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Generalized Symplectic Golden Manifolds and Lie Groupoids

Fulya Şahina

aEge University, Department of Mathematics, İzmir/TURKEY

Abstract. By considering the notion of Golden manifold and natural symplectic form on a generalized tan-
gent bundle, we introduce generalized symplectic Golden structures on manifolds and obtain integrability
conditions in terms of bivector fields, 2-forms, 1-forms and endomorphisms on manifolds and investigate
isotropic subbundles. We also find certain relations between the integrability conditions of generalized
symplectic Golden manifolds and Lie Groupoids which are important in mechanics as configuration space.

1. INTRODUCTION

A differentiable manifold M is called a Goden manifold if there exists a (1, 1)-tensor field ϕ on M such
that ϕ2 = ϕ + I, where I denotes the identity map. If (M, 1) is a Riemannian manifold and ϕ is a Golden
structure on M such that

1(ϕα1, α2) = 1(α1, ϕα2)

then (M, 1, ϕ) is called a Golden Riemannian manifold. It is known that the Golden proportion has
been found applications in various structures see:[7] By inspiring Golden ratio, Golden structures were
introduced by Crasmareanu and Hretcanu in [12] and such structures have been studied in [6, 13, 15–
17, 22, 23, 33, 34, 38–40]. The application of the golden ratio in many areas shows that the Golden Riemann
manifolds will have a rich geometric structure for further research. As extension of Golden manifolds,
Metallic manifolds have been introduced by Hretcanu and Crasmareanu in [23] and submanifolds of such
manifolds have been studied by many authors, see:[2, 14, 19, 30]

The generalized geometry is the geometry created by using the direct sum of the tangent bundle and
cotangent bundles, naming generalized tangent bundle ( or big bundle), instead of the tangent bundle
notion in the manifold theory. This concept was introduced by Hitchin [24] as a language that defines both
complex manifolds and symplectic manifolds. Although it was seen as a virtual notion at first glance, it has
been observed that the generalized geometry is a suitable language especially in explaining and defining
the notions of string theory. For this reason, generalized manifolds are the most important research area
of manifold theory. After Hitchin’s definition of generalized complex manifolds, this topic was studied in
detail by Gualtieri [21] in his doctoral thesis, see also [20]. After this stage, new generalized manifolds were
studied by many authors, see: [1], [3], [4], [5], [18],[32], [36], [41].
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After Crainic [10] demonstrated a one-to-one relationship between the integrability conditions of gen-
eralized complex manifolds and the notions of Lie groupoids, it has been important to examine the rela-
tionships between other generalized manifolds (generalized para-complex manifolds, Generalized contact
manifolds, generalized paracontact manifolds, and so on) with Lie groupoids and Lie Algebroids. This will
make it possible to examine notions in differential topology by using results in generalized manifolds.

As we mentioned above, Golden ratio has many applications in different areas and generalized geometry
has also provided a useful tool for string theory, such geometry has been studied widely by physicists too,
see:[27]. The aim of this paper is to combine these two notions and present a new class of generalized
manifolds with natural symplectic form and relate such manifolds with Lie groupoids.

In generalized geometry, the non-degenerate symmetric bilinear form is generally considered for com-
patibility with structure in hand, but in this article we will consider the canonical symplectic form on the
generalized manifold to ensure compatibility of the Golden structure with the bilinear form. In this direc-
tion, we first introduce generalized symplectic Golden manifolds and provide examples. We find necessary
and sufficient conditions in terms of classical tensor fields for Golden structure to be integrable. We obtain
isotropy conditions and show that the distributions corresponding to eigen values of Golden structures are
not Dirac subbundle. Then we find orthogonality conditions for these distributions. In the last section, we
show that there is a close relation between the conditions for generalized symplectic Golden structure to be
integrable and Lie groupoids.

2. PRELIMINARIES

Generalized geometry is considered by taking the bundle formed by constructing the direct sum of the
tangent bundle and the cotangent bundle instead of the tangent bundle of the manifold. This bundle is
denoted by TM ⊕ TM∗. The sections of this bundle is consisted of (α1, γ) (or α1 + γ) for α1 ∈ Γ(TM) and
γ ∈ Γ(TM∗). For the sections (α1, γ), (α2, δ) of TM⊕TM∗ = TM, a natural symplectic structure<,> is defined
by

< α1 + γ, α2 + δ >=
1
2

(iα1δ − iα2γ), (1)

and the Courant bracket of two sections is defined by

⟦(α1, γ), (α2, δ)⟧ = [α1, α2] + Lα1δ − Lα2γ −
1
2

d(iα1δ − iα2γ), (2)

where d, Lα1 and iα1 denote exterior derivative, Lie derivative and interior derivative with respect to α1,
respectively. The Courant bracket does not satisfy the Jacobi identity. In this paper we adapt the notions

δ(Π♯γ) = Π(γ, δ) and ω♭(α1)(α2) = ω(α1, α2) (3)

which are defined asΠ♯ : TM∗
→ TM, ω♭ : TM→ TM∗ for any 1-forms γ and δ, 2-form ω and bivector field

Π, and vector fields α1 and α2. The bracket [, ]Π on the space of 1-forms on M is defined by

[γ, δ]Π = LΠ♯γδ − LΠ♯δγ − dΠ(γ, δ). (4)

The basic properties of Lie groupoids will not be given in detail in this paper. This notion is now well
known in the literature, see: [31]. Generally, a Lie groupoid Γ is denoted by the set of arrows Γ1. Being
submersions, s and t ensure that s and t-fibres are manifolds. The space Γ2 of composable arrows is a
submanifold of Γ1 × Γ1. Let Γ be a Lie groupoid on M and ω a form on Lie groupoid Γ, then ω is called
multiplicative if

m∗ω = pr∗1ω + pr∗2ω,

where pri : Γ × Γ → Γ, i = 1, 2, are the canonical projections. If a Lie groupoid Γ is endowed with a form
which is multiplicative, then Γ is called symplectic groupoid.



F. Şahin / Filomat 36:5 (2022), 1663–1674 1665

We now recall certain notions of Lie algebroids from [29]. A Lie algebroid structure on a real vector
bundle L on a manifold M is defined by a vector bundle map ρL : L → TM, the anchor of L, and an R-Lie
algebra bracket on F(L), [, ]L satisfying the Leibnitz rule

[γ, fδ]L = f [γ, δ]L + LρL(γ)( f )δ

for all γ, δ ∈ F(L), f ∈ C∞(M), where LρL(γ) is the Lie derivative with respect to the vector field ρL(γ). And
F(L) denotes the set of sections in L.

Lie algebroids and Lie groupoids are related notions. Lie groupoids are the infinitesimal equivalents of
Lie algebroids. However, unlike in Lie algebras, not every Lie algebroid has a corresponding Lie groupoid.
If so, a Lie algebroid is called integrable. We note that Lie algebroids have been studied widely by many
authors, see: [25], [26], [35], [37] for instances.

An IM form (infinitesimal multiplicative form) [8] on a Lie algebroid L is a bundle map u : L → TM∗

satisfying the following properties

(i) ⟨u(γ), ρ(δ)⟩ = −⟨u(δ), ρ(γ)⟩
(ii) u([γ, δ]) = Lγ(u(δ)) − Lδ(u(γ)) + d⟨u(γ), ρ(δ)⟩

for γ, δ ∈ F(L), where ⟨, ⟩ denotes the usual pairing between a vector space and its dual.
Finally, we recall that a smooth manifold is a Poisson manifold [28] if [Π,Π] = 0, where Π is a bi-vector

field and [, ] denotes the Schouten bracket on the space of multivector fields.

3. GENERALIZED GOLDEN MANIFOLDS

In this section we introduce generalized Golden structures on a manifold, provide examples and obtain
integrability conditions for such manifolds in terms of certain geometric objects defined on such manifolds.
We first present the following notion.

Definition 3.1. An almost generalized Golden structure Φ on a smooth manifold M consists of a bundle endomor-
phism Φ from TM to itself such that

Φ2 = Φ + I (5)

where I denotes the identity map. Let Φ be an almost generalized Golden structure on M endowed with <,> given
(5) such that

< ΦX,Y >=< X,ΦY >, (6)

then (M,Φ, <, >) is called a generalized symplectic Golden manifold.

We note that the notion of generalized metallical structures has been introduced in [4] and [5]. Although
generalized Golden manifold given in the above definition is the special case of generalized Metallic
manifold, their main properties are different. We also note that generalized metallical manifolds have been
studied in [4] and [5] with the viewpoint of differential geometry, but here we will examine topologically.

(5) and (6) imply that the bundle map Φ : TM −→ TM is given by

Φ =

[
A Π♯

ϑ♭ A∗

]
, (7)

where Π is a bivector on M, ϑ is a 2-form on M, A : TM → TM is a bundle endomorphism, and
A∗ : TM∗

→ TM∗ is dual of A.
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Example 3.2. Associated to any Golden Riemannian structure ϕ, we have a generalized Golden structure by setting

Φ =

[
ϕ 0
0 ϕ∗

]
,

where ϕ∗ is dual of ϕ.

We give another example of generalized Golden manifolds.

Example 3.3. LetR2 be the two-dimensional Euclidean space and {X1,X2} a basis. Let {γ1, γ2
} be a dual frame. Now

for some real number b and c satisfying

b
√

5γ2(α1)γ1(α1)[γ(X2) + γ(X1)] = c[γ(X1)γ1(α1) − γ(X2)γ2(α1)],

∀α1 + γ ∈ Γ(R2
⊕R∗2), we define

A =
1 +
√

5
2

(X1 ⊗ γ
1 + X2 ⊗ γ

2), ϑ = cγ1
∧ γ2,Π = bX1 ∧ X2.

We also , as given in (7), define

Φ =

[
A Π♯

ϑ♭ A∗

]
.

Then Φ is a generalized Golden structure on R2.

As usual, a generalized Golden structure is called integrable if the Nijenhuis tensor field with respect to
Courant bracket is zero, i.e.,

⟦Φξ,Φζ⟧ −Φ(⟦Φξ, ζ⟧ + ⟦ξ,Φζ⟧) + Φ2⟦ξ, ζ⟧ = 0, (8)

for all sections ξ, ζ ∈ Γ(TM). In the sequel we find necessary and sufficient conditions forΦ to be integrable.
First note that from (5) and (7) we see that Φ is an almost generalized Golden structure on M if and only if
the following expressions are satisfied

A2 +Π♯ϑ♭ = A + I , AΠ♯ +Π♯A∗ = Π♯ (9)
ϑ♭A + A∗ϑ♭ = ϑ♭ , ϑ♭Π♯ + A∗2 = A∗ + I. (10)

Theorem 3.4. A generalized Golden structure is integrable if and only if the following conditions are satisfied.

(G1) Π satisfies the equation

[Π♯γ,Π♯δ] = Π♯([γ, δ]Π), (11)

(G2) Π and A are related by the following formula

A∗([γ, δ]Π) = LΠ♯γA
∗δ − LΠ♯δA

∗γ −
1
2

dΠ(γ, δ), (12)

(G3) A, Π are related by the following formula

[Aα1,Π
♯γ] − A[α1,Π

♯γ] = Π♯(LAα1γ + Lα1 A∗γ − Lα1γ

+
1
2

dγ(α1) − dγ(Aα1)), (13)
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(G4) A, Π and ϑ♭ are related by the following formula

LAα1 A∗γ − LΠ♯ϑ♭(α1) + Lα1γ − ϑ♭([α1,Π
♯γ])

−
1
2

d(γ(A2α1) − ϑ(α1,Π
♯γ) + γ(α1))

+A∗(Lα1γ −
1
2

dγ(α1) − LAα1γ − Lα1 A∗γ + dγ(Aα1)) (14)

(G5) NA, Π♯ and ϑ♭ satisfy the following equation

NA(α1, α2) = Π♯(iα1∧α2 (dϑ♭)) (15)

(G6) ϑ and and A are related by the following formula

dϑA(α1, α2, α3) = dϑ(Aα1, α2, α3) + dϑ(α1,Aα2, α3) + dϑ(α1, α2,Aα3) (16)

for α1, α2, α3 ∈ Γ(TM) and γ, δ ∈ Γ(TM∗).

Proof. First, for 1− forms γ and δ, from the second equation of (9) we find

Π(γ, δ) = Π(γ,A∗δ) −Π(δ,A∗γ). (17)

Using (2), (9), (17) and taking the vector field parts and 1−form parts of the resulting equation, we obtain
(12) and (13). For vector fields α1 and α2, in a similar way, we get

[Aα1,Aα1] + A[α1, α2] + [α1, α2] − A([α1,Aα2] + [Aα1, α2])
−Π♯(−Lα2ϑ♭(α1) + Lα1ϑ♭(α2) + dϑ(α1, α2)) (18)

and

LAα1ϑ♭(α2) − LAα2ϑ♭(α1) + ϑ♭([α1, α2]) − ϑ♭([Aα1, α2])
ϑ♭([α1,Aα2]) + dϑ(α1,Aα2) − A∗(Lα1ϑ♭(α2) − Lα2ϑ♭(α1)
+dϑ(α1, α2) (19)

Using the below formula

iα1∧α2 (dϑ) = Lα1 (iα2ϑ) − Lα2 (iα1ϑ) + d(iα1∧α2ϑ) − i[α1,α2]ϑ,

and the first equation of (9) in (18) we have (17). Also using the formula of exterior derivative in (19) we
derive (16). Moreover, for a vector field α1 and 1− form γ, using (2) and(9) and then taking the vector field
parts and 1− form parts in resulting equation, we obtain (13) and (14).

4. ISOTROPIC SUBBUNDLES

In this section, we are going to investigate isotropic subbundles on a generalized Golden manifold. We
first find necessary conditions for the eigenbundles corresponding to ϕ and 1 − ϕ of Φ to be isotropic. Let
M be a generalized Golden manifold and Φ the bundle map given in (7). The eigenvalues of a Golden
structure Φ are the Golden ratio ϕ = 1+

√
5

2 and 1 − ϕ. We now define

E(1,0) = {X + ϕΦX | X ∈ Γ(TM ⊕ TM∗)}

E(0,1) = {X + (1 − ϕ)ΦX | X ∈ Γ(TM ⊕ TM∗)}.

In the sequel we are going to find necessary conditions for these distributions to be isotropic. This also
shows that such distributions are not isotropic in general, contrary to complex case, see [21].
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Lemma 4.1. For e1 = α1 + γ + ϕΦ(α1 + γ), e2 = α2 + δ + ϕΦ(α2 + δ) ∈ F(E(1,0)) we have

< e1, e2 > =
1
2
{−γ(ϕ(3A + I)α2 + (A + 2I)α2)

+ δ(ϕ(3A + I)α1 + (A + 2I)α1)
+ ϕ2(Π(γ, δ) + ϑ(α2, α1)) + 2ϕ(ϑ(α2, α1))}. (20)

Proof. From (7) we have

e1 = α1 + ϕAα1 + ϕΠ
♯γ + γ + ϕϑ♭(α1) + ϕA∗γ, e2 = α2 + ϕAα2 + ϕΠ

♯δ + δ + ϕϑ♭(α2) + ϕA∗δ.

Since ϑ♭(α2)(Aα1) − ϑ♭(α1)(Aα2) = ϑ♭(α2)(α1) and A∗δ(Π♯γ) − A∗γ(Π♯δ) = Π(δ, γ) we get

< e1, e2 > =
1
2
{δ(α1) − γ(α2) + ϕ(2δ(Aα1) + 2δ(Π♯γ) + 2ϑ♭(α2)(α1) − 2γ(Aα2))

+ ϕ2(ϑ♭(α2)(α1) + ϑ♭(α2)(Π♯γ) + δ(A2α1) + γ(Π♯δ)

− ϑ♭(α1)(Π♯δ) − γ(A2α2))}. (21)

On the other hand, since Π is symmetric, using the first equation of (9) we get

ϑ♭(α1)(Π♯δ) = δ(A2α1 − Aα1 − α1). (22)

Then putting (22) in (21) and taking into account that ϕ is Golden ratio, we obtain (20).

The above lemma shows that E(1,0) is not always isotropic. Next result gives necessary conditions for E(1,0)

to be isotropic.

Corollary 4.2. Let (M,Φ, <, >) be a generalized Golden manifold. If

A = −
5 +
√

5

5 + 3
√

5
I or A = −

2 + ϕ
1 + 3ϕ

I

and
Π(γ, δ) = −

√

5ϑ(α2, α1) orΠ(γ, δ) = (1 − 2ϕ)ϑ(α2, α1),

then E(1,0) is isotropic.

Similar to Lemma (4.1), we have the following.

Lemma 4.3. For e1 = α1 + γ + (1 − ϕ)Φ(α1 + γ), e2 = α2 + δ + (1 − ϕ)Φ(α2 + δ) ∈ F(E(0,1)) we have

< e1, e2 > =
1
2
{γ(ϕ(3A + I)α2 + (−4A − 3I)α2)

− δ(ϕ(3A + I)α1 + (−4A − 3I)α1)}
+ (2 − ϕ)Π(γ, δ) + (3ϕ − 4)ϑ(α1, α2). (23)

Hence we get the following result.

Corollary 4.4. Let (M,Φ, <, >) be a generalized Golden manifold. If A = 5−
√

5
3
√

5−5
I or A = 3−ϕ

3ϕ−4 I and Π(γ, δ) =
2+ϕ
ϕ ϑ(α1, α2) or Π(γ, δ) = 5+

√
5

1+
√

5
ϑ(α1, α2) then E(0,1) is isotropic.
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Recall that a real, maximal isotropic sub-bundle L ⊂ TM ⊕ TM∗ is called an almost Dirac structure. If
L is involutive, then the almost Dirac structure is said to be integrable, or simply a Dirac structure. The
equivalence of generalized complex structures with the existence of transversal Dirac structures is well
known, see: [21]. Next result shows that it is not possible to define a generalized Golden structure in terms
of Dirac structure.

Corollary 4.5. Let (M,Φ, <, >) be a generalized Golden manifold. Then the eigenbundles corresponding to ϕ and
1 − ϕ are not maximal isotropic.

Proof. If E(1,0) and E(0,1) are eigenbundles corresponding to ϕ and 1 − ϕ, then E(1,0)
∩ E(0,1) = {0}. Suppose

that E(1,0) is maximal isotropic. Let e0 ∈ F(TM ⊕ TM∗) be a smooth section such that < e0, e1 >= 0, for any
e1 ∈ F(E(1,0)). Since E(1,0) is maximal isotropic by assumption, it follows that Φe0 = ϕe0. On the other hand,
for any e ∈ F(TM ⊕ TM∗), e2 ∈ F(E(0,1)) we have

e =
1

2ϕ − 1
{(ϕ − 1)e1 + ϕe2}, e1 = e + ϕΦe, e2 = e + (1 − ϕ)Φe.

Hence, using (6) we derive

0 =< Φe0 − ϕe0, e > = < e0,Φe > −ϕ < e0, e >

=
1

2ϕ − 1
{< e0, e1 − e2 > −ϕ(ϕ < e0, e2 >

+(ϕ − 1) < e0, e1 >)}

=
1

2ϕ − 1
{− < e0, e2 > −ϕ < e0, e2 > − < e0, e2 >}

= −
2 + ϕ

2ϕ − 1
< e0, e2 >

= −ϕ < e0, e2 >

which is a contradiction due to <,> is non-degenerate.

Next we will check the orthogonality of the sub-bundles E(1,0) and E(0,1).

Lemma 4.6. Let (M,Φ, <, >) be a generalized Golden manifold. The eigenbundles corresponding to ϕ and 1 − ϕ are
orthogonal to each other.

Proof. For X = α1 + ϕ(Aα1 +Π
♯γ) + γ + ϕ(ϑ♭(α1) +A∗γ) ∈ F(E(1,0)) and Y = α2 + (1 − ϕ)(Aα2 +Π

♯δ) + δ + (1 −
ϕ)(ϑ♭(α2) + A∗δ) ∈ F(E(0,1), by direct computations, we have

2 < X,Y >= δ(α1) + ϕδ(Aα1) + ϕΠ(γ, δ) + (1 − ϕ)ϑ(α2, α1)

−ϑ(α2,Aα1) − ϑ♭(α2)Π♯(γ) + (1 − ϕ)δ(Aα1) − δ(A2α1)
−Π(γ,A∗δ) − γ(α2) − (1 − ϕ)γ(Aα2) − (1 − ϕ)Π(δ, γ)

−ϕϑ(α1, α2) + ϑ(α1,Aα2) + ϑ♭(α1)Π♯(δ) − ϕγ(Aα2)

+γ(A2α2) + A∗γ(Π♯δ).

Since Π and ϑ are skew symmetric and ϑ(α2,Aα1) − ϑ(α1,Aα2) = ϑ(α2, α1), we get

2 < X,Y >= δ(α1) + δ(Aα1) +Π(γ, δ)

−ϑ♭(α2)Π♯(γ) − δ(A2α1) −Π(γ,A∗δ) − γ(α2) − γ(Aα2)

+ϑ♭(α1)Π♯(δ) + γ(A2α2) +Π(δ,A∗γ).
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Using the first equation of (9) we arrive at

2 < X,Y >= Π(γ, δ) −Π(γ,A∗δ) +Π(δ,A∗γ).

Then Π(γ,A∗δ) −Π(δ,A∗γ) = Π(δ, γ) implies that

2 < X,Y >= Π(γ, δ) +Π(γ, δ).

Using again skew symmetric Π, we obtain

< X,Y >= 0.

In this section, finally we investigate the integrability conditions for E(1,0).

Theorem 4.7. Let (M,Φ, <, >) be a generalized Golden manifold. Then E(1,0) is integrable if and only if the following
conditions are satisfied

(ϕ + 1)[Π♯γ,Π♯δ] = ϕA[Π♯γ,Π♯δ] +Π♯{γ, δ}Π + ϕΠ♯(LΠ♯γA
∗δ − LΠ♯δA

∗γ

−dΠ(γ,A∗δ)), (24)

ϕ({γ, δ}Π − ϑ♭([Π♯γ,Π♯δ]) = (ϕ + 1 + ϕA∗)(LΠ♯γA
∗δ

− LΠ♯δA
∗γ − dΠ(γ,A∗δ)) (25)

ϕ([α1,Aα2] + [Aα1, α2] + [Aα1,Aα2] + A[α1, α2]

−A[Aα1,Aα2] = −NA(α1, α2) +Π♯(iα1∧α2 (dϑ) + ϕ(LAα1ϑ♭(α2)
−LAα2ϑ♭(α1) − dϑ(α2,Aα1)), (26)

(ϕI − A∗)(Lα1ϑ♭(α2) − Lα2ϑ♭(α1) + dϑ(α1, α2) + (ϕ(I − A∗) + I)
(LAα1ϑ♭(α2) − LAα2ϑ♭(α1) − dϑ(α2,Aα1) = ϑ♭((ϕ − 1)[α1, α2]
[α1,Aα2] + [Aα1, α2] + ϕ[Aα1,Aα2]), (27)

ϕ{[α1,Π
♯γ] + [Aα1,Π

♯γ] − A[Aα1,Π
♯γ] −Π♯(Lα1γ + LAα1 A∗γ

−LΠ♯γϑ♭(α1) − d(γ(α1) +
1
2
γ(Aα1))}

= −[Aα1,Π
♯γ] + A[α1,Π

♯γ] +Π♯(−Lα1γ + Lα1 A∗γ

+LAα1γ − d(γ(Aα1) −
1
2
γ(α1))) (28)

and

Lα1γ + ϕLα1 A∗γ + ϕLAα1γ + (ϕ + 1)LAα1 A∗γ − (ϕ + 1)LΠ♯γϑ♭(α1)

−
1
2

d((2ϕ + 1)γ(α1) + (3ϕ + 1)γ(Aα1)) = ϑ♭([α1,Π
♯γ] + ϕ[Aα1,Π

♯γ])

+A∗((ϕ − 1)Lα1γ + Lα1 A∗γ + LAα1γ + ϕLAα1 A∗γ − ϕLϕ♯γϑ♭(α1)

−
1
2

d((2ϕ − 1)γ(α1) + (ϕ + 2)γ(AX))) (29)

for α1, α2 ∈ F(TM) and γ, δ ∈ F(TM∗).
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Proof. We will prove only the first two conditions. The rest can be obtain in a similar way. For eγ = γ+ϕΦγ,
we have eγ = ϕΠ♯γ+γ+ϕA∗γ. Now using (2) and taking into account that ϕ is the Golden ratio, we obtain

⟦eγ, eδ⟧ = (ϕ + 1)[Π♯,Π♯] + ϕ{γ, δ}Π + (ϕ + 1)(LΠ♯γA
∗δ − LΠ♯δA

∗γ

−dΠ(γ,A∗δ)). (30)

Now, for any eγ and eδ elements of E(1,0), the bracket ⟦eγ, eδ⟧ is belong to E(1,0) if and only if

Φ⟦eγ, eδ⟧ = ϕ⟦eγ, eδ⟧.

This condition is equivalent to the condition

⟦eγ, eδ⟧ = (ϕ − 1)Φ⟦eγ, eδ⟧. (31)

Using (30), (3) and (4) in (31), and then taking the vector field parts and 1− form parts we obtain (24) and
(25).

5. RELATIONS WITH LIE GROUPOIDS

In this section we relate generalized Golden structures with Lie groupoids in terms of classical tensor
fields ϑ, Π and A. We first recall some basic information for symplectic manifolds and Lie groupoids, for
details on Lie groupoids and its integrability see:[11].

The relation between the condition (G1) and 2− form ω follows from [10]. SinceΠ♯ and [, ]Π define a Lie
algebroid structure on TM∗, we have the following result.

Theorem 5.1. The integrability condition (G1) defines a symplectic groupoid (Ξ, ω) on the generalized Golden
manifold M.

Proof. If M is a generalized Golden manifold, we have (G1). Then assertion follows from Theorem 3.2 of
[10].

We note that complex version of (G2) is equivalent to closed ωA when ω is a symplectic form, [10]. But
this is not valid for Golden generalized manifold.

Lemma 5.2. Given a non-degenerate bivector Π and a symplectic form ω as inverse of Π on a manifold M, then Π
satisfies (G2) and if and only if

dωA(α1, α2, α3) =
1
2
α3ω(α1, α2) − α1ω(α2, α3) − 2α1ω(Aα2, α3)

+2α3ω(α1,Aα2) − ω([α1, α2], α3) + 2ω(A[α1, α2], α3)

Proof. For vector fields α1, α2 and α3, taking γ = iα1ω and δ = iα2ω in (12), we have

A∗(iα1∧α2 (dω) + i[α1,α2]ω))(α3) = α1ω(α2,Aα3) − ω(α2,A[α1, α3])

−α2ω(α1,Aα3) + ω(α1,A[α2, α3]) −
1
2
α3ω(α2, α1).

Then closed ω and the formula of exterior derivative gives Lemma.

The following result presents the existence of the Hitchin pair in the generalized Golden manifold. see [10],
for the definition of the Hitchin pair.

Theorem 5.3. Let M be a generalized Golden manifold such that Π(γ, δ) = 2Π(γ,A∗δ). Let Π be an integrable
Poisson structure on M, and (ϑ,ω) the symplectic groupoid over M. Then there is multiplicative (1,1)-tensors J on ϑ
with the property that (J, ω) is a Hitchin pair.
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Proof. For 2− form ω, taking γ = iα1ω and δ = iα2ω in Π(γ, δ) = 2Π(γ,A∗δ), we find

ω(Aα1, α2) = ω(α1,Aα2),

that is ω and A commute. Also considering the assumption Π(γ, δ) = 2Π(γ,A∗δ) and (17), we obtain

Π(δ,A∗γ) = −Π(γ,A∗δ).

Using this in (G2), it turns out the following form

A∗([γ, δ]Π) = LΠ♯γA
∗δ − LΠ♯δA

∗γ − dΠ(A∗γ, δ).

Then by following proof of Lemma 2.8 of [10], we conclude that ωA is closed. As a result we show that
there is a 1 − 1 correspondence between Hitchin pairs (ω,A) and the second equation of(10) and (G2) with
the condition Π(γ, δ) = 2Π(γ,A∗δ). Moreover, by taking u = A∗, ρ = Π♯ and L = TM∗, we have

< A∗γ,Π♯δ >= Π(δ,A∗γ) = −Π(γ,A∗δ) = − < A∗δ,Π♯γ >

which is the first condition for IM− form. Furthermore, the assumptionΠ(γ, δ) = 2Π(γ,A∗δ) and (G2) imply
the second condition of IM− form. Thus we obtain that (G2) withΠ(γ, δ) = 2Π(γ,A∗δ). Then it follows from
Theorem 5.1 that there is a 1 − 1 correspondence with closed multiplicative forms on ϑ. In a similar way,
one can see that ωJ is multiplicative.

Lemma 5.4. If Π is a non-degenerate bivector on a generalized Golden manifold M such that Π(γ, δ) = 2Π(γ,A∗δ),
ω is the inverse 2-form (defined by ω♭ = (Π♯)−1) and Π satisfies the first equation of (9) then ϑ = ωA + ω − A∗ω,
where A is a bundle morphism on M.

Proof. For α1 ∈ χ(M), applying ω♭ to (9), we have

ω♭(A2α1) + ϑ♭(α1) = ω♭(Aα1) + ω♭(α1).

Now for α2 ∈ χ(M), the assumption Π(γ, δ) = 2Π(γ,A∗δ) ensures that ω and A commute, hence we obtain

ω(Aα1,Aα2) + ϑ(α1, α2) = ω(Aα1, α2) + ω(α1, α2).

Thus we get

A∗ω(α1, α2) + ϑ(α1, α2) = ω(Aα1, α2) + ω(α1, α2) (5.1)

which gives the assertion.

Theorem 5.5. Let M be a generalized Golden manifold and (ϑ,ω, J) the induced symplectic groupoid over M with
the induced multiplicative (1,1)-tensor such that Π(γ, δ) = 2Π(γ,A∗δ). Assume that (Π, J) satisfy (G1), (G2) with
integrable Π. Then for a 2-form on M, the following assertions are equivalent.

(i) (G5) is satisfied and A2 +Π♯ϑ♭ = A + I,
(ii) ωJ + ω − J∗ω = t∗ϑ − s∗ϑ,

Proof. By assumption Π(γ, δ) = 2Π(γ,A∗δ), thus it follows that ω and J commute and ωJ = 0. Since ω and
ωJ are closed, we get iα1∧α2 (d(J∗ω)) = −iNJ(α1,α2)ω. Putting ϑ̃ = ωJ + ω − J∗ω, closed ω and ωJ give

iα1∧α2 (dϑ̃) = iNJ(α1,α2)ω. (5.2)

Since dϕ = 0⇔ dϕ(α1, α2, γ) = 0, we have

dϕ(α1, α2, γ) = 0⇔ dϑ̃(α1, α2, γ) − d(t∗ϑ)(α1, α2, γ) + d(s∗ϑ)(α1, α2, γ) = 0.
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On the other hand, we obtain

d(t∗ϑ)(α1, α2, γ) = dϑ(dt(α1), dt(α2), dt(γ)). (5.3)

If we take dt = ρ in (5.3) for A, we get

d(t∗ϑ)(α1, α2, γ) = dϑ(dt(α1), dt(α2), ρ(γ)). (5.4)

Moreover from [8] we know that

Idϑ = m ◦ (t, Idϑ). (5.5)

Using (5.5) in (5.4), we get

d(t∗ϑ)(α1, α2, γ) = dϑ(α1, α2, ρ(γ)).

On the other hand, by direct computation

d(s∗ϑ)(α1, α2, γ) = dϑ(ds(α1), ds(α2), ds(γ)).

Since γ ∈ kerds, then ds(γ) = 0. Hence we have d(s∗ϑ) = 0. Thus we get

dϑ̃(α1, α2, γ) = dϑ(α1, α2, ρ(γ)). (5.6)

Using (5.2) in (5.6), we derive

ω(NJ(α1, α2), γ) = dϑ(α1, α2, ρ(γ)). (5.7)

On the other hand, it is clear that ϕ = 0⇔ ϑ̃ − t∗ϑ + s∗ϑ = 0. Thus we obtain

ϑ̃(α1, γ) = ϑ(α1, ρ(γ)).

Since ϑ̃ = ωJ + ω − J∗ω, we get

ω(Jα1, γ) + ω(α1, γ) − ω(Jα1, Jγ) = ϑ(α1, ρ(γ)). (5.8)

Since Poisson bivectorΠ is integrable, it defines a Lie algebroid whose anchor map is ρ = Π♯. Let us useΠ♯

instead of ρ in (5.7) and (5.8). Then we get

ω(NJ(α1, α2), γ) = dϑ(α1, α2,Π
♯(γ)), (5.9)

ω(Jα1, γ) + ω(α1, γ) − ω(Jα1, Jγ) = ϑ(α1,Π
♯(γ)).

Since ω(γ, α1) = γ(α1), ωJ(γ, α1) = γ(Jα1), from (5.9) we have

−γ(NJ(α1, α2)) = dϑ(α1, α2,Π
♯(γ))

= Π(γ, iα1∧α2 dϑ)

= −γ(Π♯(iα1∧α2 dϑ)).

Hence we get

NJ(α1, α2) = Π♯(iα1∧α2 dϑ). (5.10)

On the other hand, from (5.8) we obtain

−γ(Aα1) − γ(α1) + γ(A2α1) = Π(γ, iα1ϑ) = −γ(Π♯ϑ♯α1).

Thus we get

A2 +Π♯ϑ♯ = A + I. (5.11)

Then (i)⇔(ii) follows from (5.10) and (5.11).
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