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Abstract. In this paper we present the curvature tensors of Kenmotsu manifold satisfying the conditions
WiX,Y) - Wy = 0, Wi(X,Y) - Wy = 0, Wi(X,Y) - W, = 0, Wi(X,Y) - W3 = 0, Wi(X,Y)- W, = 0 and
Wi(X,Y) - Wy = 0. According to these cases, Kenmotsu manifolds have been characterized. We consider
that some interesting results on a Kenmotsu metric manifold are obtained.

1. Introduction

In 1972, K. Kenmotsu studied a class of contact Riemannian manifold and he called them as Kenmotsu
manifold[8]. He proved that if a Kenmotsu manifold satisfies the condition R(X, Y).R = 0, then the manifold
has negative curvature -1, where R is the Riemannian curvature tensor of type (1, 3) and R(X, Y) denotes the
derivation of the tensor algebra at each point of the tangent space. The properties of Kenmotsu manifold
have been studied by several authors such as A. Haseeb,[6], Y. Wang [20], [21], C. Ozgﬁr [10], M. M. Tripathi

[18], R.N. Singh [15], D. G. Prakasha [13], U. C. De [4], K. De [3] and many others. Recently, some of these
authors have worked as follows.

In 2013, On W2 -curvature tensor in a Kenmotsu manifold had been studied by R.N. Singh, S. K. Pandey
and G. Pandey [15]. After, A. Haseeb examined the curvature tensor, the Ricci tensor and the scalar curva-
ture in an e—Kenmotsu manifold with respect to the semi-symmetric metric connection. Also, he studied
projectively flat and £—projectively flat e-Kenmotsu manifold with respect to the semi-symmetric met-
ric connection. At the same time he investigated partially Ricci-pseudosymmetric e-Kenmotsu manifold

with respect to the semi-symmetric metric connection and proved that such a manifold is an n—Einstein
manifold[6].

Subsequently, D. G. Prakasha and B. S. Hadimani researched a conharnanically flat Kenmotsu manifold
with respect to the connection V. They studied locally ¢—conharmonically symmetric Kenmotsu manifold
with respect to the connection V. Also, theiir study is devoted to Kenmotsu manifolds with respect to the
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connection V satisfying the conditions K(&,X)-R=0and P(§, X)-R =0, respectively[13]. In addition, some
authors study this topic in different manifolds.

The object of this paper is to study properties of some certain curvature tensors in a Kenmotsu metric
manifold. Furthermore, we survey Wi (X, Y)- Wy =0, Wi(X,Y)- W1 =0, Wi(X,Y)- W =0, Wi(X, Y)- W3 =0,
Wi(X,Y)- Wy =0 and Wi(X,Y)- W) =0, where Wy, Wi, WY, W, W3 and W, denote curvature tensors of
manifold, respectively. Additionally, 3-dimensional Kenmotsu manifold example is given.

2. Preliminaries

Let M be a (2n + 1)—dimensional almost contact metric manifold with an almost contact metric structure
(¢,&,n,9), that ¢ is a (1,1) tensor field, & is a vector field, i1 is a 1-form and the Riemanniann metric g on M
satisfying the following conditions

¢*(X) = =X +n(X)&, n(¢$X) =0, 1

n& =1 ¢£=0, n(¢)=0 (2)
forall X, Y € x(M)[9]. Let g be Riemannian metric compatible with (¢, £, n), that is

9(@X, oY) = g(X, Y) = n(X)n(Y), )

or equivalently,

9X, Y) = —g(¢X,Y) and g(X, <) =n(X) (4)
forall X, Y € x(M)[2]. If in addition to above relations

(Vx@)Y = -n(Y)pX — g(X, pY)S, ()
and

Vx& =X -n(X)<, (6)

where V denotes the Riemannian connection of g hold, then M(¢, &, 1, g) is called an almost Kenmotsu
manifold. An almost Kenmotsu manifold becomes a Kenmotsu manifold if

9(X, pY) = dn(X, Y). )
In a Kenmotsu manifold M, the following relations hold[4, 8]:

(VxmY = g(X, Y) = n(X)n(Y), 8)

R(& X)Y = n(Y)X - g(X, Y)E, (10)

5(X, &) = —(n - Hn(X), (11)

Q¢ =—-(n-1), (12)

where R is the Riemannian curvature tensor and S is Ricci tensor defined by S(X, Y) = g(QX, Y), where Q
is Ricci operator. It yields to

S@X, PY) = S(X,Y) + (n = Hn(X)n(Y). (13)
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Definition 2.1. A Kenmotsu manifold M is said to be an n—Einstein manifold if its Ricci tensor S of the form
S(X,Y) = ag(X, Y) + pn(X)n(Y) (14)

for arbitrary vector fields X, Y; where a and f are functions on (M?"*1, g). If B = 0, then n— Einstein manifold becomes
Einstein manifold[8, 14].

Let M be a (21 + 1)—dimensional Kenmotsu manifold. The curvature tensor R of M with respect to the
connection V is defined by

R(X,Y)Z = VxVyZ - VyVxZ - Vix 1 Z. (15)
Then, in a Kenmotsu manifold, we have
ﬁ(X, Y)Z =R(X, Y)Z+g(Y,2)X — 9(X, 2)Y, (16)

where R(X, Y)Z = VxVyZ — VyVxZ — V|x v|Z, is the curvature tensor of M with respect to the connection V.
The Ricci tensor S and the scalar curvature 7 of the Kenmotsu manifold M with respect to the connection

V is given by
5(X,Y) = Z g(R(e;, X)Y,ei) = S(X,Y) + (n - D)g(X, Y) (17)
=
and
7= Y Sei e) =r+n(n—1), (18)

i=1

where 7 and r are the scalar curvatures of the connection V and V, respectively[16, 17, 22].

The concept of Wy-curvature tensor was defined by [12]. Wy-curvature tensor, W;—curvature tensor,
Wf —curvature tensor, W—curvature tensor, W3 -curvature tensor and Wy-curvature tensor of a 2n + 1)-
dimensional Riemannian manifold are defined respectivelly as follows:

Wo(X, Y)Z = R(X, Y)Z — %[S(Y, Z)X - g(X, Z)QY], (19)
Wi(X,Y)Z = R(X, Y)Z + %[S(Y, Z)X - S(X, Z)Y], (20)
WX(X,Y)Z = R(X, Y)Z - %[S(Y, 7)X - S(X,Z)Y], 1)
Wa(X, Y)Z = R(X, Y)Z - %[g(Y, Z)QX - g(X, 2)QY, (22)
W5(X, Y)Z = R(X, Y)Z - %[S(X, 2)Y - g(Y, 2)QX], (23)
Wa(X,Y)Z = R(X, Y)Z + %[g(X, 2)QY — g(X, V)QZ], (24)

forall X,Y,Z € x(M)[11, 12].
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3. Some Curvature Results On Kenmotsu Metric Spaces

In this section, we will give the main results for this paper.
Let M be a (2n + 1)—dimensional Kenmotsu metric manifold and we denote W curvature tensor from
(19), Therefore, we have

n+1
2n

Putting X = & in (25), it is obtained

Wo(X, V)& = n(X)Y — n()X + %U(X)QY- (25)

n+1

Wo(&, V)& =Y - —

1
nM&+ 5 QY. (26)
In (20) choosing Z = £ and using (9), we obtain

Wi, M = (o ne0Y - 10)X). @)

Setting X = &£ in (20),

Wie, N2 = @Y - g2 + 5501, 2)¢ 28)
In (28), it follows
Wae, e = 2L r = e, 9

From (21) and (9), we acquire

WX, E = S0 = n0X). (30)
and
WHEE = S - nme) Q)

In the same way, putting Z = £ in (22) and using (9), we have

Wa(X, )& = n(X)Y = n(Y)X — %{W(Y)QX - n(X)QY}. (32)

In (32), using X = &, we get

n+1
2n

Choosing Z = &, in (23), we obtain

Wae, 1) = Y = Sl + -0 (33)

Wa(X, V)€ = 22100 - n0X + 5-1(NQX. &
In (34) it follows
Wa(e, e = 2Ly — ). (35)

2n
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In (24), choosing Z = £ and using (9), we obtain

Wi(X, Y)E = n(X)Y —n(Y)X + %{U(X)QY +(n—1)g(X, Y)&}. (36)
Putting X = £ in (36),
n+1 1
Wi, Y)E=Y - o nY)s + 7, QY (37)

Theorem 3.1. Let M*"*1(¢h, &, 1, g) be a Kenmotsu manifold. Then, W1(X,Y) - Wy = 0 if and only if M is an
n—Einstein manifold.

Proof. Suppose that W1(X,Y) - Wy = 0. This implies that
WMiX, )Wo)U W)Z = Wi(X, V)Wo(U, W)Z — Wo(W1 (X, Y)U, W)Z
~Wo(U, Wi(X, Y)W)Z
—Wo(U, WYW1(X, Y)Z =0, (38)
forany X, Y, U, W, Z € x(M). Taking X = Z = ¢ in (38), making use of (25) and(28), for A = —”2—;1, B =4

1 e
C= 3’; , we have

W1 E, Wo)L W)E = Wi (&, V)((LDW + An(W)U + Bn(L)QW)
—Wo(Cn(U)Y) — g(Y, U)E + BS(Y, U)E, W)E
—Wo(U, Cn(W)Y — g(Y, W)& + BS(Y, W)&)E
—Wo(U, W)(CY - Cn(Y)¢&) = 0. (39)
Taking into account (25), (26), (28) in (39), we obtain
CWo(U, W)Y + n(t)g(Y, W)é + BC(n — 1)n(U)n(W)Y
=B n(U)S(Y, QW)E — g(Y, L)W ~ Bg(Y, LHQW
+BS(Y, )W + B*S(Y, U)QW + BCh(U)n(W)QY
+g(Y, WU + An(U)g(Y, W)E + Bg(Y, W)QU
—BS(Y, W)U — ABn(U)S(Y, W)& — B2S(Y, W)QU = 0. (40)
Putting (19), (4), choosing W = £ and inner product both sides of (40)
by & € x(M), we arrive
—Cn(Mn(U) + Cg(U,Y) + BCS(U, Y) + 2n(Y)n(U)
+BC(n = )n(YV)n(U) + B*(n = 1)n(Y)n(U) - g(¥, U)
+B(n — 1)g(U,Y) + BS(Y, U) - B*(n — 1)S(Y, U)
+An(YV)n(U) + AB(n — ))n(Y)n(U) - B*(n — 1)*n(Y)n(U) = 0. (41)
From (11), we conclude

(1 -mn)
2

SUY) =2(1 = nmg(U,Y) + n(n(y).

So, M is an n—Einstein manifold. Conversely, let M?>'*(¢, &, 1, g) be an n—Einstein manifold i.e. S(U,Y) =
2(1 = mg(U, Y) + G2 n(U)n(Y), then from (41), (40), (39) and (38), we have W;(X,Y)- Wy = 0. O

Theorem 3.2. Let M?"*(¢, &, 1, g) be a Kenmotsu manifold. Then, W1(X,Y)- Wy = 0ifand only if M is an Einstein
manifold.
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Proof. Let W1(X,Y) - Wy = 0. This yields to
WX, V)W)UW)Z = Wi(X, Y)Wi(U, W)Z — Wi (Wi (X, Y)U, W)Z
-Wi(U, Wi(X, Y)W)Z
-Wi(U, W)W1(X, Y)Z =0, (42)

forany X, Y, U W, Z € x(M). Taking X = Z = ¢ in (42) and using ( 27), (28), (29), for A = 32;1, B = ﬁ, we
obtain

Wi E VWU W)E = Wi(E, Y)(An(DW — An(W)U) — Wi (An(LD)Y
—g(Y, )& + BS(Y, U)E, W)E — Wil n(W)Y
—g(Y, W)& + BS(Y, W)E)E — Wi (U, W)(AY
—An(Y)&) =0 (43)

and we arrive

An)Wi (&, Y)W = An(W)Wa (&, Y)U — An(LD)Wa (Y, W)<E

+g(Y, L)W (E, W)E = BS(Y, L)W (&, W)E — An(W)Wa (U, Y)<E

+g(Y, W)W1(U, £)& — AWL(U, W)Y + An(Y)W1 (U, W)E = 0. (44)
Taking into account that (28), (27), (29) and inner product both sides of (44) by Z € x(M), we get

GAWL(U, W)Y, Z) - An(W)(Z)g(Y, L) ~ Ag(¥, U)g(W, Z)

+An(W)n(2)g(Y, U) + ABS(Y, U)g(W, Z) + Ag(Y, W)g(U, Z)

—ABS(Y, W)g(U, Z) = 0. (45)

Making use of (11), (12) and choosing U = Z = ¢;, £ 1 < i < n, for orthonormal basis of (M) in (45), we
conclude

SO, W) = =2ug(Y, W).

Thus, M is an Einstein manifold. Conversely, let M?>"*1(¢, &, 1, g) be an Einstein manifold i.e. S(Y,W) =
—2ng(Y, W), then from equations (45), (44), (43) and (42), we have Wi(X,Y) - W; = 0. Thus, this completes
the proof. O

Theorem 3.3. Let M*"*!(¢, &, 1, 9) be a Kenmotsu manifold. Then, W1(X,Y)-W} = 0ifand only if M is an Einstein
manifold.

Proof. Suppose that Wi (X, Y) - W} = 0. This yields to
WX, Y)WHYUW)Z = Wi(X, Y)WT (U W)Z - W (W(X, Y)U, W)Z
~WH(U, Wi(X, Y)W)Z
-Wi (U, W)Wi(X, Y)Z =0, (46)
for any X, Y, U, W,Z € x(M). Taking X = Z = & in (46) and using (28), (30), (31), for A = %1, B = - L

2n’

C= 351, we obtain
Wi ENWHUW)E = Wi(E, V) AW — An(W)U) — Wi (Cn(U)Y
—g(Y, U)& = BS(Y, )&, W)E — Wi (U, n(W)Y
—-g(Y, W)& = BS(Y, W)&)& — Wi (U, W)(CY
—Cn(ME) =0 (47)
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and from (47), we arrive

AW (&, Y)W = An(W)W1 (&, )U — Cn(L) W7 (Y, W)E

+g(Y, YW (&, W)E + BS(Y, LYW7 (£, W)E — Cn(W)W (U, Y)&

+9(Y, WW} (U, £)& — CWE (U W)Y + C(V)W; (U W)E = 0. (48)
Taking into account that (21), in (48), we get

CWE (U, W)Y — Ag(Y, )W — ABS(Y, )W

+Ag(Y, W)U + ABS(Y, W)U = 0. (49)
Setting U = ¢&, using (11) and inner product both sides of (49) by & € x(M), we have

S(Y, W) = 20 + Dg(¥, W).

Thus, M is an Einstein manifold. Conversely, let Mz”*l(qb, &,1,9) be an Einstein manifold, i.e. S(Y,W) =
(2n + 1)g(Y, W), then from (49), (48), (47) and (46), we obtain Wi(X,Y)- W} =0. O

Theorem 3.4. Let M*"*1(¢, &, 1, g) be a Kenmotsu manifold. Then, W1(X, Y)- W, = 0if and only if M is an Einstein
manifold.

Proof. Let W1(X,Y) - W, = 0. This implies that
WX, VW)U, W)Z = Wi(X, Y)Wa (U, W)Z = Wor (Wi (X, Y)U, W)Z

-Wo (U Wi(X, Y)W)Z

-Wa(U WYW1(X, Y)Z =0, (50)
for any X, Y, U W,Z € x(M). Setting X = Z = ¢ in (50) and making use of (32), (29), (28), for A = —%,
B = —%, C= 3’21;1, we obtain

(W&, V)W2)(U, W)E = Wi(E, Y)(n(L)W — n(W)U) + Bn(W)QU

=Bn()QW) - Wo(Cn(L)Y — g(Y, U)¢

=BS(Y, U)E, W) = WU, n(W)Y — g(Y, W)&

=BS(Y, W)&)E — Wor (U, W)(CY = Cn(Y)E) = 0. (51)
Using of (28), (29), (32)and (51), we get

CW(U, W)Y + (L)g(Y, W)E — n(W)g(¥, L)E + BAn(W)S(Y, QU)E

—~B2(LD)S(Y, QW)E — g(¥, L)W — An(W)g(Y, U)E + Bg(Y, LDQW

—BS(Y, U)W — ABn(W)S(Y, U)E + B2S(Y, 1)QW + g(Y, W)U

+AN(U)g(Y, W)E — Bg(Y, W)QU + BS(Y, W)U

+An(UDS(Y, W)E — BAS(Y, W)QU = 0. (52)
Inner product both sides of (52) by & € x(M) and using U = &, putting (22), we have

Cn(W)n(Y) + CAg(W,Y) + BC(n — 1)n(W)n(Y)

=n(Wn(Y) = B*(n = n(W)n(Y) - B*S(Y, QW)

=n(W)n(Y) = An(Wn(Y) + AB(n = 1)n(W)n(Y)

+B2(n = 12 n(W)n(Y) + 29(Y, W) + Ag(W,Y)

+B(n —1)g(W,Y) + BS(Y, W) + AS(Y, W)

+B%(n — 1)S(Y, W) = 0. (53)
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From (53) and by using (11), for the sake of brevity, we set

E = 2n(3n-1),
F = n+1,
D =0

and we arrive
EFS(Y, W) = Eg(Y, W) + Dn(W)n(Y),

Thus, M is an Einstein manifold. Conversely, let Mz”*l(qb, &,1,9) be an Einstein manifold, i.e. FS(Y, W) =
Eg(Y, W) + Dn(W)n(Y), (F # 0), then from equations (53), (52), (51) and (50), we obtain W1(X,Y) - W, =0,
which verifies our assertion. [

Theorem 3.5. Let M*"*\(¢, &, 1, 9) be a Kenmotsu manifold. Then, W1(X,Y) - W3 = 0 if and only if M is an
n—Einstein manifold.

Proof. Let W1(X,Y) - W3 = 0. This means that
WX W)U W, Z) = Wi(X Y)Ws(U W)Z - Wa(Wi (X, Y)U, W)Z
-Ws(U W1i(X, Y)W)Z
_WB(U/ W)Wl (X/ Y)Z = O/ (54)

f(])Dr apy X, Y, UW,Z € x(M). Setting X = Z = ¢ in (54) and making use of (34), (28), for A = 3’;1, B = ﬁ,
obtain

we

W&, VW)U W)E = Wi(&, Y)(An()W — n(W)U + Bn(W)QU)
—Ws(An(W)Y — g(Y, )& + BS(Y, U)E, W)E
—Ws(U, n(W)Y = g(Y, W)& + BS(Y, W)E)E
—Ws(U, W)(AY = An(Y)<E) = 0. (55)

Using (34), (35), (28) in (55), we get

AWS(U, W)Y —n(W)g(Y, U)E + Bn(W)S(Y, U)E

+AB(n = yn(W)n(L)Y + Br(W)S(Y, L)

+AB(U)N(W)QY = Ag(Y, L)W — B>n(W)S(Y, QU)E

+ABS(Y, U)W — ABn(W)S(Y, U)é + Ag(Y, W)U

+AN(W)g(U, Y)E = ABS(Y, W)U = 0. (56)
Making use of (23), choosing U = &, and inner product both sides of (56) by & € x(M), we have

A2 n(V)n(W) = A%g(Y, W) = n(Y)n(W) = 2B(n = ))n(Y)n(W)

+B*(n — )n(Y)n(W) — ABS(Y, W) = 0. (57)
From (57) and by using (11), we conclude

4n - 3n? - n?—2n
3n—-1

SO, W) = (g0 W) +

MY)n(W).

This tell us, M is an n-Einstein manifold. Conversely, let M be an n-Einstein manifold, i.e. S(Y, W) =
(A=3121) (Y, W) + (S=2)n(Y)n(W), then from (54), (55), (56) and (57), we have Wi(X,Y) - W = 0. This
completes of the proof. [
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Theorem 3.6. Let M>"*1(¢, &, 1, g) be a Kenmotsu manifold. Then, Wy(X,Y) - Wy = 0 if and only if M is an
n—Einstein manifold.

Proof. Suppose that W1(X,Y) - Wy = 0. This implies that
WX VW)U W, Z) = Wi(X, V)Wu(U W)Z — Wy(W1 (X, Y)U, W)Z

~Wa(U Wi(X, Y)W)Z

_W4(u/ W)Wl (X/ Y)Z = 0/ (58)
forany X, Y, U, W Z € x(M). Setting X = Z = & in (58) and making use of (36), (28), (29), for A = &1, B = %=1,
C= 3gn1, D= 2—, we obtain

Wi(E, V)W(U W)E = Wi (&, Y)W = n(W)U + Dn(LhQW
+Ag(U, W)&) = Wa(Cn(U)Y — g(Y, L)<
+DS(Y, U)E, W)E = Wa(U, Cn(W)Y
—g(Y, W)E + DS(Y, W)€)éE
Wy (U, W)(CY - Cn(Y)E) = 0. (59)
Using (36) and (37) in (59), we get
CW4(U, W)Y — n(t)g(Y, W)E + Dn(U)S(Y, W)<
+n(W)g(Y, U)E — Dn(W)S(Y, U)E — DC(n — 1)n(U)n(W)Y
—~Dn(U)S(Y, W)& + D*n(LD)S(Y, QW)E + ACg(U, W)Y
—ACn(U)g(Y, W)€ + g(U, Y)W — Bn(W)g(Y, U)<S
+Dg(Y, )QW — DS(Y, L)W + BDn(W)S(Y, )&
~D?S(Y, L)QW — CDn(W)n(LDQY — ACn(W)g(U, Y)&
—g(Y, W)U + Bn(U)g(Y, W)& — Dg(Y, W)QU
+DS(Y, W)U — BDn(U)S(Y, W)E + D*S(Y, W)QU = 0. (60)
Making use of (24) and choosing W = £ and inner product both sides of in (60) by & € x(M), we have
Cn(Y)n(U) — Cg(Y, U) = 2n(Y)n(U) + 29(Y, U)
~DS(Y, 1) — D*(n — 1yn(V)n(U) — Bg(¥, L)
—-D(n - 1)g(Y, U) — DS(Y, U) + BDS(Y, U)
+D*(n — 1)S(Y, U) — ACg(U, Y) + Bn(Y)n(U)
+BD(n — Dn(Y)n(U) + D*(n — 1)*n(Y)n(U) = 0. (61)
From (61) and (11), we obtain

6n—5n% -1 1-2n%-3n
T)g(YI u) + (T)U(Y)U(U)-

Sy U) =(
Thus, M is an n—Einstein manifold. Conversely, let M be an n—Einstein manifold, i.e. S(Y, U) = (%= 5”2 ==y (Y, U)+

(= il —=31)n(Y)n(U), then from (61), (60), (59) and (58), we obtain W1(X,Y) - Wy = 0. So, this completes of the
proof O

Example 3.7. We consider the 3-dimensional manifold M = {(x,y,z) € R3, z # 0}, where (x, y,z) are standart
coordinates of R3. The vector fields

d d d

— 2 Z
61—(35,

€ =€ —
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Let g be the Riemannian metric defined by

g(e1, e) gle1,e3) = glez, e3) =0,
gley, e1) g(es,e2) = glez,e3) = 1.

Let 1 be the 1-form defined by n(X) = g(X, e3) for any X € x(M). Let ¢ be the (1,1) tensor field defined by

J 0 J J 0
$(5) = a3y <P(a—y) =5 9(5)=0

Thus,
Pler) = —e,  Ple) =e1,  Ple3) =0,

for any vector field X = A% + )\2% + A3 2 € x(TR®) than we have

gXX)=AT+ A5+ A5, 90X, ¢0X) = AT+ A]

and
O*°X = —)\1% - /\Z;—y = -X +n(X)es
T](€3) = 1/
9(PX,9X) = g(X, X) = n(X)n(X)
for any X ex(M).

Then, for ez = &, the structure (¢, &, 1, g) defines an almost contact metric structure on M. Let V be the Levi-Civita
connection with respect to the metric tensor g. Then, therefore, we get

[es,e1] = —e1, [e1,e2] =0, [ex, €3] =en.

The Levi-Civita connection V of the metric g is given by the Koszul's formula

29(VxY,2) = Xg(Y,2)+Yg(Z X) - Zg(X,Y)
—g(X, [V, Z]) - g(Y, [X, Z]) + g(Z, [X, YD)

By using the above formula, we obtain

Veer = —ey, Ve,e1 =0, Vee1 =0,
Veer = 0, Ve,e2 = —e3, Ve,e2 =0,
Vees = e, Ve,e3 = ey, Ve,ez = 0.

From the above properties the manifold satisfies Vx& = X — n(X)&, for & = e3. Hence, the manifold is a Kenmotsu
manifold. Using the formula R(X,Y)Z = VxVyZ — VyVxZ — V|x yZ, we calculate the following expressions:

R(er,e)es = 0, R(ez, e3)e3 = —e, R(e1, e3)es = —ey,
R(e1,e)ea = —e, R(e, e3)er = —e3, R(e1, e3)ex = 0,
R(elre2)el = 0/ R(eZ/ 63)61 = 0/ R(€1,€3)€1 =e1.

From the above expressions of the curvature tensor R, we obtain that

S(er, e1)

g(R(e1, e2)ez, e1) + g(R(eq, e3)es, e1)
-
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Similarly, we have

So,

S(Ez, 62) = 5(63,63) =-2.

3
r= Z S(e;, e;) = —6.
i=1

We note that, here , r is a constant. Therefore, it can be easily verified that the manifold is an Einstein manifold with
respect to Levi-Civita connection.
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