Convexity and Inequalities of Some Generalized Numerical Radius Functions

Hassane Abbas ${ }^{\text {a }}$, Sadeem Harb ${ }^{\text {b }}$, Hassan Issa ${ }^{\text {a }}$
${ }^{a}$ Lebanese University, Faculty of Science, Beirut, Lebanon
${ }^{b}$ KALMA Laboratory, Faculty of Science, Beirut, Lebanon

Abstract

In this paper, we prove that each of the following functions is convex on \mathbb{R} : $$
f(t)=w_{N}\left(A^{t} X A^{1-t} \pm A^{1-t} X A^{t}\right), g(t)=w_{N}\left(A^{t} X A^{1-t}\right), \text { and } h(t)=w_{N}\left(A^{t} X A^{t}\right)
$$ where $A>0, X \in \mathbb{M}_{n}$ and $N($.$) is a unitarily invariant norm on \mathbb{M}_{n}$. Consequently, we answer positively the question concerning the convexity of the function $t \rightarrow w\left(A^{t} X A^{t}\right)$ proposed by in (2018). We provide some generalizations and extensions of $w_{N}($.$) by using Kwong functions. More precisely, we prove the following$ $$
w_{N}(f(A) X g(A)+g(A) X f(A)) \leq w_{N}(A X+X A) \leq 2 w_{N}(X) N(A)
$$ which is a kind of generalization of Heinz inequality for the generalized numerical radius norm. Finally, some inequalities for the Schatten p-generalized numerical radius for partitioned 2×2 block matrices are established, which generalize the Hilbert-Schmidt numerical radius inequalities given by Aldalabih and Kittaneh in (2019).

1. Introduction and preliminaries

Based on some operator theory studies on Hilbert spaces, several generalizations for the concept of numerical radius have recently been introduced [1, 19, 21]. Abu-Omar and Kittaneh [1] introduced the so-called generalized numerical radius: If \mathbb{M}_{n} denotes the space of all complex square matrices of size n, the generalized numerical radius for A, denoted by $w_{N}(A)$, is obtained via the supremum of the norm over the real parts of all rotations of A i.e.

$$
w_{N}(A)=\sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A\right)\right) .
$$

Where $X=\operatorname{Re}(X)+i \operatorname{Im}(X)$ is the Cartesian decomposition of $X \in \mathbb{M}_{n}, \operatorname{Re}(X)=\frac{X+X^{*}}{2}$ and $\operatorname{Im}(X)=\frac{X-X^{*}}{2 i}$, and X^{*} denotes the adjoint of X. Simple computation shows that when N is the usual operator norm inherited from the inner product on H then $w_{N}(\cdot)$ coincides with the usual numerical radius norm $w(\cdot)$ which is defined as

$$
w(A)=\sup _{\|x\|=1}|\langle A x, x\rangle|
$$

[^0]It is well-known (see [?]) that $w(A)=\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|$. We refer the reader to [1, 16, 19] for intermediate properties and inequalities of the norm $w_{N}($.$) .$
In the present work, we restrict our attention to operator matrices $A \in \mathbb{M}_{n}$, where \mathbb{M}_{n} denotes the space of all complex square matrices. We write $A>0$ (respectively $A \geq 0$) for positive definite (respectively for semi definite positive) matrix $A \in \mathbb{M}_{n}$. A norm $N($.$) on A \in \mathbb{M}_{n}$ is called unitarily invariant if $N(U A V)=N(A)$ for any $A \in \mathbb{M}_{n}$ and all unitary $U, V \in \mathbb{M}_{n}$.

In this paper, we provide several inequalities for the matrix norm $w_{N}($.$) . Some results are obtained via$ convexity whenever N is unitarily invariant norm. On the one hand, we follow up the work of Sababheh in [16] for the case of the numerical radius, to establish a new Young-type inequality for $w_{N}($.$) . Addressing$ to an open question proposed by the author in [16] about the convexity of the function $t \mapsto w\left(A^{t} X A^{t}\right)$, on \mathbb{R} for $A>0$, we provide a positive answer for the convexity of the aforementioned questioned and we prove that it is not only true for $w($.$) but remains true for w_{N}($.$) . On the other hand, motivated by the work$ of Bakherad [5] and Zamani [19, 21] we give some generalizations and extensions of Heinz inequality for the generalized numerical radius norm involving the so-called Kwong functions. Finally, by following the result given by Aldalabih and Kittaneh in [2] for the case of Hilbert-Schmidt numerical radius norm, we provide several Schatten p-generalized numerical radius inequalities. In this paper standards techniques are used to provide the results.

2. Convexity of some generalized numerical radius functions

Throughout this section, $N($.$) denotes a unitarily invariant norm on \mathbb{M}_{n}$. We start by proving the following basic essential lemma to demonstrate Theorem 2.1 which is the main result of this section. To provide the proof of this lemma we borrowed from [?] the following two lemmas.

Lemma 2.1. (Hölder inequality) Let A, B be two positive definite matrices in $\mathbb{M}_{n}, X \in \mathbb{M}_{n}, t \in[0,1]$, and $N($.$) be a$ unitarily invariant norm on \mathbb{M}_{n}. Then

$$
N\left(A^{t} X B^{t}\right) \leq N^{t}(A X B) N^{1-t}(X)
$$

Lemma 2.2. (Heinz mean inequality) Let A, B be two positive definite matrices in $\mathbb{M}_{n}, X \in \mathbb{M}_{n}, t \in[0,1]$, and $N($. be a unitarily invariant norm on \mathbb{M}_{n}. Then

$$
2 N\left(A^{\frac{1}{2}} X B^{\frac{1}{2}}\right) \leq N\left(A^{t} X B^{1-t}+A^{1-t} X B^{t}\right) \leq N(A X+X B)
$$

Lemma 2.3. Given $A>0, X \in \mathbb{M}_{n}$, and $t \in[0,1]$, then the following inequalities hold,

$$
\begin{align*}
& w_{N}\left(A^{t} X A^{t}\right) \leq w_{N}^{t}(A X A) w_{N}^{1-t}(X) \tag{1}\\
& 2 w_{N}\left(A^{\frac{1}{2}} X A^{\frac{1}{2}}\right) \leq w_{N}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right) \leq w_{N}(A X+X A) \tag{2}
\end{align*}
$$

Proof. For $t \in[0,1], A^{t}$ is a Hermitian matrix so for any $\theta \in \mathbb{R}$, we get

$$
\operatorname{Re}\left(e^{i \theta} A^{t} X A^{t}\right)=\frac{1}{2}\left(A^{t} e^{i \theta} X A^{t}+A^{t} e^{-i \theta} X^{*} A^{t}\right)=A^{t} \frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2} A^{t}=A^{t} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}
$$

Now by using Hölder inequality-Lemma, we obtain

$$
N\left(\operatorname{Re}\left(e^{i \theta} A^{t} X A^{t}\right)\right)=N\left(A^{t} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right) \leq N^{t}\left(A \operatorname{Re}\left(e^{i \theta} X\right) A\right) N^{1-t}\left(\operatorname{Re}\left(e^{i \theta} X\right)\right)
$$

Taking the supremum over all $\theta \in \mathbb{R}$, we obtain (1).

To prove the second inequality we begin by noting that, for any $\theta \in \mathbb{R}$,

$$
\begin{aligned}
& \operatorname{Re}\left(e^{i \theta}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right)\right) \\
& =\frac{1}{2}\left(e^{i \theta} A^{t} X A^{1-t}+e^{i \theta} A^{1-t} X A^{t}+e^{-i \theta} A^{1-t} X^{*} A^{t}+e^{-i \theta} A^{t} X^{*} A^{1-t}\right) \\
& =A^{t}\left(\frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2}\right) A^{1-t}+A^{1-t}\left(\frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2}\right) A^{t} \\
& =A^{t} \operatorname{Re}\left(e^{i \theta} X\right) A^{1-t}+A^{1-t} \operatorname{Re}\left(e^{i \theta} X\right) A^{t} .
\end{aligned}
$$

Then by using the well known Heinz mean inequality-Lemma and for $A=B$, we obtain

$$
\begin{equation*}
2 N\left(A^{\frac{1}{2}} X A^{\frac{1}{2}}\right) \leq N\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right) \leq N(A X+X A) \tag{*}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
2 N\left(\operatorname{Re}\left(e^{i \theta} A^{\frac{1}{2}} X A^{\frac{1}{2}}\right)\right) & =2 N\left(A^{\frac{1}{2}} \operatorname{Re}\left(e^{i \theta} X\right) A^{\frac{1}{2}}\right) \\
& \leq N\left(A^{t} \operatorname{Re}\left(e^{i \theta} X\right) A^{1-t}+A^{1-t} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right) \quad(\text { by the left inequality of }(*)) \\
& =N\left(A^{t} \frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2} A^{1-t}+A^{1-t} \frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2} A^{t}\right) \\
& =\frac{1}{2} N\left(e^{i \theta} A^{t} X A^{1-t}+e^{-i \theta} A^{t} X^{*} A^{1-t}+e^{i \theta} A^{1-t} X A^{t}+e^{-i \theta} A^{1-t} X^{*} A^{t}\right) \\
& =N\left(\operatorname{Re}\left(e^{i \theta}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right)\right)\right) \\
& \leq N\left(A \operatorname{Re}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A\right)(\text { by the right inequality of }(*)) \\
& =\frac{1}{2} N\left(e^{i \theta} A X+e^{-i \theta} A X^{*}+e^{i \theta} X A+e^{-i \theta} X^{*} A\right) \\
& =N\left(\operatorname{Re}\left(e^{i \theta}(A X+X A)\right)\right) .
\end{aligned}
$$

Taking the supremum over all $\theta \in \mathbb{R}$, we obtain (2).

In the following main Theorem, we generalize the result given by Sababheh [16] about the convexity of the functions $w\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right)$ and $w\left(A^{t} X A^{1-t}\right)$, and we answer positively the question concerning the convexity of the function $w\left(A^{t} X A^{t}\right)$.

Theorem 2.4. Let $A>0$ and $X \in \mathbb{M}_{n}$, then each of the following functions is convex on \mathbb{R} :

$$
f(t)=w_{N}\left(A^{t} X A^{1-t} \pm A^{1-t} X A^{t}\right), g(t)=w_{N}\left(A^{t} X A^{1-t}\right), \text { and } h(t)=w_{N}\left(A^{t} X A^{t}\right)
$$

Proof. Replace A by A^{2} and take $t=1$ in (2), we get

$$
\begin{equation*}
w_{N}(A X A) \leq \frac{1}{2} w_{N}\left(A^{2} X+X A^{2}\right) \tag{**}
\end{equation*}
$$

To obtain the convexity of $f($.$) , let t, s \in \mathbb{R}$, we have

$$
\begin{aligned}
f\left(\frac{t+s}{2}\right) & =w_{N}\left(A^{\frac{t+s}{2}} X A^{1-\frac{t+s}{2}} \pm A^{1-\frac{t+s}{2}} X A^{\frac{t+s}{2}}\right) \\
& =w_{N}\left(A^{\frac{t-s}{2}}\left(A^{s} X A^{1-t} \pm A^{1-t} X A^{s}\right) A^{\frac{t-s}{2}}\right) \\
& \leq \frac{1}{2} w_{N}\left(A^{t-s}\left(A^{s} X A^{1-t} \pm A^{1-t} X A^{s}\right)+\left(A^{s} X A^{1-t} \pm A^{1-t} X A^{s}\right) A^{t-s}\right) \quad(\text { by }(* *)) \\
& =\frac{1}{2} w_{N}\left(A^{t} X A^{1-t} \pm A^{1-s} X A^{s}+A^{s} X A^{1-s} \pm A^{1-t} X A^{t}\right) \\
& \leq \frac{1}{2} w_{N}\left(A^{t} X A^{1-t} \pm A^{1-t} X A^{t}\right)+\frac{1}{2} w_{N}\left(A^{s} X A^{1-s} \pm A^{1-s} X A^{s}\right) \quad \text { (by the triangle inequality) } \\
& =\frac{1}{2} f(t)+\frac{1}{2} f(s) .
\end{aligned}
$$

The proof of the convexity of $g(t)=w_{N}\left(A^{t} X A^{1-t}\right)$ on \mathbb{R} follows in the same manner as the function $f($.). To prove the convexity of $h(t)=w_{N}\left(A^{t} X A^{t}\right)$, we first replace A by A^{2}, B by B^{2} and $t=1$ in the well known Heinz mean inequality-Lemma, we obtain

$$
\begin{equation*}
2 N(A X B) \leq N\left(A^{2} X+X B^{2}\right) \tag{3}
\end{equation*}
$$

Now for $t, s \in \mathbb{R}$, the matrix $A^{\frac{t+s}{2}}$ is Hermitian and so that for any $\theta \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{Re}\left(e^{i \theta} A^{\frac{t+s}{2}} X A^{\frac{t+s}{2}}\right) & =\frac{1}{2}\left(A^{\frac{t+s}{2}} e^{i \theta} X A^{\frac{t+s}{2}}+A^{\frac{t+s}{2}} e^{-i \theta} X^{*} A^{\frac{t+s}{2}}\right) \\
& =\frac{1}{2}\left(A^{\frac{t+s}{2}}\left(e^{i \theta} X+e^{-i \theta} X^{*}\right) A^{\frac{t+s}{2}}\right) \\
& =A^{\frac{t+s}{2}} \operatorname{Re}\left(e^{i \theta} X\right) A^{\frac{t+s}{2}} \\
& =A^{\frac{t-s}{2}}\left(A^{s} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right) A^{\frac{-t+s}{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
h\left(\frac{t+s}{2}\right) & =w_{N}\left(A^{\frac{t+s}{2}} X A^{\frac{t+s}{2}}\right) \\
& =\sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A^{\frac{t+s}{2}} X A^{\frac{t+s}{2}}\right)\right) \\
& =\sup _{\theta \in \mathbb{R}} N\left(A^{\frac{t-s}{2}}\left(A^{s} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right) A^{\frac{-t+s}{2}}\right) \\
& \leq \frac{1}{2} \sup _{\theta \in \mathbb{R}} N\left(A^{t-s}\left(A^{s} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right)+\left(A^{s} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}\right) A^{-t+s}\right) \quad(\text { by }(3)) \\
& =\frac{1}{2} \sup _{\theta \in \mathbb{R}} N\left(A^{t} \operatorname{Re}\left(e^{i \theta} X\right) A^{t}+A^{s} \operatorname{Re}\left(e^{i \theta} X\right) A^{s}\right) \\
& =\frac{1}{4} \sup _{\theta \in \mathbb{R}} N\left(A^{t} e^{i \theta} X A^{t}+A^{t} e^{-i \theta} X^{*} A^{t}+A^{s} e^{i \theta} X A^{s}+A^{s} e^{-i \theta} X^{*} A^{s}\right) \\
& =\frac{1}{2} \sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A^{t} X A^{t}\right)+\operatorname{Re}\left(e^{i \theta} A^{s} X A^{s}\right)\right) \\
& \leq \frac{1}{2} \sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A^{t} X A^{t}\right)\right)+\frac{1}{2} \sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A^{s} X A^{s}\right)\right) \quad \text { (by the triangle inequality) } \\
& =\frac{1}{2} w_{N}\left(A^{t} X A^{t}\right)+\frac{1}{2} w_{N}\left(A^{s} X A^{s}\right)=\frac{1}{2} h(t)+\frac{1}{2} h(s) .
\end{aligned}
$$

Hence, $h($.$) is a convex function on \mathbb{R}$ as required.

Note that when $N($.$) is the usual operator norm \|$.$\| and by using the function h($.$) of this theorem, the question$ of Sababheh [16] concerning the convexity of the function $t \mapsto w\left(A^{t} X A^{t}\right)$ on \mathbb{R} is answered positively .
Under the same conditions given in Theorem 2.2, we can prove the convexity of the following functions: $w_{N}\left(A^{-t} X A^{1+t}\right), w_{N}\left(A^{t} X A^{1-t}\right)+w_{N}\left(A^{-t} X A^{1+t}\right)$ and $w_{N}\left(A^{t} X A^{1-t}+A^{-t} X A^{1+t}\right)$.
Motivated by the work of Sababheh [16] for the numerical radius, and by the convexity of the function $w_{N}\left(A^{t} X A^{1-t}+A^{t} X A^{1-t}\right)$ and $w_{N}\left(A^{t} X A^{1-t}-A^{1-t} X A^{t}\right)$ as given in Theorem 2.2, and by the Theorem 2.5 in [19] we obtain the following reversed inequalities for the generalized numerical radius norm.

Corollary 2.5. Let $A>0$ and $X \in \mathbb{M}_{n}$. Then,

$$
\left\{\begin{array}{l}
w_{N}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right) \leq w_{N}(A X+X A) \leq 2 w_{N}(X) N(A), \quad t \in[0,1] \\
w_{N}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right) \geq w_{N}(A X+X A) t \notin[0,1]
\end{array}\right.
$$

Also we have the following Young-type inequality based on the convexity of the function $t \mapsto w_{N}\left(A^{t} X A^{1-t}\right)$.
Corollary 2.6. Let $A>0$ and $X \in \mathbb{M}_{n}$. Then

$$
\left\{\begin{array}{l}
w_{N}\left(A^{t} X A^{1-t}\right) \leq t \cdot w_{N}(A X)+(1-t) \cdot w_{N}(X A), \quad t \in[0,1] \\
w_{N}\left(A^{t} X A^{1-t}\right) \geq t \cdot w_{N}(A X)+(1-t) \cdot w_{N}(X A) \quad t \notin[0,1]
\end{array}\right.
$$

Motivated by the work given by Bakherad in [5] and Zamani [19], we provide some generalizations and extensions by using Kwong functions of $w_{N}($.$) . More precisely, in the following theorem, we prove the$ coming result,

$$
w_{N}(f(A) X g(A)+g(A) X f(A)) \leq w_{N}(A X+X A) \leq 2 w_{N}(X) N(A)
$$

which is a kind of generalization of Heinz inequality for the generalized numerical radius norm. Let us first recall the definition of Kwong function: A real continuous function f defined on an interval (a, b) with $a \geq 0$ is called a Kwong function if the matrix

$$
K_{f}=\left(\frac{f\left(\lambda_{i}\right)+f\left(\lambda_{j}\right)}{\lambda_{i}+\lambda_{j}}\right)_{1 \leq i, j \leq n}
$$

is positive semi definite for any distinct real values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in (a, b).
Before showing the following theorem, we need the coming result provided by Najafi in [15]: For two continuous functions f, g where $\frac{f(x)}{g(x)}$ is a Kwong function and $f(x) \cdot g(x) \leq x$ the following inequality holds

$$
\begin{equation*}
N(f(A) X g(A)+g(A) X f(A)) \leq N(A X+X A) \tag{4}
\end{equation*}
$$

where $X \in \mathbb{M}_{n}$ and $A \in \mathbb{M}_{n}$ be a positive definite matrix.
Theorem 2.7. Let $A \in \mathbb{M}_{n}$ be a positive definite matrix, $X \in \mathbb{M}_{n}$, and f, g be two positive continuous functions on $(0, \infty)$ such that $f(x) \cdot g(x) \leq x$, for all $x \in(0, \infty)$, and $\frac{f(x)}{g(x)}$ is a Kwong function, then

$$
w_{N}(f(A) X g(A)+g(A) X f(A)) \leq w_{N}(A X+X A) \leq 2 w_{N}(X) N(A)
$$

Proof. We have $w_{N}(f(A) X g(A)+g(A) X f(A))=\sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta}(f(A) X g(A)+g(A) X f(A))\right)\right)$
$=\sup _{\theta \in \mathbb{R}} N\left(\frac{e^{i \theta} f(A) X g(A)+e^{i \theta} g(A) X f(A)+e^{-i \theta} g(A) X^{*} f(A)+e^{-i \theta} f(A) X^{*} g(A)}{2}\right)$
$=\sup _{\theta \in \mathbb{R}} N\left(f(A) \operatorname{Re}\left(e^{i \theta} X\right) g(A)+g(A) \operatorname{Re}\left(e^{i \theta} X\right) f(A)\right)$
$\leq \sup _{\theta \in \mathbb{R}} N\left(\operatorname{ARe}\left(e^{i \theta} X\right)+\operatorname{Re}\left(e^{i \theta} X\right) A\right) \quad(u \operatorname{sing}(4))$

$$
\begin{aligned}
& =\sup _{\theta \in \mathbb{R}} N\left(A\left(\frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2}\right)+\left(\frac{e^{i \theta} X+e^{-i \theta} X^{*}}{2}\right) A\right) \\
& =\sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta} A X\right)+\operatorname{Re}\left(e^{i \theta} X A\right)\right) \\
& =\sup _{\theta \in \mathbb{R}} N\left(\operatorname{Re}\left(e^{i \theta}(A X+X A)\right)\right) \\
& =w_{N}(A X+X A) \leq 2 w_{N}(X) N(A) \text { by Theorem } 2.5 \text { in [19]. }
\end{aligned}
$$

Notice that by choosing $f(x)=x^{t}, g(x)=x^{1-t}$ where $0 \leq t \leq 1, x>0$, we have $\frac{f(x)}{g(x)}$ is a Kwong function and $f(x) \cdot g(x)=x$, for all $x \in(0, \infty)$. Therefore, the following Heinz inequality for the generalized numerical radius norm,

$$
w_{N}\left(A^{t} X A^{1-t}+A^{1-t} X A^{t}\right) \leq w_{N}(A X+X A)
$$

is obtained.
By using the following two Lemmas (see [24] for proofs), we can find more inequalities for the generalized numerical radius.
Lemma 2.8. Let $A, B, X \in \mathbb{M}_{n}$ such that A, B are positive definite, and f, g are two positive continuous functions on $(0, \infty)$ such that $h(x)=\frac{f(x)}{g(x)}$ is a Kwong function. Then,

$$
\begin{equation*}
N\left(A^{\frac{1}{2}}(f(A) X g(B)+g(A) X f(B)) B^{\frac{1}{2}}\right) \leq \frac{k}{2} N\left(A^{2} X+2 A X B+X B^{2}\right) \tag{5}
\end{equation*}
$$

holds for $k=\max _{\lambda \in \sigma(A) \cup \sigma(B)}\left\{\frac{f(\lambda) g(\lambda)}{\lambda}\right\}$ where $\sigma(A)$ represents the spectrum of A.
Lemma 2.9. Let $A, B, X \in \mathbb{M}_{n}$ such that A, B are positive definite. And for any two positive continuous functions on $(0, \infty)$ with $h(x)=\frac{f(x)}{g(x)}$ is kwong, then

$$
\begin{equation*}
N(f(A) X g(B)+g(A) X f(B)) \leq \frac{k^{\prime}}{2} N\left(A^{2} X+2 A X B+X B^{2}\right) \tag{6}
\end{equation*}
$$

holds for $k^{\prime}=\max _{\lambda \in \sigma(A) \cup \sigma(B)}\left\{\frac{f(\lambda) g(\lambda)}{\lambda^{2}}\right\}$.
Theorem 2.10. Let $A \in \mathbb{M}_{n}$ be a positive definite matrix, and f, g be two positive continuous functions on $(0, \infty)$ such that $h(x)=\frac{f(x)}{g(x)}$ is a Kwong function. Then,

$$
w_{N}\left(A^{\frac{1}{2}} H_{f, g}(A) A^{\frac{1}{2}}\right) \leq \frac{k}{2} w_{N}\left(A^{2} X+2 A X A+X A^{2}\right)
$$

where $H_{f, g}(A)=f(A) X g(A)+g(A) X f(A)$ and $k=\max _{\lambda \in \sigma(A)}\left\{\frac{f(\lambda) g(\lambda)}{\lambda}\right\}$.
Proof. By using the inequality (3) and applying the same technique as the proof in Theorem 2.5 the required result is obtained.

Theorem 2.11. Let $A \in \mathbb{M}_{n}$ be a positive definite matrix, and f, g be two positive real continuous functions on $(0, \infty)$ such that $h(x)=\frac{f(x)}{g(x)}$ is a Kwong function. Then

$$
w_{N}(f(A) X g(A)+g(A) X f(A)) \leq \frac{k^{\prime}}{2} w_{N}\left(A^{2} X+2 A X B+X B^{2}\right)
$$

holds for $k^{\prime}=\max _{\lambda \in \sigma(A)}\left\{\frac{f(\lambda) g(\lambda)}{\lambda^{2}}\right\}$.
Proof. By using the inequality (4) and applying a similar proof as in of Theorem 2.5, the required result is obtained.

3. Inequalities for $w_{p}($.

In this section, $s_{1}(A) \geq s_{2}(A) \geq \cdots \geq s_{n}(A)$ denote the singular values of a matrix $A \in \mathbb{M}_{n}$ i.e. the eigenvalues of $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. For $1 \leq p<\infty$, the Schatten p-norm of A is denoted and defined by

$$
\|A\|_{p}=\left(\sum_{j=1}^{n} s_{j}^{p}(A)\right)^{\frac{1}{p}} .
$$

Abu-Omar and Kittaneh in [1] give some properties for the Hilbert-Schmidt numerical radius norm $w_{2}($. as a concrete example of $w_{N}($.$) when N()=.\|.\|_{2}$. The aim of this section is to provide some inequalities for the Schatten p-generalized numerical radius $w_{p}()=.w_{N}($.$) with N()=.\|.\| \|_{p}$. In the following theorem we provide an upper bound for the Schatten p-generalized numerical radius $w_{p}($.$) .$
Theorem 3.1. For $2 \leq p<\infty$, and $A, B, X, Y \in \mathbb{M}_{n}$, we have the following inequality

$$
\begin{aligned}
w_{p}(A X B \pm B Y A) & \leq 2^{\frac{5}{2}-\frac{2}{p}} \max \left(\|X B\|_{p},\|B Y\|_{p}\right)\left(w_{p}^{p}(A)-n\left(2^{1-p}-2^{2-\frac{3 p}{2}}\right)\left|s_{n}(A)\right|^{p}\right. \\
& \left.-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}}
\end{aligned}
$$

Before we provide the proof of this theorem, we need the following two lemmas. The first one is borrowed from ([4] Theorem 4.1).

Lemma 3.2. For $2 \leq p<\infty$ and $A, B \in \mathbb{M}_{n}$, we have

$$
\begin{equation*}
\|A+B\|_{p}^{p}+\|A-B\|_{p}^{p} \geq 2^{2-\frac{p}{2}}\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)+n 2^{2-\frac{p}{2}} c_{p}\left(s_{n}(A), s_{n}(B)\right) \tag{7}
\end{equation*}
$$

where $c_{p}(s, t)=\left(2^{\frac{p}{2}}-2\right) \min \left(|s|^{p},|t|^{p}\right)$ and $s, t \in \mathbb{C}$.
Lemma 3.3. For $2 \leq p<\infty$ and $A \in \mathbb{M}_{n}$, we have

$$
\begin{align*}
& \|A\|_{p}^{p}+\left\|A^{*}\right\|_{p}^{p} \leq 2^{\frac{3 p}{2}-1} w_{p}^{p}(A)-n\left(2^{\frac{p}{2}}-2\right)\left|s_{n}(A)\right|^{p} \\
& -2^{\frac{3 p}{2}-2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right| \tag{8}
\end{align*}
$$

Proof. By using the fact that $w_{p}(A)=\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|_{p}=\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Im}\left(e^{i \theta} A\right)\right\|_{p}$,

then

$w_{p}(A) \geq \max \left(\|\operatorname{Re}(A)\|_{p},\|\operatorname{Im}(A)\|_{p}\right)$. So

$$
\begin{aligned}
2^{p} w_{p}^{p}(A) \geq \max \left(\left\|A+A^{*}\right\|_{p}^{p},\left\|A-A^{*}\right\|_{p}^{p}\right) & =\frac{1}{2}\left(\left\|A+A^{*}\right\|_{p}^{p}+\left\|A-A^{*}\right\|_{p}^{p}\right) \\
& +\frac{1}{2}\left|\left\|A+A^{*}\right\|_{p}^{p}-\left\|A-A^{*}\right\|_{p}^{p}\right| \\
& \geq 2^{1-\frac{p}{2}}\left(\|A\|_{p}^{p}+\left\|A^{*}\right\|_{p}^{p}\right)+n 2^{1-\frac{p}{2}} c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right) \\
& +\frac{1}{2}\left|\left\|A+A^{*}\right\|_{p}^{p}-\left\|A-A^{*}\right\|_{p}^{p}\right| .\left(\text { by }(6) \text { for } B=A^{*}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|A\|_{p}^{p}+\left\|A^{*}\right\|_{p}^{p} & \leq 2^{\frac{3 p}{2}-1} w_{p}^{p}(A)-n c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right) \\
& -2^{\frac{3 p}{2}-2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right| .
\end{aligned}
$$

But, $c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right)=\left(2^{\frac{p}{2}}-2\right) \min \left(s_{n}(A), s_{n}\left(A^{*}\right)\right)$. Then,

$$
\begin{aligned}
\|A\|_{p}^{p}+\left\|A^{*}\right\|_{p}^{p} & \leq 2^{\frac{3 p}{2}-1} w_{p}^{p}(A)-n\left(2^{\frac{p}{2}}-2\right) \min \left(s_{n}(A), s_{n}\left(A^{*}\right)\right) \\
& -2^{\frac{3 p}{2}-2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right| .
\end{aligned}
$$

And the required inequality holds by letting $s_{n}(A)=s_{n}\left(A^{*}\right)$.
Proof. For the proof of Theorem 3.1, we distinct two cases: First case we let $X, Y, A \in \mathbb{M}_{n}$ such that $\|X\|_{p} \leq 1,\|Y\|_{p} \leq 1$, and $w_{p}(A) \leq 1$, then

$$
\begin{aligned}
w_{p}(A X \pm Y A) & \leq\|A X \pm Y A\|_{p} \\
& \leq\|A X\|_{p}+\|Y A\|_{p} \quad \text { (by triangle inequality) } \\
& \leq\|A\|_{p}+\left\|A^{*}\right\|_{p} \quad\left(\|X\|_{p} \leq 1,\|Y\|_{p} \leq 1,\|A\|_{p}=\left\|A^{*}\right\|_{p}\right) \\
& \leq 2^{1-\frac{1}{p}}\left(\|A\|_{p}^{p}+\left\|A^{*}\right\|_{p}^{p}\right)^{\frac{1}{p}} . \quad\left(\text { by concavity of } t^{\frac{1}{p}}\right)
\end{aligned}
$$

Then by using the inequality (7) we get

$$
\begin{aligned}
w_{p}(A X \pm Y A) & \leq 2^{1-\frac{1}{p}}\left(\left.2^{\frac{3 p}{2}-1} w_{p}^{p}(A)-n\left(2^{\frac{p}{2}}-2\right)\left|s_{n}(A)\right|^{p}-2^{\frac{3 p}{2}-2} \right\rvert\,\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p} \|^{\frac{1}{p}}\right. \\
& =2^{1-\frac{1}{p}} 2^{\frac{3}{2}-\frac{1}{p}}\left(w_{p}^{p}(A)-n 2^{1-\frac{3 p}{2}}\left(2^{\frac{p}{2}}-2\right)\left|s_{n}(A)\right|^{p}-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}} \\
& \leq 2^{\frac{5}{2}-\frac{2}{p}}\left(w_{p}^{p}(A)-2^{1-\frac{3 p}{2}} n c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right)-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}} \\
& =2^{\frac{5}{2}-\frac{2}{p}}\left(1-2^{1-\frac{3 p}{2}} n c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right)-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}} \cdot\left(w_{p}(A) \leq 1\right)
\end{aligned}
$$

For the general case we replace, X by $\frac{X}{\max \left(\|X\|_{p},\|Y\|_{p}\right)}, Y$ by $\frac{Y}{\max \left(\|X\|_{p},\|Y\|_{p}\right)}$ and A by $\frac{A}{w_{p}(A)}$ respectively, we get

$$
\begin{gathered}
w_{p}\left(\frac{A}{w_{p}(A)} \frac{X}{\max \left(\|X\|_{p},\|Y\|_{p}\right)} \pm \frac{Y}{\max \left(\|X\|_{p},\|Y\|_{p}\right)} \frac{A}{w_{p}(A)}\right) \\
\leq 2^{\frac{5}{2}-\frac{2}{p}}\left(1-2^{1-\frac{3 p}{2}} n c_{p}\left(s_{n}\left(\frac{A}{w_{p}(A)}\right), s_{n}\left(\frac{A^{*}}{w_{p}(A)}\right)\right)-\frac{1}{2}\left|\left\|\operatorname{Re}\left(\frac{A}{w_{p}(A)}\right)\right\|_{p}^{p}-\left\|\operatorname{Im}\left(\frac{A}{w_{p}(A)}\right)\right\|_{p}^{p}\right|\right)^{\frac{1}{p}} .
\end{gathered}
$$

But $c_{p}\left(s_{n}(A), s_{n}\left(A^{*}\right)\right)=\left(2^{\frac{p}{2}}-2\right) \min \left(\left|s_{n}(A)\right|^{p},\left|s_{n}\left(A^{*}\right)\right|^{p}\right)=\left(2^{\frac{p}{2}}-2\right)\left|s_{n}(A)\right|^{p}$ then
$w_{p}(A X \pm Y A) \leq 2^{\frac{5}{2}-\frac{2}{p}} w_{p}(A) \max \left(\|X\|_{p},\|Y\|_{p}\right) \times$

$$
\left(1-n 2^{1-\frac{3 p}{2}}\left(2^{\frac{p}{2}}-2\right)\left|s_{n}\left(\frac{A}{w_{p}(A)}\right)\right|^{p}-\frac{1}{2}\left|\left\|\operatorname{Re}\left(\frac{A}{w_{p}(A)}\right)\right\|_{p}^{p}-\left\|\operatorname{Im}\left(\frac{A}{w_{p}(A)}\right)\right\|_{p}^{p}\right|^{\frac{1}{p}}\right.
$$

Therefore, $w_{p}(A X \pm Y A) \leq 2^{\frac{5}{2}-\frac{2}{p}} \max \left(\|X\|_{p},\|Y\|_{p}\right) \times$

$$
\left(w_{p}^{p}(A)-2^{1-\frac{3 p}{2}} n\left(2^{\frac{p}{2}}-2\right)\left|s_{n}(A)\right|^{p}-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}} .
$$

Now by replacing X by $X B$ and Y by $B Y$ in the last inequality, we find,

$$
\begin{aligned}
w_{p}(A X B \pm B Y A) & \leq 2^{\frac{5}{2}-\frac{2}{p}} \max \left(\|X B\|_{p},\|B Y\|_{p}\right)\left(w_{p}^{p}(A)-n\left(2^{1-p}-2^{2-\frac{3 p}{2}}\right)\left|s_{n}(A)\right|^{p}\right. \\
& \left.-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{p}^{p}-\|\operatorname{Im}(A)\|_{p}^{p}\right|\right)^{\frac{1}{p}}
\end{aligned}
$$

An application of Theorem 3.1 is the following corollary, which can be seen as a kind of generalization of the inequalities given by Hirzallah and Kittaneh in [13].

Corollary 3.4. Let $A, B \in \mathbb{M}_{n}$. Then

$$
w_{2}(A B \pm B A) \leq 2 \sqrt{2}\|B\|_{2} \sqrt{w_{2}^{2}(A)-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{2}^{2}-\|\operatorname{Im}(A)\|_{2}^{2}\right|}
$$

and

$$
w_{2}\left(A^{2}\right) \leq \sqrt{2}\|A\|_{2} \sqrt{w_{2}^{2}(A)-\frac{1}{2}\left|\|\operatorname{Re}(A)\|_{2}^{2}-\|\operatorname{Im}(A)\|_{2}^{2}\right|} .
$$

The following theorem provides an estimation of the Schatten p-generalized numerical radius $w_{p}($.$) of 2 \times 2$ block matrix entries. To start, we recall the below lemma [7].

Lemma 3.5. Let $T=\left[T_{i, j}\right], T_{i, j} \in \mathbb{M}_{n}$ for $1 \leq i, j \leq 2$, be a block matrix. Then: For $p \in[2, \infty[$,

$$
\begin{equation*}
\|T\|_{p} \leq \frac{1}{2^{\frac{2}{p}-1}}\left(\sum_{i, j}\left\|T_{i, j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

For $p \in[1,2]$,

$$
\begin{equation*}
\|T\|_{p} \leq\left(\sum_{i, j}\left\|T_{i, j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{10}
\end{equation*}
$$

Theorem 3.6. Let $A, B, C, D \in \mathbb{M}_{n}$ and $T=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$. Then:
For $p \in[2, \infty[$,

$$
\begin{equation*}
w_{p}(T) \leq \frac{1}{2^{\frac{2}{p}-1}}\left(w_{p}^{p}(A)+w_{p}^{p}(D)+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}} \tag{11}
\end{equation*}
$$

For $p \in[1,2]$,

$$
\begin{equation*}
w_{p}(T) \leq\left(w_{p}^{p}(A)+w_{p}^{p}(D)+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}} \tag{12}
\end{equation*}
$$

Proof. Let $T=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathbb{M}_{2 n}$, then for $\theta \in \mathbb{R}$ we have
$\operatorname{Re}\left(e^{i \theta} T\right)=\operatorname{Re}\left(e^{i \theta}\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)\right)=\frac{1}{2}\left(\begin{array}{cc}e^{i \theta} A & e^{i \theta} B \\ e^{i \theta} C & e^{i \theta} D\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}e^{-i \theta} A^{*} & e^{-i \theta} C^{*} \\ e^{-i \theta} B^{*} & e^{-i \theta} D^{*}\end{array}\right)$
$=\left(\begin{array}{cc}\operatorname{Re}\left(e^{i \theta} A\right) & \frac{1}{2}\left(e^{i \theta} B+e^{-i \theta} C^{*}\right) \\ \frac{1}{2}\left(e^{i \theta} B+e^{-i \theta} C^{*}\right)^{*} & \operatorname{Re}\left(e^{i \theta} D\right)\end{array}\right)=\left(\begin{array}{cc}\operatorname{Re}\left(e^{i \theta} A\right) & F \\ F^{*} & \operatorname{Re}\left(e^{i \theta} D\right)\end{array}\right)$,
where $F=\frac{1}{2}\left(e^{i \theta} B+e^{-i \theta} C^{*}\right)$ and as,

$$
\begin{aligned}
\|F\|_{p}^{p} & =\frac{1}{2^{p}}\left\|e^{i \theta} B+e^{-i \theta} C^{*}\right\|_{p}^{p} \\
& \leq \frac{1}{2^{p}}\left(\left\|e^{i \theta} B\right\|_{p}+\left\|e^{-i \theta} C^{*}\right\|_{p}\right)^{p} \quad \text { (using triangle inequality) } \\
& =\frac{1}{2^{p}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p} . \quad\left(\|C\|_{p}=\left\|C^{*}\right\|_{p}\right)
\end{aligned}
$$

Then for $p \in[2, \infty[$,

$$
\begin{aligned}
\left\|\operatorname{Re}\left(e^{i \theta} T\right)\right\|_{p} & \leq \frac{1}{2^{\frac{2}{p}-1}}\left(\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|_{p}^{p}+\left\|\operatorname{Re}\left(e^{i \theta} D\right)\right\|_{p}^{p}+2\|F\|_{p}^{p}\right)^{\frac{1}{p}} \quad(\text { by }(8)) \\
& \leq \frac{1}{2^{\frac{2}{p}-1}}\left(\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|_{p}^{p}+\left\|\operatorname{Re}\left(e^{i \theta} D\right)\right\|_{p}^{p}+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}} \\
& \leq \frac{1}{2^{\frac{2}{p}-1}}\left(w_{p}^{p}(A)+w w_{p}^{p}(D)+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

By taking the supremum over $\theta \in \mathbb{R}$ the demanded inequality (10) is reached. For $p \in[1,2]$, we have

$$
\begin{aligned}
\left\|\operatorname{Re}\left(e^{i \theta} T\right)\right\|_{p} & \leq\left(\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|_{p}^{p}++\left\|\operatorname{Re}\left(e^{i \theta} D\right)\right\|_{p}^{p}+2\|F\|_{p}^{p}\right)^{\frac{1}{p}} \quad(\text { by }(9)) \\
& \leq\left(\left\|\operatorname{Re}\left(e^{i \theta} A\right)\right\|_{p}^{p}+\left\|\operatorname{Re}\left(e^{i \theta} D\right)\right\|_{p}^{p}+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}} \\
& \leq\left(w_{p}^{p}(A)+w_{p}^{p}(D)+\frac{1}{2^{p-1}}\left(\|B\|_{p}+\|C\|_{p}\right)^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

By taking the supremum over $\theta \in \mathbb{R}$ the inequality (11) is satisfied.
We point out that a lower bound for the Schatten p-generalized numerical radius has already been established by Bottazi and Conde in [10]. Indeed, Using a Clarkson inequality obtained by Hirzallah and Kittaneh in [12] it follows directly that inequality (10) is bounded below by $\frac{1}{2^{p-1}}\|T\|_{p}^{p}$ and (11) is bounded below by $\frac{1}{2}\|T\|_{p}^{p}$.
An application of Theorem 3.6 is the following.
Corollary 3.7. Let $A, B, D \in \mathbb{M}_{n}$. Then,
For $p \in[2, \infty[$ the following inequalities hold:

1. $w_{p}\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right) \leq \frac{1}{2^{\frac{2}{p}-1}}\left(w_{p}^{p}(A)+w_{p}^{p}(D)\right)^{\frac{1}{p}}$,
2. $w_{p}\left(\begin{array}{cc}A & B \\ 0 & 0\end{array}\right) \leq \frac{1}{2^{\frac{2}{p}}-1}\left(w_{p}^{p}(A)+\frac{1}{2^{p-1}}\|B\|_{p}^{p}\right)^{\frac{1}{p}}$,
3. $w_{p}\left(\begin{array}{cc}A & B \\ B & A\end{array}\right) \leq \frac{1}{2^{\frac{2}{p}}-1}\left(w_{p}^{p}(A+B)+w_{p}^{p}(A-B)\right)^{\frac{1}{p}}$.

And for $p \in[1,2]$, the following hold:

1. $w_{p}\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right) \leq\left(w_{p}^{p}(A)+w_{p}^{p}(D)\right)^{\frac{1}{p}}$,
2. $w_{p}\left(\begin{array}{cc}A & B \\ 0 & 0\end{array}\right) \leq\left(w_{p}^{p}(A)+\frac{1}{2^{p-1}}\|B\|_{p}^{p}\right)^{\frac{1}{p}}$,
3. $w_{p}\left(\begin{array}{cc}A & B \\ B & A\end{array}\right) \leq\left(w_{p}^{p}(A+B)+w_{p}^{p}(A-B)\right)^{\frac{1}{p}}$.

We first cite the following facts, which will be needed in the next propositions and theorems: For $p \in[1, \infty[$,

$$
\left\|\left(\begin{array}{cc}
A & 0 \tag{13}\\
0 & B
\end{array}\right)\right\|_{p}=\left\|\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)\right\|_{p}
$$

$$
\begin{align*}
& \left\|\left(\begin{array}{cc}
A & 0 \\
0 & A^{*}
\end{array}\right)\right\|_{p}=\left\|\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right)\right\|_{p} \tag{14}\\
& \left\|\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)\right\|_{p}=\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)^{\frac{1}{p}} . \tag{15}
\end{align*}
$$

A. Al-Natoor and W. Audeh [3] recently provided the following refinement of the triangle inequality for the of the Schatten p-norm

$$
\|A+B\|_{p} \leq 2^{1-\frac{1}{p}} w_{p}\left(\begin{array}{cc}
0 & A \\
B^{*} & 0
\end{array}\right) \leq\|A\|_{p}+\|B\|_{p}
$$

when $A, B \in \mathbb{M}_{n}$. By using the following lemma (see [18] for a proof), we can find more inequalities concerning $w_{p}($.$) .$

Lemma 3.8. Let $X \geq m I \geq 0$ for some positive real number $m, Y \in \mathbb{M}_{n}$, and $N($.$) is a unitarily invariant norm. Then$

$$
\begin{equation*}
m N(Y) \leq \frac{1}{2} N(Y X+X Y) \tag{16}
\end{equation*}
$$

We have the following proposition.
Proposition 3.9. Let $A, B \in \mathbb{M}_{n}$ be Hermitian matrices and $0 \leq m I \leq X$ for some positive real number m. Then

$$
\begin{equation*}
m\|A-B\|_{p} \leq w_{p}(A X-X B) \leq\|A X-X B\|_{p} \tag{17}
\end{equation*}
$$

Proof. Let $T=A X-X B$, then $T+T^{*}=(A-B) X+X(A-B)$. It follows, that

$$
\begin{aligned}
m\|A-B\|_{p} & \leq \frac{1}{2}\|(A-B) X+X(A-B)\|_{p} \quad(Y \text { by A-B in }(17)) \\
& =\frac{1}{2}\left\|T+T^{*}\right\|_{p} \\
& =\|\operatorname{Re}(T)\|_{p} \\
& \leq w_{p}(T)=w_{p}(A X-X B)
\end{aligned}
$$

The right inequality follows from the fact that for all $A \in \mathbb{M}_{n} w_{p}(A) \leq\|A\|_{p}$.
Also we have the following two theorems.
Theorem 3.10. Let $A, B \in \mathbb{M}_{n}, p \in[1, \infty[$ and $0 \leq m I \leq X$ for some positive real number m. Then

$$
m\|A-B\|_{p} \leq 2^{\frac{-1}{p}} w_{p}\left(\begin{array}{cc}
0 & A X-X B \\
A^{*} X-X B^{*} & 0
\end{array}\right) \leq \frac{1}{2}\left(\|A X-X B\|_{p}+\left\|A^{*} X-X B^{*}\right\|_{p}\right)
$$

Proof. Let $\widetilde{A}=\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right), \widetilde{B}=\left(\begin{array}{cc}0 & B \\ B^{*} & 0\end{array}\right)$ and $\widetilde{X}=\left(\begin{array}{cc}X & 0 \\ 0 & X\end{array}\right)$. We have,

$$
\begin{aligned}
\|\widetilde{A}-\widetilde{B}\|_{p} & =\left\|\left(\begin{array}{cc}
0 & A-B \\
A^{*}-B^{*} & 0
\end{array}\right)\right\|_{p} \\
& =\left\|\left(\begin{array}{cc}
A-B & 0 \\
0 & A^{*}-B^{*}
\end{array}\right)\right\|_{p} \quad(\text { by }(12)) \\
& =\left\|\left(\begin{array}{cc}
A-B & 0 \\
0 & A-B
\end{array}\right)\right\|_{p} \quad(\text { by }(13)) \\
& =2^{\frac{1}{p}}\|A-B\|_{p} .(\text { for } \mathrm{A}=\mathrm{B} \text { in }(14))
\end{aligned}
$$

So,
$2^{\frac{1}{p}} m\|A-B\|_{p}=m\|\widetilde{A}-\widetilde{B}\|_{p} \leq w_{p}(\widetilde{A X}-\widetilde{X B}) \quad$ (By the left hand side of (17))

$$
\begin{aligned}
& =w_{p}\left(\begin{array}{cc}
0 & A X-X B \\
A^{*} X-X B^{*} & 0
\end{array}\right) \\
& =2^{\frac{1}{p}-1} \sup _{\theta \in \mathbb{R}}\left\|e^{i \theta}(A X-X B)+e^{-i \theta}\left(A^{*} X-X B^{*}\right)^{*}\right\|_{p} \quad(\text { by }(15)) \\
& \leq 2^{\frac{1}{p}-1}\left(\sup _{\theta \in \mathbb{R}}\left\|e^{i \theta}(A X-X B)\right\|_{p}+\sup _{\theta \in \mathbb{R}}\left\|e^{-i \theta}\left(A^{*} X-X B^{*}\right)\right\|_{p}\right) \\
& =2^{2^{\frac{1}{p}-1}} \sup _{\theta \in \mathbb{R}}\left|e^{i \theta}\right|\|A X-X B\|_{p}+2^{\frac{1}{p}-1} \sup _{\theta \in \mathbb{R}}\left|e^{-i \theta}\right|\left\|A^{*} X-X B^{*}\right\|_{p} \\
& =2^{\frac{1}{p}-1}\left(\|A X-X B\|_{p}+\left\|A^{*} X-X B^{*}\right\|_{p}\right) .
\end{aligned}
$$

Thus,

$$
m\|A-B\|_{p} \leq \frac{1}{2^{\frac{1}{p}}} w_{p}\left(\begin{array}{cc}
0 & A X-X B \\
A^{*} X-X B^{*} & 0
\end{array}\right) \leq \frac{1}{2}\left(\|A X-X B\|_{p}+\left\|A^{*} X-X B^{*}\right\|_{p}\right)
$$

as required.
Theorem 3.11. Let $X, Y \in \mathbb{M}_{n}$ and $p \in[1, \infty[$. Then,

$$
w_{p}^{2}\left(\begin{array}{cc}
0 & X \tag{18}\\
Y & 0
\end{array}\right) \geq \frac{1}{4}\left(\left\|X^{*} X+Y Y^{*}\right\|_{p}^{p}+\left\|X X^{*}+Y^{*} Y\right\|_{p}^{p}\right)^{\frac{1}{p}}
$$

Proof. Let $T=\left(\begin{array}{cc}0 & X \\ Y & 0\end{array}\right), H_{\theta}=\operatorname{Re}\left(e^{i \theta} T\right)$ and $K_{\theta}=\operatorname{Im}\left(e^{i \theta} T\right)$. Then

$$
\begin{aligned}
& H_{\theta}^{2}=\frac{1}{4}\left(\begin{array}{cc}
X X^{*}+Y^{*} Y+2 \operatorname{Re}\left(e^{2 i \theta} X Y\right) & 0 \\
0 & X^{*} X+Y Y^{*}+2 \operatorname{Re}\left(e^{2 i \theta} Y X\right)
\end{array}\right), \\
& K_{\theta}^{2}=\frac{1}{4}\left(\begin{array}{cc}
X X^{*}+Y^{*} Y-2 \operatorname{Re}\left(e^{2 i \theta} X Y\right) & 0 \\
0 & X^{*} X+Y Y^{*}-2 \operatorname{Re}\left(e^{2 i \theta} Y X\right)
\end{array}\right) .
\end{aligned}
$$

And so, $H_{\theta}^{2}+k_{\theta}^{2}=\frac{1}{2}\left(\begin{array}{cc}X X^{*}+Y^{*} Y & 0 \\ 0 & X^{*} X+Y Y^{*}\end{array}\right)$.
If $M=X X^{*}+Y^{*} Y$ and $N=X^{*} X+Y Y^{*}$ then,

$$
\begin{aligned}
\frac{1}{2}\left\|\left(\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right)\right\|_{p} & =\left\|H_{\theta}^{2}+K_{\theta}^{2}\right\|_{p} \\
& \leq\left\|H_{\theta}^{2}\right\|_{p}+\left\|K_{\theta}^{2}\right\|_{p} \\
& \leq\left\|H_{\theta}\right\|_{p}^{2}+\left\|K_{\theta}\right\|_{p}^{2} \leq w_{p}^{2}(T)+w_{p}^{2}(T)=2 w_{p}^{2}(T)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
w_{p}^{2}(T) & \geq \frac{1}{4}\left\|\left(\begin{array}{cc}
X X^{*}+Y^{*} Y & 0 \\
0 & X^{*} X+Y Y^{*}
\end{array}\right)\right\|_{p} \\
& =\frac{1}{4}\left\|\left(\begin{array}{cc}
0 & X X^{*}+Y^{*} Y \\
X^{*} X+Y Y^{*} & 0
\end{array}\right)\right\|_{p} \quad(\text { by (12) }) \\
& =\frac{1}{4}\left(\left\|X X^{*}+Y^{*} Y\right\|_{p}^{p}+\left\|X^{*} X+Y Y^{*}\right\|_{p}^{p}\right)^{\frac{1}{p}} \quad(\text { by }(14))
\end{aligned}
$$

as required.

As an application of this theorem is the following.
Corollary 3.12. For $X \in \mathbb{M}_{n}$ then $w_{p}^{2}(X) \geq \frac{1}{2^{2+\frac{1}{p}}}\left\|X^{*} X+X X^{*}\right\|_{p}$.
Proof. We have

$$
\begin{aligned}
w_{p}^{2}\left(\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right) & \geq \frac{1}{4}\left(\left\|X^{*} X+X X^{*}\right\|_{p}^{p}+\left\|X X^{*}+X^{*} X\right\|_{p}^{p}\right)^{\frac{1}{p}} \quad(\text { for } X=Y \text { in (18) }) \\
& =2^{\frac{1}{p}-2}\left\|X X^{*}+X^{*} X\right\|_{p}
\end{aligned}
$$

But,

$$
\begin{aligned}
w_{p}\left(\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right) & =2^{\frac{1}{p}-1} \sup _{\theta \in \mathbb{R}}\left\|e^{i \theta} X+e^{-i \theta} X^{*}\right\|_{p} \quad(\text { for } A=B=X \text { in (15)) } \\
& =2^{\frac{1}{p}} \sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta} X\right)\right\|_{p}=2^{\frac{1}{p}} w_{p}(X) .
\end{aligned}
$$

So, $2^{\frac{2}{p}} w_{p}^{2}(X)=\left(\begin{array}{cc}0 & X \\ X & 0\end{array}\right) \geq 2^{\frac{1}{p}-2}\left\|X^{*} X+X X^{*}\right\|_{p}$. And therefore,

$$
w_{p}^{2}(X) \geq \frac{1}{2^{2+\frac{1}{p}}}\left\|X^{*} X+X X^{*}\right\|_{p}
$$

as required.
Remark First note that the majority of the inequalities and results provided in this paper, can be extended to $\mathbb{B}(H)$, the space of all bounded linear operators on a complex separable Hilbert space H. Second a further investigation could be done to find an upper bound for the Schatten p-generalized numerical radius for partitioned 2×2 block matrices by using some ideas for [6, 22].

Acknowledgments

The authors sincerely thank the reviewer for her/his valuable suggestions, encouragement and many useful comments which have helped to improve the paper and clarify the details. Also many thanks go to the Editor and Editor-in-Chief for giving us the chance to revise. The authors acknowledge financial support from the Lebanese University research grants program.

References

[1] A. Abu-Omar, F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl. 569 (2019), 323-334.
[2] A. Aldalabih, F. Kittaneh, Hilbert-Schmidt numerical radius inequalities for operator matrices, Linear Algebra Appl. 581 (2019), 72-84.
[3] A. Al-Natoor, W. Audeh, Refinement of triangle inequality for the Schatten $p-$ norm, Adv. Oper. Theory 5 (2020), 1635-1645.
[4] F. Alrimawi, O. Hirzallah, and F. Kittaneh, Norm inequalities related to Clarkson inequalities, Electronic Journal of Linear Algebra, ISSN 1081-3810, Volume 34, (2018), 163-169.
[5] M. Bakherad, Some generalized numerical radius inequalities involving Kwong function, Hacet. J. Math. Stat. Vol. 48(4)(2019), 951-958.
[6] W. Bani-Domi, F. Kittaneh, Norm and numerical radius inequalities for Hilbert space operators, Linear and Multilinear Algebra. 69 (5)(2021), 934-945.
[7] R. Bhatia, F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287(1990), 719-726.
[8] R. Bhatia, Matrix Analysis, Grad. Texts in Math., Spring-Verlag, New York, 1997.
[9] P. Bhunia, K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 630 (2021), 306-315.
[10] T. Bottazzi, C. Conde, Generalized numerical radius and related inequalities, arXiv: 1909.09243(2019).
[11] K. Feki, Generalized numerical radius inequalities of operators in Hilbert spaces. Adv. Oper. Theory 6 (2021), no. 1, Paper No. 6, 19 pp .
[12] O. Hirzallah, F. Kittaneh, Non-commutative Clarkson inequalities for unitarily invariant norms, Pac. J. Math.202(2002), 363-369.
[13] O. Hirzallah, F. Kittaneh, Numerical radius inequalities for several operators, Math, Scand.114(2014), 110-119.
[14] F. Kittaneh, M.Sal Moslehian and T. Yamazaki, Chartesian decomposition and numerical radius inequalities arXiv: 1511.020904v1 [math.FA] 6 Nov 2015.
[15] H. Najafi, Some results on Kwong functions and related inequalities, Linear Algebra Appl. 439 (2013), no.9, 2634-2461.
[16] M. Sababheh, Numerical radius inequalities via convexity, Linear Algebra Appl. 549 (2018), 67-78.
[17] D. Sain, P. Bhunia, A. Bhanja,K. Paul, On a new norm on $\mathbb{B}(H)$ and its applications to numerical radius inequalities. Ann. Funct. Anal. 12 (2021), no. 4, Paper No.51, 25 pp.
[18] J.L. Von Neumann and T. Ando, An inequality for trace ideals, Comm. Math. phys. 76 (1980), no. 2, 143-148.
[19] A. Zamani, M. S. Moslehian, Q. Xu, C. Fu, Numerical radius inequalities concerning with algebra norms. Mediterr. J. Math. 18 (2021), no. 2, Paper No. 38, 13 pp. MR4203694
[20] A. Zamani, A-numerical radius and product of semi-Hilbertian operators. Bull. Iranian Math. Soc. 47 (2021), no. 2, 371-377.
[21] A. Zamani, P. Wójcik, Another generalization of the numerical radius for Hilbert space operators, Linear Algebra Appl. 609 (2021), 114-128.
[22] Q.Xu, Z. Ye, A. Zamani, Some upper bounds for the A-numerical radius of 2×2 block matrices. Adv. Oper. Theory 6 (2021), no. 1, 1-13.
[23] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no.1, 83-89.
[24] H. Zuo, Y. Seo, M. Fujii, Further refinements of Zhan's inequality for unitarily invariant norms, Ann. Funct. Anal. 6(2015), no. 2, 234-241.

[^0]: 2020 Mathematics Subject Classification. Primary 47A12,47A30, 47A63; Secondary B15,B47
 Keywords. Schatten p-generalized numerical radius, Convexity, Kwong function, Matrix norm inequalities
 Received: 21 May 2021; Revised: 24 August 2021; Accepted: 15 September 2021
 Communicated by Fuad Kittaneh
 This research is supported by a grant from the Lebanese University.
 Email addresses: habbas@ul.edu.lb (Hassane Abbas), sadeem.harb3@gmail.com (Sadeem Harb), hassan.issa@mathematik.uni-gottingen.de (Hassan Issa)

