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Abstract. In this paper, we prove that each of the following functions is convex on R :

f (t) = wN(AtXA1−t
± A1−tXAt), 1(t) = wN(AtXA1−t), and h(t) = wN(AtXAt)

where A > 0, X ∈Mn and N(.) is a unitarily invariant norm onMn. Consequently, we answer positively the
question concerning the convexity of the function t → w(AtXAt) proposed by in (2018). We provide some
generalizations and extensions of wN(.) by using Kwong functions. More precisely, we prove the following

wN( f (A)X1(A) + 1(A)X f (A)) ≤ wN(AX + XA) ≤ 2wN(X)N(A),

which is a kind of generalization of Heinz inequality for the generalized numerical radius norm. Finally,
some inequalities for the Schatten p-generalized numerical radius for partitioned 2 × 2 block matrices are
established, which generalize the Hilbert-Schmidt numerical radius inequalities given by Aldalabih and
Kittaneh in (2019).

1. Introduction and preliminaries

Based on some operator theory studies on Hilbert spaces, several generalizations for the concept of
numerical radius have recently been introduced [1, 19, 21]. Abu-Omar and Kittaneh [1] introduced the
so-called generalized numerical radius: IfMn denotes the space of all complex square matrices of size n,
the generalized numerical radius for A, denoted by wN(A), is obtained via the supremum of the norm over
the real parts of all rotations of A i.e.

wN(A) = sup
θ∈R

N(Re(eiθA)).

Where X = Re(X)+ iIm(X) is the Cartesian decomposition of X ∈Mn, Re(X) = X+X∗
2 and Im(X) = X−X∗

2i , and X∗

denotes the adjoint of X. Simple computation shows that when N is the usual operator norm inherited from
the inner product on H then wN(·) coincides with the usual numerical radius norm w(·) which is defined as

w(A) = sup
∥x∥=1

| ⟨Ax, x⟩ | .
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It is well-known (see [? ]) that w(A) = sup
θ∈R
∥ Re(eiθA) ∥ .We refer the reader to [1, 16, 19] for intermediate

properties and inequalities of the norm wN(.).
In the present work, we restrict our attention to operator matrices A ∈Mn, whereMn denotes the space of
all complex square matrices. We write A > 0 (respectively A ≥ 0) for positive definite ( respectively for semi
definite positive) matrix A ∈ Mn. A norm N(.) on A ∈ Mn is called unitarily invariant if N(UAV) = N(A)
for any A ∈Mn and all unitary U,V ∈Mn.

In this paper, we provide several inequalities for the matrix norm wN(.). Some results are obtained via
convexity whenever N is unitarily invariant norm. On the one hand, we follow up the work of Sababheh
in [16] for the case of the numerical radius, to establish a new Young-type inequality for wN(.). Addressing
to an open question proposed by the author in [16] about the convexity of the function t 7→ w(AtXAt), on
R for A > 0, we provide a positive answer for the convexity of the aforementioned questioned and we
prove that it is not only true for w(.) but remains true for wN(.). On the other hand, motivated by the work
of Bakherad [5] and Zamani [19, 21] we give some generalizations and extensions of Heinz inequality for
the generalized numerical radius norm involving the so-called Kwong functions. Finally, by following the
result given by Aldalabih and Kittaneh in [2] for the case of Hilbert-Schmidt numerical radius norm, we
provide several Schatten p-generalized numerical radius inequalities. In this paper standards techniques
are used to provide the results.

2. Convexity of some generalized numerical radius functions

Throughout this section, N(.) denotes a unitarily invariant norm on Mn. We start by proving the
following basic essential lemma to demonstrate Theorem 2.1 which is the main result of this section. To
provide the proof of this lemma we borrowed from [? ] the following two lemmas.

Lemma 2.1. (Hölder inequality ) Let A, B be two positive definite matrices inMn, X ∈Mn, t ∈ [0, 1], and N(.) be a
unitarily invariant norm onMn. Then

N(AtXBt) ≤ Nt(AXB)N1−t(X).

Lemma 2.2. ( Heinz mean inequality) Let A, B be two positive definite matrices inMn, X ∈Mn, t ∈ [0, 1], and N(.)
be a unitarily invariant norm onMn. Then

2N(A
1
2 XB

1
2 ) ≤ N(AtXB1−t + A1−tXBt) ≤ N(AX + XB).

Lemma 2.3. Given A > 0, X ∈Mn, and t ∈ [0, 1], then the following inequalities hold,

wN(AtXAt) ≤ wt
N(AXA)w1−t

N (X), (1)

2wN(A
1
2 XA

1
2 ) ≤ wN(AtXA1−t + A1−tXAt) ≤ wN(AX + XA). (2)

Proof. For t ∈ [0, 1], At is a Hermitian matrix so for any θ ∈ R,we get

Re(eiθAtXAt) =
1
2

(
AteiθXAt + Ate−iθX∗At

)
= At eiθX + e−iθX∗

2
At = AtRe(eiθX)At.

Now by using Hölder inequality-Lemma, we obtain

N
(
Re(eiθAtXAt)

)
= N(AtRe(eiθX)At) ≤ Nt

(
ARe(eiθX)A

)
N1−t

(
Re(eiθX)

)
.

Taking the supremum over all θ ∈ R,we obtain (1).
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To prove the second inequality we begin by noting that, for any θ ∈ R,

Re
(
eiθ(AtXA1−t + A1−tXAt)

)
=

1
2

(
eiθAtXA1−t + eiθA1−tXAt + e−iθA1−tX∗At + e−iθAtX∗A1−t

)
= At

( eiθX + e−iθX∗

2

)
A1−t + A1−t

( eiθX + e−iθX∗

2

)
At

= AtRe(eiθX)A1−t + A1−tRe(eiθX)At.

Then by using the well known Heinz mean inequality-Lemma and for A = B,we obtain

2N(A
1
2 XA

1
2 ) ≤ N(AtXA1−t + A1−tXAt) ≤ N(AX + XA). (∗)

Therefore

2N
(
Re(eiθA

1
2 XA

1
2 )
)
= 2N

(
A

1
2 Re(eiθX)A

1
2

)
≤ N

(
AtRe(eiθX)A1−t + A1−tRe(eiθX)At

)
(by the left inequality of (∗))

= N
(
At eiθX + e−iθX∗

2
A1−t + A1−t eiθX + e−iθX∗

2
At

)
=

1
2

N
(
eiθAtXA1−t + e−iθAtX∗A1−t + eiθA1−tXAt + e−iθA1−tX∗At

)
= N

(
Re(eiθ(AtXA1−t + A1−tXAt))

)
≤ N(ARe(eiθX) + Re(eiθX)A) (by the right inequality of (∗))

=
1
2

N
(
eiθAX + e−iθAX∗ + eiθXA + e−iθX∗A

)
= N

(
Re(eiθ(AX + XA))

)
.

Taking the supremum over all θ ∈ R,we obtain (2).

In the following main Theorem, we generalize the result given by Sababheh [16] about the convexity of
the functions w(AtXA1−t +A1−tXAt) and w(AtXA1−t), and we answer positively the question concerning the
convexity of the function w(AtXAt).

Theorem 2.4. Let A > 0 and X ∈Mn, then each of the following functions is convex on R :

f (t) = wN(AtXA1−t
± A1−tXAt), 1(t) = wN(AtXA1−t), and h(t) = wN(AtXAt).

Proof. Replace A by A2 and take t = 1 in (2), we get

wN(AXA) ≤
1
2

wN(A2X + XA2). (∗∗)
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To obtain the convexity of f (.), let t, s ∈ R, we have

f
( t + s

2

)
= wN(A

t+s
2 XA1− t+s

2 ± A1− t+s
2 XA

t+s
2 )

= wN

(
A

t−s
2 (AsXA1−t

± A1−tXAs)A
t−s
2

)
≤

1
2

wN

(
At−s(AsXA1−t

± A1−tXAs) + (AsXA1−t
± A1−tXAs)At−s

)
( by (∗∗))

=
1
2

wN

(
AtXA1−t

± A1−sXAs + AsXA1−s
± A1−tXAt

)
≤

1
2

wN

(
AtXA1−t

± A1−tXAt
)
+

1
2

wN

(
AsXA1−s

± A1−sXAs
)

(by the triangle inequality)

=
1
2

f (t) +
1
2

f (s).

The proof of the convexity of 1(t) = wN(AtXA1−t) on R follows in the same manner as the function f (.). To
prove the convexity of h(t) = wN(AtXAt), we first replace A by A2, B by B2 and t = 1 in the well known
Heinz mean inequality-Lemma, we obtain

2N(AXB) ≤ N(A2X + XB2). (3)

Now for t, s ∈ R, the matrix A
t+s
2 is Hermitian and so that for any θ ∈ R,

Re(eiθA
t+s
2 XA

t+s
2 ) =

1
2

(
A

t+s
2 eiθXA

t+s
2 + A

t+s
2 e−iθX∗A

t+s
2

)
=

1
2

(
A

t+s
2 (eiθX + e−iθX∗)A

t+s
2

)
= A

t+s
2 Re(eiθX)A

t+s
2

= A
t−s
2

(
AsRe(eiθX)At

)
A
−t+s

2 .

Therefore,

h
( t + s

2

)
= wN(A

t+s
2 XA

t+s
2 )

= sup
θ∈R

N
(
Re(eiθA

t+s
2 XA

t+s
2 )

)
= sup
θ∈R

N(A
t−s
2 (AsRe(eiθX)At)A

−t+s
2 )

≤
1
2

sup
θ∈R

N
(
At−s(AsRe(eiθX)At) + (AsRe(eiθX)At)A−t+s

)
(by (3))

=
1
2

sup
θ∈R

N
(
AtRe(eiθX)At + AsRe(eiθX)As

)
=

1
4

sup
θ∈R

N
(
AteiθXAt + Ate−iθX∗At + AseiθXAs + Ase−iθX∗As

)
=

1
2

sup
θ∈R

N
(
Re(eiθAtXAt) + Re(eiθAsXAs)

)
≤

1
2

sup
θ∈R

N
(
Re(eiθAtXAt)

)
+

1
2

sup
θ∈R

N
(
Re(eiθAsXAs)

)
(by the triangle inequality)

=
1
2

wN(AtXAt) +
1
2

wN(AsXAs) =
1
2

h(t) +
1
2

h(s).

Hence, h(.) is a convex function on R as required.
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Note that when N(.) is the usual operator norm ||.|| and by using the function h(.) of this theorem, the question
of Sababheh [16] concerning the convexity of the function t 7→ w(AtXAt) on R is answered positively .
Under the same conditions given in Theorem 2.2, we can prove the convexity of the following functions:
wN(A−tXA1+t),wN(AtXA1−t) + wN(A−tXA1+t) and wN(AtXA1−t + A−tXA1+t).
Motivated by the work of Sababheh [16] for the numerical radius, and by the convexity of the function
wN(AtXA1−t +AtXA1−t) and wN(AtXA1−t

−A1−tXAt) as given in Theorem 2.2, and by the Theorem 2.5 in [19]
we obtain the following reversed inequalities for the generalized numerical radius norm.

Corollary 2.5. Let A > 0 and X ∈Mn. Then,wN(AtXA1−t + A1−tXAt) ≤ wN(AX + XA) ≤ 2wN(X)N(A), t ∈ [0, 1]
wN(AtXA1−t + A1−tXAt) ≥ wN(AX + XA) t < [0, 1]

Also we have the following Young-type inequality based on the convexity of the function t 7→ wN(AtXA1−t).

Corollary 2.6. Let A > 0 and X ∈Mn. ThenwN(AtXA1−t) ≤ t.wN(AX) + (1 − t).wN(XA), t ∈ [0, 1]
wN(AtXA1−t) ≥ t.wN(AX) + (1 − t).wN(XA) t < [0, 1]

Motivated by the work given by Bakherad in [5] and Zamani [19], we provide some generalizations and
extensions by using Kwong functions of wN(.). More precisely, in the following theorem, we prove the
coming result,

wN( f (A)X1(A) + 1(A)X f (A)) ≤ wN(AX + XA) ≤ 2wN(X)N(A),

which is a kind of generalization of Heinz inequality for the generalized numerical radius norm. Let us
first recall the definition of Kwong function: A real continuous function f defined on an interval (a, b) with
a ≥ 0 is called a Kwong function if the matrix

K f =

(
f (λi) + f (λ j)
λi + λ j

)
1≤i, j≤n

is positive semi definite for any distinct real values λ1, λ2, ..., λn in (a, b).
Before showing the following theorem, we need the coming result provided by Najafi in [15]: For two
continuous functions f , 1where f (x)

1(x) is a Kwong function and f (x).1(x) ≤ x the following inequality holds

N( f (A)X1(A) + 1(A)X f (A)) ≤ N(AX + XA) (4)

where X ∈Mn and A ∈Mn be a positive definite matrix.

Theorem 2.7. Let A ∈Mn be a positive definite matrix, X ∈Mn, and f , 1 be two positive continuous functions on
(0,∞) such that f (x).1(x) ≤ x, for all x ∈ (0,∞), and f (x)

1(x) is a Kwong function, then

wN
(

f (A)X1(A) + 1(A)X f (A)
)
≤ wN(AX + XA) ≤ 2wN(X)N(A).

Proof. We have wN( f (A)X1(A) + 1(A)X f (A)) = sup
θ∈R

N
(
Re

(
eiθ( f (A)X1(A) + 1(A)X f (A))

))
= sup
θ∈R

N
(

eiθ f (A)X1(A) + eiθ1(A)X f (A) + e−iθ1(A)X∗ f (A) + e−iθ f (A)X∗1(A)
2

)
= sup
θ∈R

N
(

f (A)Re(eiθX)1(A) + 1(A)Re(eiθX) f (A)
)

≤ sup
θ∈R

N
(
ARe(eiθX) + Re(eiθX)A

)
(usin1 (4))
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= sup
θ∈R

N
(
A

(
eiθX + e−iθX∗

2

)
+

(
eiθX + e−iθX∗

2

)
A
)

= sup
θ∈R

N(Re(eiθAX) + Re(eiθXA))

= sup
θ∈R

N
(
Re

(
eiθ(AX + XA)

))
= wN(AX + XA) ≤ 2wN(X)N(A) by Theorem 2.5 in [19].

Notice that by choosing f (x) = xt, 1(x) = x1−t where 0 ≤ t ≤ 1, x > 0, we have f (x)
1(x) is a Kwong function

and f (x).1(x) = x, for all x ∈ (0,∞). Therefore, the following Heinz inequality for the generalized numerical
radius norm,

wN(AtXA1−t + A1−tXAt) ≤ wN(AX + XA)

is obtained.
By using the following two Lemmas (see [24] for proofs), we can find more inequalities for the generalized
numerical radius.

Lemma 2.8. Let A,B,X ∈Mn such that A,B are positive definite, and f , 1 are two positive continuous functions on
(0,∞) such that h(x) = f (x)

1(x) is a Kwong function. Then,

N
(
A

1
2

(
f (A)X1(B) + 1(A)X f (B)

)
B

1
2

)
≤

k
2

N(A2X + 2AXB + XB2) (5)

holds for k = max
λ∈σ(A)∪σ(B)

{ f (λ)1(λ)
λ

}
where σ(A) represents the spectrum of A.

Lemma 2.9. Let A,B,X ∈ Mn such that A,B are positive definite. And for any two positive continuous functions
on (0,∞) with h(x) = f (x)

1(x) is kwong, then

N
(

f (A)X1(B) + 1(A)X f (B)
)
≤

k′

2
N(A2X + 2AXB + XB2) (6)

holds for k′ = max
λ∈σ(A)∪σ(B)

{ f (λ)1(λ)
λ2

}
.

Theorem 2.10. Let A ∈ Mn be a positive definite matrix, and f , 1 be two positive continuous functions on (0,∞)
such that h(x) = f (x)

1(x) is a Kwong function. Then,

wN(A
1
2 H f ,1(A)A

1
2 ) ≤

k
2

wN(A2X + 2AXA + XA2),

where H f ,1(A) = f (A)X1(A) + 1(A)X f (A) and k = max
λ∈σ(A)

{ f (λ)1(λ)
λ

}
.

Proof. By using the inequality (3) and applying the same technique as the proof in Theorem 2.5 the required
result is obtained.

Theorem 2.11. Let A ∈Mn be a positive definite matrix, and f , 1 be two positive real continuous functions on (0,∞)
such that h(x) = f (x)

1(x) is a Kwong function. Then

wN( f (A)X1(A) + 1(A)X f (A)) ≤
k′

2
wN(A2X + 2AXB + XB2)

holds for k′ = max
λ∈σ(A)

{ f (λ)1(λ)
λ2

}
.

Proof. By using the inequality (4) and applying a similar proof as in of Theorem 2.5, the required result is
obtained.
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3. Inequalities for wp(.)

In this section, s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) denote the singular values of a matrix A ∈ Mn i.e. the
eigenvalues of | A |= (A∗A)

1
2 . For 1 ≤ p < ∞, the Schatten p-norm of A is denoted and defined by

∥ A ∥p=
( n∑

j=1

sp
j (A)

) 1
p
.

Abu-Omar and Kittaneh in [1] give some properties for the Hilbert-Schmidt numerical radius norm w2(.)
as a concrete example of wN(.) when N(.) = ||.||2. The aim of this section is to provide some inequalities for
the Schatten p-generalized numerical radius wp(.) = wN(.) with N(.) = ||.||p. In the following theorem we
provide an upper bound for the Schatten p-generalized numerical radius wp(.).

Theorem 3.1. For 2 ≤ p < ∞, and A,B,X,Y ∈Mn, we have the following inequality

wp(AXB ± BYA) ≤ 2
5
2−

2
p max(∥ XB ∥p, ∥ BY ∥p)

(
wp

p(A) − n(21−p
− 22− 3p

2 ) | sn(A) |p

−
1
2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p

.

Before we provide the proof of this theorem, we need the following two lemmas. The first one is borrowed
from ([4] Theorem 4.1 ).

Lemma 3.2. For 2 ≤ p < ∞ and A,B ∈Mn, we have

∥ A + B ∥pp + ∥ A − B ∥pp ≥ 22− p
2

(
∥ A ∥pp + ∥ B ∥pp

)
+ n22− p

2 cp

(
sn(A), sn(B)

)
, (7)

where cp(s, t) = (2
p
2 − 2) min(| s |p, | t |p) and s, t ∈ C.

Lemma 3.3. For 2 ≤ p < ∞ and A ∈Mn, we have

∥ A ∥pp + ∥ A∗ ∥pp ≤ 2
3p
2 −1wp

p(A) − n(2
p
2 − 2) | sn(A) |p

−2
3p
2 −2

∣∣∣∣ ∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣. (8)

Proof. By using the fact that wp(A) = sup
θ∈R
∥ Re(eiθA) ∥p= sup

θ∈R
∥ Im(eiθA) ∥p,

then
wp(A) ≥ max

(
∥ Re(A) ∥p, ∥ Im(A) ∥p

)
. So

2pwp
p(A) ≥ max

(
∥ A + A∗ ∥pp, ∥ A − A∗ ∥pp

)
=

1
2

(
∥ A + A∗ ∥pp + ∥ A − A∗ ∥pp

)
+

1
2

∣∣∣∣∥ A + A∗ ∥pp − ∥ A − A∗ ∥pp
∣∣∣∣

≥ 21− p
2

(
∥ A ∥pp + ∥ A∗ ∥pp

)
+ n21− p

2 cp(sn(A), sn(A∗))

+
1
2

∣∣∣∣∥ A + A∗ ∥pp − ∥ A − A∗ ∥pp
∣∣∣∣. (by (6) for B = A∗ )

Hence,

∥ A ∥pp + ∥ A∗ ∥pp ≤ 2
3p
2 −1wp

p(A) − ncp(sn(A), sn(A∗))

− 2
3p
2 −2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣.
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But, cp(sn(A), sn(A∗)) = (2
p
2 − 2) min(sn(A), sn(A∗)). Then,

∥ A ∥pp + ∥ A∗ ∥pp ≤ 2
3p
2 −1wp

p(A) − n(2
p
2 − 2) min(sn(A), sn(A∗))

− 2
3p
2 −2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣.

And the required inequality holds by letting sn(A) = sn(A∗).

Proof. For the proof of Theorem 3.1, we distinct two cases: First case we let X,Y,A ∈ Mn such that
∥ X ∥p≤ 1, ∥ Y ∥p≤ 1, and wp(A) ≤ 1, then

wp(AX ± YA) ≤∥ AX ± YA ∥p
≤∥ AX ∥p + ∥ YA ∥p (by triangle inequality)
≤∥ A ∥p + ∥ A∗ ∥p (∥ X ∥p≤ 1, ∥ Y ∥p≤ 1, ∥ A ∥p=∥ A∗ ∥p)

≤ 21− 1
p
(
∥ A ∥pp + ∥ A∗ ∥pp

) 1
p . (by concavity of t

1
p )

Then by using the inequality (7) we get

wp(AX ± YA) ≤ 21− 1
p

(
2

3p
2 −1wp

p(A) − n(2
p
2 − 2) | sn(A) |p −2

3p
2 −2

∣∣∣∣ ∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p

= 21− 1
p 2

3
2−

1
p

(
wp

p(A) − n21− 3p
2 (2

p
2 − 2) | sn(A) |p −

1
2

∣∣∣∣ ∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p

≤ 2
5
2−

2
p
(
wp

p(A) − 21− 3p
2 ncp(sn(A), sn(A∗)) −

1
2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p

= 2
5
2−

2
p
(
1 − 21− 3p

2 ncp(sn(A), sn(A∗)) −
1
2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p
. (wp(A) ≤ 1)

For the general case we replace, X by X

max
(
∥X∥p,∥Y∥p

) , Y by Y

max
(
∥X∥p,∥Y∥p

) and A by A
wp(A) respectively, we get

wp

(
A

wp(A)
X

max
(
∥ X ∥p, ∥ Y ∥p

) ± Y

max
(
∥ X ∥p, ∥ Y ∥p

) A
wp(A)

)

≤ 2
5
2−

2
p
(
1 − 21− 3p

2 ncp

(
sn

( A
wp(A)

)
, sn

( A∗

wp(A)

))
−

1
2

∣∣∣∣∥ Re
( A
wp(A)

)
∥

p
p − ∥ Im

( A
wp(A)

)
∥

p
p

∣∣∣∣) 1
p
.

But cp(sn(A), sn(A∗)) = (2
p
2 − 2) min

(
| sn(A) |p, | sn(A∗) |p

)
= (2

p
2 − 2) | sn(A) |p then

wp (AX ± YA) ≤ 2
5
2−

2
p wp(A) max(∥ X ∥p, ∥ Y ∥p)×(

1 − n21− 3p
2 (2

p
2 − 2) | sn(

A
wp(A)

) |p −
1
2

∣∣∣∣∥ Re
( A
wp(A)

)
∥

p
p − ∥ Im

( A
wp(A)

)
∥

p
p

∣∣∣∣) 1
p

.

Therefore, wp(AX ± YA) ≤ 2
5
2−

2
p max

(
∥ X ∥p, ∥ Y ∥p

)
×(

wp
p(A) − 21− 3p

2 n(2
p
2 − 2) | sn(A) |p −

1
2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p
.

Now by replacing X by XB and Y by BY in the last inequality, we find,

wp(AXB ± BYA) ≤ 2
5
2−

2
p max

(
∥ XB ∥p, ∥ BY ∥p

)(
wp

p(A) − n(21−p
− 22− 3p

2 ) | sn(A) |p

−
1
2

∣∣∣∣∥ Re(A) ∥pp − ∥ Im(A) ∥pp
∣∣∣∣) 1

p
.
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An application of Theorem 3.1 is the following corollary, which can be seen as a kind of generalization of
the inequalities given by Hirzallah and Kittaneh in [13].

Corollary 3.4. Let A,B ∈Mn. Then

w2(AB ± BA) ≤ 2
√

2 ∥ B ∥2

√
w2

2(A) −
1
2

∣∣∣∣∥ Re(A) ∥22 − ∥ Im(A) ∥22

∣∣∣∣,
and

w2(A2) ≤
√

2 ∥ A ∥2

√
w2

2(A) −
1
2

∣∣∣∣∥ Re(A) ∥22 − ∥ Im(A) ∥22

∣∣∣∣.
The following theorem provides an estimation of the Schatten p-generalized numerical radius wp(.) of 2× 2
block matrix entries. To start, we recall the below lemma [7].

Lemma 3.5. Let T = [Ti, j], Ti, j ∈Mn for 1 ≤ i, j ≤ 2, be a block matrix. Then:
For p ∈ [2,∞[,

∥ T ∥p ≤
1

2
2
p−1

(∑
i, j

∥ Ti, j ∥
p
p

) 1
p . (9)

For p ∈ [1, 2],

∥ T ∥p ≤
(∑

i, j

∥ Ti, j ∥
p
p

) 1
p . (10)

Theorem 3.6. Let A,B,C,D ∈Mn and T =
(

A B
C D

)
. Then:

For p ∈ [2,∞[,

wp(T) ≤
1

2
2
p−1

(
wp

p(A) + wp
p(D) +

1
2p−1

(
∥ B ∥p + ∥ C ∥p

)p) 1
p
. (11)

For p ∈ [1, 2],

wp(T) ≤
(
wp

p(A) + wp
p(D) +

1
2p−1

(
∥ B ∥p + ∥ C ∥p

)p) 1
p
. (12)

Proof. Let T =
(

A B
C D

)
∈M2n, then for θ ∈ R we have

Re(eiθT) = Re
(
eiθ

(
A B
C D

))
= 1

2

(
eiθA eiθB
eiθC eiθD

)
+ 1

2

(
e−iθA∗ e−iθC∗

e−iθB∗ e−iθD∗

)
=

(
Re(eiθA) 1

2 (eiθB + e−iθC∗)
1
2 (eiθB + e−iθC∗)∗ Re(eiθD)

)
=

(
Re(eiθA) F

F∗ Re(eiθD)

)
,

where F = 1
2 (eiθB + e−iθC∗) and as,

∥ F ∥pp =
1
2p ∥ eiθB + e−iθC∗ ∥pp

≤
1
2p

(
∥ eiθB ∥p + ∥ e−iθC∗ ∥p

)p
(using triangle inequality)

=
1
2p

(
∥ B ∥p + ∥ C ∥p

)p
. ( ∥ C ∥p=∥ C∗ ∥p )
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Then for p ∈ [2,∞[,

∥ Re(eiθT) ∥p ≤
1

2
2
p−1

(
∥ Re(eiθA) ∥pp + ∥ Re(eiθD) ∥pp +2 ∥ F ∥pp

) 1
p ( by (8) )

≤
1

2
2
p−1

(
∥ Re(eiθA) ∥pp + ∥ Re(eiθD) ∥pp +

1
2p−1 (∥ B ∥p + ∥ C ∥p)p

) 1
p

≤
1

2
2
p−1

(
wp

p(A) + wp
p(D) +

1
2p−1 (∥ B ∥p + ∥ C ∥p)p

) 1
p

.

By taking the supremum over θ ∈ R the demanded inequality (10) is reached.
For p ∈ [1, 2],we have

∥ Re(eiθT) ∥p ≤
(
∥ Re(eiθA) ∥pp ++ ∥ Re(eiθD) ∥pp +2 ∥ F ∥pp

) 1
p ( by (9) )

≤

(
∥ Re(eiθA) ∥pp + ∥ Re(eiθD) ∥pp +

1
2p−1 (∥ B ∥p + ∥ C ∥p)p

) 1
p

≤

(
wp

p(A) + wp
p(D) +

1
2p−1 (∥ B ∥p + ∥ C ∥p)p

) 1
p

.

By taking the supremum over θ ∈ R the inequality (11) is satisfied.

We point out that a lower bound for the Schatten p-generalized numerical radius has already been es-
tablished by Bottazi and Conde in [10]. Indeed, Using a Clarkson inequality obtained by Hirzallah and
Kittaneh in [12] it follows directly that inequality (10) is bounded below by 1

2p−1 ∥ T ∥pp and (11) is bounded
below by 1

2 ∥ T ∥pp .
An application of Theorem 3.6 is the following.

Corollary 3.7. Let A,B,D ∈Mn. Then,
For p ∈ [2,∞[ the following inequalities hold:

1. wp

(
A 0
0 D

)
≤

1

2
2
p −1

(
wp

p(A) + wp
p(D)

) 1
p
,

2. wp

(
A B
0 0

)
≤

1

2
2
p −1

(
wp

p(A) + 1
2p−1 ∥ B ∥pp

) 1
p ,

3. wp

(
A B
B A

)
≤

1

2
2
p −1

(wp
p(A + B) + wp

p(A − B))
1
p .

And for p ∈ [1, 2], the following hold:

1. wp

(
A 0
0 D

)
≤

(
wp

p(A) + wp
p(D)

) 1
p ,

2. wp

(
A B
0 0

)
≤

(
wp

p(A) + 1
2p−1 ∥ B ∥pp

) 1
p ,

3. wp

(
A B
B A

)
≤

(
wp

p(A + B) + wp
p(A − B)

) 1
p .

We first cite the following facts, which will be needed in the next propositions and theorems: For p ∈ [1,∞[,∥∥∥∥∥∥
(

A 0
0 B

)∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(

0 A
B 0

)∥∥∥∥∥∥
p

, (13)
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(

A 0
0 A∗

)∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(

A 0
0 A

)∥∥∥∥∥∥
p

, (14)

∥∥∥∥∥∥
(

0 A
B 0

)∥∥∥∥∥∥
p

=
(
∥ A ∥pp + ∥ B ∥pp

) 1
p . (15)

A. Al-Natoor and W. Audeh [3] recently provided the following refinement of the triangle inequality
for the of the Schatten p-norm

∥ A + B ∥p≤ 21− 1
p wp

(
0 A
B∗ 0

)
≤∥ A ∥p + ∥ B ∥p,

when A,B ∈ Mn. By using the following lemma (see [18] for a proof), we can find more inequalities
concerning wp(.).

Lemma 3.8. Let X ≥ mI ≥ 0 for some positive real number m, Y ∈Mn, and N(.) is a unitarily invariant norm. Then

mN(Y) ≤
1
2

N(YX + XY). (16)

We have the following proposition.

Proposition 3.9. Let A,B ∈Mn be Hermitian matrices and 0 ≤ mI ≤ X for some positive real number m. Then

m ∥ A − B ∥p≤ wp(AX − XB) ≤∥ AX − XB ∥p . (17)

Proof. Let T = AX − XB, then T + T∗ = (A − B)X + X(A − B). It follows, that

m ∥ A − B ∥p ≤
1
2
∥ (A − B)X + X(A − B) ∥p (Y by A-B in (17))

=
1
2
∥ T + T∗ ∥p

=∥ Re(T) ∥p
≤ wp(T) = wp(AX − XB).

The right inequality follows from the fact that for all A ∈Mn wp(A) ≤∥ A ∥p .

Also we have the following two theorems.

Theorem 3.10. Let A,B ∈Mn, p ∈ [1,∞[ and 0 ≤ mI ≤ X for some positive real number m. Then

m ∥ A − B ∥p≤ 2
−1
p wp

(
0 AX − XB

A∗X − XB∗ 0

)
≤

1
2

(
∥ AX − XB ∥p + ∥ A∗X − XB∗ ∥p

)
Proof. Let Ã =

(
0 A

A∗ 0

)
, B̃ =

(
0 B
B∗ 0

)
and X̃ =

(
X 0
0 X

)
.We have,

∥ Ã − B̃ ∥p =∥
(

0 A − B
A∗ − B∗ 0

)
∥p

=∥

(
A − B 0

0 A∗ − B∗

)
∥p (by (12) )

=∥

(
A − B 0

0 A − B

)
∥p (by (13))

= 2
1
p ∥ A − B ∥p . (for A = B in (14))
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So,

2
1
p m ∥ A − B ∥p= m ∥ Ã − B̃ ∥p ≤ wp

(
ÃX̃ − X̃B̃

)
(By the left hand side of (17))

= wp

(
0 AX − XB

A∗X − XB∗ 0

)
= 2

1
p−1 sup

θ∈R
∥ eiθ(AX − XB) + e−iθ(A∗X − XB∗)∗ ∥p (by (15))

≤ 2
1
p−1

(
sup
θ∈R
∥ eiθ(AX − XB) ∥p + sup

θ∈R
∥ e−iθ(A∗X − XB∗) ∥p

)
= 2

1
p−1 sup

θ∈R
| eiθ
| ∥ AX − XB ∥p +2

1
p−1 sup

θ∈R
| e−iθ

| ∥ A∗X − XB∗ ∥p

= 2
1
p−1

(
∥ AX − XB ∥p + ∥ A∗X − XB∗ ∥p

)
.

Thus,

m ∥ A − B ∥p≤
1

2
1
p

wp

(
0 AX − XB

A∗X − XB∗ 0

)
≤

1
2

(
∥ AX − XB ∥p + ∥ A∗X − XB∗ ∥p

)
as required.

Theorem 3.11. Let X,Y ∈Mn and p ∈ [1,∞[. Then,

w2
p

(
0 X
Y 0

)
≥

1
4

(
∥ X∗X + YY∗ ∥pp + ∥ XX∗ + Y∗Y ∥pp

) 1
p . (18)

Proof. Let T =
(

0 X
Y 0

)
, Hθ = Re(eiθT) and Kθ = Im(eiθT). Then

H2
θ =

1
4

(
XX∗ + Y∗Y + 2Re(e2iθXY) 0

0 X∗X + YY∗ + 2Re(e2iθYX)

)
,

K2
θ =

1
4

(
XX∗ + Y∗Y − 2Re(e2iθXY) 0

0 X∗X + YY∗ − 2Re(e2iθYX)

)
.

And so, H2
θ + k2

θ =
1
2

(
XX∗ + Y∗Y 0

0 X∗X + YY∗

)
.

If M = XX∗ + Y∗Y and N = X∗X + YY∗ then,

1
2
∥

(
M 0
0 N

)
∥p =∥ H2

θ + K2
θ ∥p

≤∥ H2
θ ∥p + ∥ K2

θ ∥p

≤∥ Hθ ∥2p + ∥ Kθ ∥2p≤ w2
p(T) + w2

p(T) = 2w2
p(T).

Therefore,

w2
p(T) ≥

1
4
∥

(
XX∗ + Y∗Y 0

0 X∗X + YY∗

)
∥p

=
1
4
∥

(
0 XX∗ + Y∗Y

X∗X + YY∗ 0

)
∥p (by (12))

=
1
4

(
∥ XX∗ + Y∗Y ∥pp + ∥ X∗X + YY∗ ∥pp

) 1
p (by (14))

as required.
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As an application of this theorem is the following.

Corollary 3.12. For X ∈Mn then w2
p(X) ≥ 1

22+ 1
p
∥ X∗X + XX∗ ∥p .

Proof. We have

w2
p

(
0 X
X 0

)
≥

1
4

(
∥ X∗X + XX∗ ∥pp + ∥ XX∗ + X∗X ∥pp

) 1
p ( for X = Y in (18) )

= 2
1
p−2
∥ XX∗ + X∗X ∥p .

But,

wp

(
0 X
X 0

)
= 2

1
p−1 sup

θ∈R
∥ eiθX + e−iθX∗ ∥p (for A=B=X in (15) )

= 2
1
p sup
θ∈R
∥ Re(eiθX) ∥p= 2

1
p wp(X).

So, 2
2
p w2

p(X) =
(

0 X
X 0

)
≥ 2

1
p−2
∥ X∗X + XX∗ ∥p . And therefore,

w2
p(X) ≥

1

22+ 1
p

∥ X∗X + XX∗ ∥p

as required.

Remark First note that the majority of the inequalities and results provided in this paper, can be ex-
tended to B(H), the space of all bounded linear operators on a complex separable Hilbert space H. Second
a further investigation could be done to find an upper bound for the Schatten p−generalized numerical
radius for partitioned 2 × 2 block matrices by using some ideas for [6, 22].
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