, Whole Number 30)
- [18] M.H.M Rashid, M. Chö, T. Prasad, K. Tanahashi and A. Uchiyama, Weyls theorem and Putnam's inequality for *p-wA(s,t)* operators, Acta. Sci. Math. (Szeged) 84 (2018) 573–589.
- [19] M.H.M Rashid, Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators, Linear and Multilinear Algebra 65 (8) (2017) 1600–1616.
- [20] M.H.M.Rashid, Generalized Fuglede-Putnam Theorem And *m*-Quasi-Class A(k) Operators, Facta Universitatis (Niš) Ser. Math. Inform. 34 (1) (2019) 73–84.
- [21] I. H. Sheth, On hyponormal operators, Proc. Amer. Math. Soc. 17 (1966) 998-1000.
- [22] K. Tanahashi, T. Prasad and A Uchiyama, Quasinormality and subscalarity of class *p-wA(s,t)* operators, Funct. Anal. Approx. Comput. 9 (1)(2017) 61–68.
- [23] M. Uchiyama, Inequalities for semibounded operators and their applications to log-hyponormal operators, Operator Theory: Advances and Applications 127(2001) 599–611.
- [24] J. P. WILLIAMS, Operators similar to their adjoints, Proc. Amer. Math. Soc. 20(1969) 121-123.
- [25] M. Yanagida, Powers of class wA(s, t) operators with generalised Aluthge transformation, J. Inequal. Appl. 7 (2002) 143–168.
- [26] C. Yang and J. Yuan, On Class *wF*(*p*, *q*, *r*) operators, Acta Math. Sinica 27 A (5) (2007)769–780.