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Abstract. This paper is to investigate the monotone variational inequalities (VIPs) in real Hilbert spaces. We
constructed two iterative algorithms based on subgradient extragradient algorithms and Tseng’s algorithms

for solving VIPs. Convergence analysis of the suggested methods are proved. Several numerical examples
to illustrate the efficiency of the methods are given.

1. Introduction

This paper is to consider the following VIPs ([18]) of finding a point x* € C such that
(DPx*,x—x")y>0, VYx € C, (1)
where H is a real Hilbert space with the inner product (-, -), and the norm || - ||, C is a nonempty closed
convex subset of H, and ® : C — H is an operator. We use VI(®,C) to denote the solution set of problem
M-
VIPs is animportant research field in fundamental mathematics, which has been expanded in application
mathematics and computational mathematics, especially in optimization theory and methods, fixed point

theory and methods, equilibrium problems and split problems, see for example, [2, 4, 5,9, 10], [25]-[38] and
so on. It is known that the point x* € VI(®, C) iff x* € FixPc(ld — p®), i.e.,

x" = Pe(x" = p®x*), p > 0. (2)

Recently, many scholars devoted to study VIPs” numerical solutions ([13, 19]) and semivariational
inequlity problems ([12]). The basic algorithm for solving VIPs is defined by

Xg € 7’{, (3)
Xm+1 = Po(xm — pPxy), Ym >0,
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where p > 0 is a constant.

This algorithm is so-called the projection gradient algorithm ([11, 14]). However, the projection gradient
method (3) requires that @ is inverse-strongly monotone ([16, 17]. In order to weaken this assumption,
Tseng considered to relax extragradient technique in ([22]). The specific structure is as follows:

Xg € 7‘(,
Ym = PC(xm - P(Dxm), (4)
Xm+1 = Ym — P(PYy — Pxy), m 20,

where p € (0, %) and S is the Lipschitz constant of ®.
On the basis of (4), in ([20]), Thong and Hieu used the inertial term w,, = X + (X — Xm-1) and
constructed an iterative algorithm which generates a sequence {x,,} via the following algorithm

xo,x1 € H,

Wy = Xy + T]m(xm — Xp-1),

Ym = Pelwm — p@wm),

Xm+1 = Ym — P(q)]/m - q)wm)rm >0.

(5)

Censor, Gibali and Reich ([6-8]) presented several subgradient extragradient algorithms for solving
VIPs. In ([9]), Verlan studied a modified extragradient algorithm with non-Lipschitz operator for solving
VIPs, and strong convergence analysis of this method is proved.

Very recently, Thong et. al. ([21]) constructed two acceleration methods by adding half-space projection in
(5) and obtained the following procedures

X0, X1 €H, xo,x1 € H,

Wy = Xy + MK — Xp=1), W = X+ N (X — X1,

Ym = Pelwm — pPwnp), and Ym = Pc(wm — pPwm), ©)
TIn={zeH {wn — pOPwy — Ym, 2 — Ym < 0)}, Im =1{z€ H : {wm — pPwy — Ym,z — ym < 0)},

zm = Pg, (wm = pOYm), Zm = Py, (wm — pOYm),

X1 = (1 = Bm)zm + Pme(Xm), Xma1 = (1= Vi = Bu)Xm + VinZ.

where p € (0, %), {nm} < [0,m), {v} € (a,b) € (0,1 = By) and {Bn} € (0,1) satistying lim;, e B = 0 and
Yozt P = 0. Here, e : H — H is a contraction mapping with coefficient x € [0,1).

Inspired and motivated by the above work, our main purpose of this paper is to construct two iterative
algorithms for solving VIPs. Our algorithms are based on subgradient extragradient methods, Tseng’s
method (4) and iterative algorithms (6). Convergence analysis of these algorithms are proved. Several
numerical examples to illustrate the efficiency of the methods are given.

2. Preliminaries

This section contains some definitions and basic lemmas, which will be used in section 3. First, in real
Hilbert space H, the following results hold: Vx,y € Hand n € R,

llxc + yI* = IIxI* +2¢x, y) + Iyl

lInx + (L= )yl = nllxl* + @ = lyl> = n(L = nllx — yIP,
llxc + yII* < [Ixl® + 2¢y, x + y).

The following expressions will be used in the sequel.

® x,, — x denotes that the sequence {x,,} weak convergence to x;
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e x,, — x denotes that the sequence {x,,} strong convergence to x;

e Fix® denotes that the set solution of fixed points of ®.

Definition 2.1. Yx,y € H,

o if|Px - Dy|| <« ||x—y |l (x=0), then @ is called k-Lipschitz continuous.
Ifx €[0,1), then @ called contractive mapping.

o if (Px — Dy, x — y) > 0, then P is called monotone.

Lemma 2.2 ([15]). Suppose that {a,,} C R* and there exists a subsequence {am;} of {ay} such that Am; < A+,
Vj € IN. Then, there exists a nondecreasing sequence {szx} C IN satisfying limy_, szx = oo and for all k € N,

® Oy < Aszi+1,
® k < Az 41-

More precisely szy is the largest number m in the set {1,2, ..., k} such that a,, < ay.1.

Lemma 2.3 ([23]). Suppose that {a,,} and {n,,} are nonnegative real sequences with 1, € (0,1) and Y ,,_onm = oo. If
there exists a sequence {b,,} with limsup,, , by, <0,and 0 < N € N such that a1 < (1 = 10y)an + Nuby for all
m > N, then limy, 0 a,,, = 0.

Lemma 2.4 ([11). Suppose that {x,,}, {0} and {1} are sequences in [0, +00), such that

+00
Xt < X+ (X — Xp1) Y 2 1,2 O < +00.

m=1
Anddn € R, foranym € N,0<n,, <n < 1. Then

1. Z:-no:ol [xm - xm—l]+ < +00, where [xm - xm—l]+ = max{xm - Xm-1, O}
2. There is a point O € [0, +00), such that lim,—, 4 X = 6.

Lemma 2.5 ([3]). Let p > 0. Then x € VI(C, ®) iff x € FixPc(Id — p®).

Lemma 2.6 ([21]). Let {x.,} be a sequence defined by (6). Let {n,,} be a non-increasing real number sequence such
that

Hm i, — xq]| = 0. 7)
m— oo ‘Bm

Then, the sequence {x,,} strong convergence to 6 € VI(C, D).

Lemma 2.7 ([3]). Suppose that C is a nonempty closed convex subset of a real Hilbert space H. Given x € H and
x*€C. Then, x* = Pox & (x —x",x* —y) 20, Vy € C.

Lemma 2.8 ([3]). Let f : H — R be a convex and subdifferentiable function with S(f,0) # 0. Then the subgradient
projection Py is a cutter and satisfies

(y—x,z-x)<0,

here y = Prox and z € S(f,0).



Z. Shan et al. / Filomat 36:5 (2022), 1557-1572 1560

Lemma 2.9. Let @ : H — H be a monotone and S-Lipschitz mapping on C and p be a positive number. Suppose
that VI(C, @) is nonempty. Let f : H — R be a continuously subdifferentiable and convex function, gf € df and
If(z) ={xeH: f(y) = f(z) +{x,y—2z),Yy € H}. Let x € H. Set
y =Pelx—p®x), t=x = pby, z=Prox — py),

where
Lol
Pro(t) = lgr(B)IP
t, gs(t) = 0.

Then, YO € VI(C, D), we have

g5(t), when gs(t) # 0,

llz = 01 < llx = O = (1 = pS)lly — x> — (1 = pS)llz — yII*.
Proof. In fact, we have

((x=pPy) —z,z—0) 20
& [l(x — p@y) — zI* + {(x — pDy) — 2,z = 0) > ||(x — pDy) — z|I*
& ((x — pPy) — z, (x — pPy) — 0) > ||(x — pDy) — z|[°
& 2(x = p@y) —z, (x = pPy) - 0) > 2||(x — pPy) — z|I”
© 2(z = (x = p®y), (x — p®y) - 6) < =2l|(x — pPy) — 2| ®)
& |lz = (x = pDY)IP + 2(z = (x = p®y), (x — pPy) - O) < —|(x — pDy) — 2|
& |lz = (x = pDy)I* + ll(x — pDy) — 61 + 2(z — (x — pPy), (x — pDy) — O)
< [lx = p®@y) - OIF - ll(x — pPy) — 2|
& llz - 0I” < lI(x - p®y) — Ol — lI(x — pDy) —zI[*.

According to (8), we have

llz = O < ll(x = p®y) — Ol = l|(x — pPy) -zl
=|lx — O + 2p(0 — z, Dy) — ||x — z]I*
= [lx = O + 2p(0 — y, Dy — DOY + 2p(0 — y, DPOY + 2p(y — z, DY) — |Ix — zII*
<llx = Ol +2p¢y — z, Py) — |Ix — 2|
<llx = Ol +2p¢y — 2, ®y) — lIx — Yl = 2p¢x — y, y — z) — Ily — 2l
=|lx =01 = llx = yIP = lly — zI* = 2(x — p®y — y,y — 2).
Now we estimate
(x=pPy—y,y—2z)={(x—pPx —y,y—2z)+{(pPx — pP@y,y — z)
<{(pDx — pDy,y — z)
< pSllx = ylllly — zll.
So,

llz = O = llx = 61> = llx = ylI* = Ily — 2II* + 2pS|lx — yllily — =l
= llx = 61 = (1 = pS)llx = ylI* = (1 = pS)lly = 2I* = pS(llx — yll = llz = yll)?
<l = 61F = (1 = pS)lly = x> = (1 = pS)llz -yl
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3. Main results

In this section, we present our main results.

Let ® be an S—Lipschitz continuous and monotone operator on H with VI(C, @) # 0. Let f : H — Rbea
continuously subdifferentiable and convex function, g € df and df(z) := {x € H : f(y) = f(z)+{x,y—2),Yy €
H.

Next, we introduce our iterative algorithms.

Take p € (0, %), {nm} € [0,7) for some n > O, {v,y} C (a,b) C (0,1 — B,,) and {B} C (0,1) satisfying the
following conditions:

m—o0

lim B, =0 and Zﬁm = oo0.
m=1

Algorithm 3.1. Initialization: Let xo,x1 € C. Set m = 1.
S51. Compute
Wy = Xy + T]m(xm - xm—l)/
Ym = Po(wm — pPwy,).

If ym = wy, then stop and yy, is a solution to the VIP. Else, go to S2.
52. Construct the subgradient projection by

)
Proltn) =1 lgr(tw)P?

tm, gr(tm) =0,
ty = Wy — pDPYy,.

gf(tm)/ when gf(tm) #0,

and compute
Zm = Prol@m — pOYm).
S3. Calculate
Xme1 = (1 = Vi = Br)Xm + VinZm.
S4. Set m:=m + 1 and return to S1.

Theorem 3.2. Assume that the {n,} is a non-increasing sequence such that

m

lim =2 ||x = Xp1ll = 0. )

m—oco ‘B
Then {x,} strongly converges to a point O € VI(C, D), here ||0|| = min{||z|| : z € VI(C, D)}.

Proof. We divide the proof into four steps.
Step 1. We show that {x,,}, {zi}, {wn) are bounded. According to Lemma 2.9, we get

125 = O < llww = OIF = (1 = pS)llym = @ull® = (1 = pS)l|zss = Youl*. (10)

From the definition of w,,, we get

”a)m - Q” = ”xm + nm(xm - xm—l) - 6”
<l — Ol + T]m”xm — X1l (11)
< Il = Ol + B 1l = Tl

Bm
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Since %lem — Xm-1]]| = 0, AN; > 0 such that
Iz — Ol < llwm — 6l < [lxm — Oll + BN1.
Therefore, we have

IXm+1 = Oll = 11 = viw = Bu)Xm + Vinzim — 6|
=11 =vm - ﬁm)(xm = 0) +vu(zy — 0) - ﬁmGH
<NA=vy = ﬁm)(xm = 0) + vz — Ol + ﬁmIIQII
Note that

(1 - Vm_,Bm)(xm = 0) + vi(zm — Ol
= (1 —Vm — ,Bm)zuxm - 6”2 + Vgn”Zm - 6”2 + 2(1 —Vm — ﬁm)vm<xm - Q,Zm - 6)
SA-vy— ,Bm)2||xm - 6”2 + Vi”Zm - 9”2 +2(1 -y - ﬁm)Vmem = Ollllz — Ol

< (1= v = )l = O + vy llz = 1 + (1 = v = BV (1 = 61 + |z = 6I).

= (1 —Vm — ,Bm)(l - ﬁm)“xm - 6”2 + (1 - ,Bm)vm“'zm - 6”2
According to (12) and (14), we get

(X = v = Bu) (X = O) + viu(zi = O)l
< (1= v = Bu)(1 = B)llx = OIF + (1 = Bun) (Il = 61l + BruN1)?
= (1= v = Bu)(L = Bu)llxm = O1F + (1 = BVl = OIF + B, NT + 2B,uNillx, — Ol)
< (1= Bu)llxm = OIF + 2(1 = Bu)Bllxm = OlIN1 + 7N
= [(1 = Bl = 61l + BN T

Therefore, according to (13) and (15), we have

¢m+1 = 61l < (1= Bu)llxm — 61l + BrulN1 + Puil|O]
= (1= Buw)llxm — Ol + B (N1 + [101])
< max{llxy — Oll, N1 + 11011}
< max{llxo — 61|, N1 + [|0]]}.

So {x,,} is bounded and {z,,}, {w,;} are bounded.
Step 2. We show that ANy > 0, such that

(1- PS)Vm“]/m - CUm”z +(1- pS)Vm“Zm - ]/m”z < lxp — 6”2 — |41 — 9”2 + ﬁmN4-
In fact,

X1 = O1F = (1 = vin = o)X + VinZus — 61
= (1 = Vi = Bun) (i = O) + Viu(zs — 6) = I
= (11 = Vi = Bun) (X = ) + Viu(zm — O)II”
= 2B{(1 = Vi = Bu) (@ = 6) + V(2 — 6), 0) + B 1161
<A = v = Bu) X = 0) + Viu(zi — O + BrulNa.

According to (14) and (16), we get

1562

(12)

(13)

(14)

(15)

(16)
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||xm+1 - 6”2 < (1 —Vm — ﬁm)(l - ﬁm)”xm - 6”2 + (1 - ﬁm)vmnzm - 6”2 + ﬁmNZ' (17)
By (10) and (17), we obtain

[Xms1 = OIFF < (1= v = Bu)(X = Bl = OIF + (1 = Bu)vullww — O + BruN2.
— (1= Bl = pOMlys = Wl = (1 = Bu)vun(1 = pS)lz = P
Since {x,,} is bounded and ||w,, — OI| < l|x,; — Ol + N1, we have
llwm — 61 < [l — OIF + BuNs. (19)
From (18) and (19), we get
X1 = O1F < (1 = v = Bu) (1 = Bl = 61 + (1 = Bu)viullxin = OIF + (1 = Bun)Viu N3
— (1= BVl = pS)IYm = @ul® = (1 = Bu)v(1 = pSzm = Yml* + pruN2
< (1= Bu)w = OIF = (1 = Bu)viu(1 = pS)lym = @il
— (1= Bu)viu(1 = pS)llz = Yl* + Bul(1 = Bun)viuN3 + N2]
< e = 61 = (1= Bu)vin(1 = pYim — @nll®
— (1 = Bu)viu(L = pS)llzws = Yul® + BuNa,

(18)

and
1- PS)Vm”ym - a)m”2 +(1- pS)Vm”Zm - ym||2 < lxwm = 9”2 = |IXpe1 — 9”2 + ﬁmN4-
Step 3. We show that

%1 = BIF < (1= Bl = 61 + ﬁm[g_m”xm = Xm-1/l(1 = B)N5

m
+ 2vill2tm = Zmllll2tm = Ol + 2(6, 6 — Xm+1)]-
In fact, we have
X1 = (1 = V)X + VinZin — BXom.
Set s;; = (1 = viy)Xm + Viuzm. Then, we get
lIsw = 61> = 111 = V)X + Vinz — 6]
= [I(1 = vin) (¥ = 6) + Viu(zi — O)I?
= (1 = vi)llem = OIP + viullzim = O + 2v5(1 = v )X — 0,2, — O)
< (1 = vi)llxm = 61 + villzm = OIF + 20, (1 = vl — Ollllzin — 6| (20)
< (1= vi)llxw = O1F + viullziw = O1F + viu (1 = viu) (12 — O + llzon — OI%)
= (1= vi)llxm — 61 + viullzm — OI
< (1 =v)llxm = 017 + villw,, — Ol
Oh the other hand, we have
llwm = 61 = 1w + 1t — Xi-1) — 61
= 11 = ) + (= X))
= |l = O + ullm = X-1l? + 2000 = 0, X = Xpi1) 2
<l = 61 + ullin = Xuol® + 20l = OlllX — Xina
< 1l = O + ullin = X1 [l = X |l + 21l — 6]

< lxy — 6”2 + anxm — Xp-1]IN5.
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Taking into account (20) and (21), we get

IS — 9”2 < (1 - Vm)”xm - 9”2 + Vm(”xm - 9”2 + T]m”xm - xm—lHNS)

< M = 61 + Nlli = Xm-1]IN5. 22
By sm = (1 = V)X + VinzZm, We get X — 5y = Vi (X — zy) and
Xm+1 = Sm = PmXm = (1 = Bum)sm — Pu(Xm = 5m) = (1 = Bu)sm = BV (Xm — Zm)-
It means that
[Xms1 = OI
= (1 = B)sm = BunVm(tm = zu) = O
= (L= B = 0) = BVt = Z) + uO)IP )

< (1 - ﬁm)”sm - 9” - 2<ﬁmvm(xm - Zm) + ﬁmez Xm+1 — 6>
< (1 - ﬁm)”sm - 9” + 2<ﬁmvm(xm - Zm)/ 0 - xm+1> + 2ﬁm<9/ 0 - xm+1>
<(@- ﬁm)”sm -0l + 2ﬁmvm”xm = Zpllll6 — x| + 2ﬁm<9/ 0 — Xp41)-

Combining (22) and (23), we get

et = O1F < (1 = Bl — O + (1 = B)1funllts — X_1lIN
+ Zﬁmvm”xm = Zllll0 — Xyl + Zﬁm<6/ 0 — Xms1)
< (1= Bl — O + ﬁm[g—’”nxm — %palld = Bu)Ns

+ 2villtm = zullllxXm — 61l + 20, 0 = X))

Step 4. Now, we proof that {||x,, — 6||> — 0} by considering two possible cases.
Case 1. AM € N, ¥m > M such that ||[x,,+1 — O* < |lx,, — O]|*. It means that lim,,—c [|x,, — O||* exists. By Step
2, we have

Lim {lym = wwll = 0, Hm |y, = zull =0,
which implies that
1z = Wmll < llzm — ]/m” + ”ym — Wyl = 0.

Similarly, we have

Mm
lwm = Xmll = NullXme1 — Xl = ——1Xps1 = Xl - B = O,

Bon

and
1 = Zmll < X5 = Wil + llwm = zmll = 0.
Thus,

||xm+1 - xm” = ”(1 —Vm — ﬁm)xm + VinZm — xm”
= lVi(zm — Xm) — ﬁmxm”
< Vnllzm = xull + ﬁm”xm” — 0.

Since {x;,} is bounded, there exists a subsequence {x;,;} of {x,} such that {x,,} = g and

lim sup(6, 6 — x;,) = limsup(6, 6 — x,;) = (0,6 — ¢).

m—oo j—oo
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From x,,, = q and [|x,, — wull — 0, we have w,, — g, and
llwm = Ymll = llwm = Pe(wm — pPwm)ll — 0.
According to Lemma 2.5, it follows that g € VI(C, ®). By 0 = Pyyca)0, we get
limsup(0, 0 — x,,) =(0,0 —q) < 0.

m—00

Since ||x41 — Xm|| = 0, we have

limsup(0, 0 — xyu+1) < 0.

m—o0

By Step 3 the condition lim,, e %llxmﬂ — Xl = 0 and Lemma 2.3, we get lim;,— [|[Xm+1 — Ol| = 0, that is,
Xm = P
Case 2. There is a subsequence {||x,,; — O} of {|lx, — 6][*} such that

1%, = OIF < 1241 — OI>, Vj € N.
In this case, according to Lemma 2.2, we get that there is a non-decreasing sequence {sz¢} of IN such that
limy o 52k = o0 and the following inequality holds: Yk € IN, we have

x5z = Ol < xsz1 = OIF, llxk = 61 < Ilxezen — O1.
By Step 2, we have

(1 - ,Bszk)eszk(l - pS)“yszk - (Uszk”2 + (1 - ,Bszk)eszk(l - pS)“Zszk - ysz;\.H2

< ”xszk - 9”2 - ”xszk+1 - 9”2 + ﬁsszél < ﬁssz4-

It follows that
%1_{2 ”]/szk - CUszk” =0, ]}I_)Ig ”Zszk - yszk” =0.
Using the same arguments as in the proof of Case 1, we get

lim ”xszk - Zszk” =(0and lim ”xszk+1 - xszkH =0,
k—oo k—oo

and

limsup(0, 0 — x¢z,+1) < 0.

k—o0
According to Step 3, we get

”xszk+1 - 9”2 < (1 - ﬁszk)”xszk - 9”2 + ﬁszk[%”xszk - xszk—lu(l - ﬁszk)NS
SZ)

+ zeszkllxszk - Zszk“”xszk - 6” + 2<6/ 0 - xszk+1>]-
It yields

e = 01 < sz 41 — O
2 Tsz;
< (1 - .Bszk)”xszk - P” + ,Bszk[_”xszk - xszk—lll(l - ﬁszk)NS

SZj

+ 2952k”xszk - Zszk””xszk 0|l +2¢6,0 - Xszi+1 ).

Therefore, limsup,_, . |lxx — 0| <0, thatis, xy —» 6. O
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Next, we construct iterative Algorithm 3.3 based on ([23]). It is worth noting that in the algorithm 3.3
the nonempty closed convex subset C is defined as C := { € H : f(¢) < 0} ([10]).

Letpp>0and p € (%Fz' 1) be two constants.
Algorithm 3.3. Initialization: Let xo,x1 € H. Set m = 1.

S1. Compute
W = X+ N (X — X—1).
S2. Construct the half-space
Tm = {wm € H: f(wn) +{gf(@m), x — wn) <0}, x € H,
and compute

Ym = ij(a)m - qu)wm)-

If Y = wp, then stop and y,, is a solution to the VIP. Else, go to S3.
S3. Calculate

Xm+1 = Ym — Pm(q)]/m - Dwy,),

and

in{M Pm}, when Oy, — Dw,, # 0
Pm+1 = ”q)ym - q)a)m“’ " " " ’

P, others.
54. Set m := m + 1 and repeat steps S1-S3.

Lemma 3.4 ([24]). Suppose that sequence {p,,} is defined by Algorithm 3.3, then we have

1. li_mm—mopm 2 min{%, PO}/
2. 0< pm+1 < P

Theorem 3.5. Suppose that sequence {x,,} is defined by Algorithm 3.3. Then YO € VI(C, ), we have
Xms1 = Ol < llwm = Oll. (24)
Proof.

Xims1 = O1F = 1y = pun( @Y — Pewy) — 61
=y = OIF + P2l PY — Pwl* = 20 Y — 0, DYy — Py
= llwm = O1F + llwm = Yul* + 2(ym — 6, DYy — Py
+ pmzllq)ym - CI)a)mll2 = 20uYm — 0, Py, — Pwyyy)
= lwm = OIF + llwm = Yull* = 2(Ym = @y Y — @) (25)
+ 20 — W, Y — O) + pmzllcbym - @wmll2
= 20uYm — 0, Py, — Owyy,)
= [lwm = O1F = llwm = Yml* + 2(Ym = @m, Y — 6)
+ 02l OY = Pl = 20 Y — 60, DY,y — Py
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Since ¥y, = Pq, (wm — pmPwy,), we have
Ym — O + PP, Y — 0) <0
or
(Ym — Oy Ym — 0) £ —pul Py, Y — O). (26)
It follows from (25) and (26) that

Xms1 = OIF < lNww — OIF = llww = Yull* = 20m( P, ym — 6)
+ szllq)]/m - (D(Umnz - 2pm<ym - 9/ (D]/m - (Da)m>
= |lwm — 9“2 — llwm, — ]/m”z + PmZH(D]/m - CDa),nHZ - 2Pm<]/m -0, q’ym>
2

2 2 2 M 2
<Mlwm = OlI" = llwm — ym” T Pm” 3 ”ym — Wl
m+1

- 2Pm<ym -0, Dy, — Do) — me<ym - 0,00)
2

< llww = O = (1 = pu? - £y — wnlP.
i+1

So, we have ||x;,41 — 0| < llwm = 0|. O

Theorem 3.6. Let the sequence {x,,} be defined by Algorithm 3.3. Suppose that {n,,} is a non-increasing sequence
such that

VI+88 —1-28
2(1-28)

0<nu<n< , 27)

where & =1 — yz. Then {x,,} is bounded in H.

Proof. To prove this theorem, we divide it into 2 steps.

2
2, K
1=puw®-~ 2

Step 1. We show that 7 < ‘i?f_’”{é;fgm < ‘1;(%§;§;2R, where & = 1—p2 LetK,, := ﬁ <1-pp?- pﬁl 1 <
"y m+
i+1
1- yz = K. Since —W is monotonically increasing in (0, %) and {p,,} is monotonically decreasing,
0 VI+8R,-1-28,, _ VI+8R-1-2&
S0 S > 1. Then, we have 1 < T EN e e
Step 2. First, we proof that {x,,} is bounded. According to Theorem 3.5, we can get
X1 — Ol < llwm — 6Ol (28)

By the construction of w,,, we can get

”wm - 6”2 = ”xm + nm(xm - xm—l) - 6”
= 11+ 1) (i = 0) = (X1 — O)| (29)

<@+ T]m)“xm - 6”2 - T]m”xm—l - 9”2 + nm(l + T]m)”xm - xm—lHZ-

From (28) and (29), we can get

xme1 = OIF < (1 + 0l = OIF = Nulltm—s = O1F + (1 + 0l = Xa |

(30)
<1+ T]m)”xm - 9”2 - nmllxm—l - 6”2 + 27]||xm - xm—1||2-
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On the one hand,

2 2
1Xms1 — Omll® = [Xms1 — Xm — T]m(xm - xm—l)”
2 2 2
= X1 — xull” + Mm (1% = Xp—1ll” = 27]m<xm+1 = Xy, X = Xpu=1) (31)
2 2
> ||xm+1 - xm” + nm2”xm - xm—l” - 2Urn“xnﬁl - xm”“xm - xm—l”

= (1 - nm)”xm+1 - meZ + (nm2 - nm)”xm - xm—1||2~

According to (28), (29) and (31) we get

X1 = O1F < (1 + )l — O1F = Ml = OIF + 1L + D)l — Xa I
— K1 = nu)llxmer = Xl = KO = 7)1 — Xl
= (1 + )l — OF = i1 — OIF = KA = 1) PXe1 — Xl (32)
+ [+ 1) = KO® = )W — X [P
= (L+ nu)llxm = OF = Nunllxu—1 = O = Yuullmer = Xll® + il — X1l

where y,, := 8(1 = 1) and iy := M1 + 1) = K> = M) = 0.
Set Ty := |[Xy — Ol = NullXm—1 — O + pmllX — Xp_1]*. From (32), we obtain

Lo = D = 11 = O1F = (1 + )l = OIF + Nl — 61
+ st Xms1 = Xll® = gl = X1
< Imsr = OIF = (1 + )l = 01 + fuallsia = O)I (33)
+ st Xms1 = Xl = ol = x|

2
< _(Vm - Hm+1)||xm+1 — Xl

Because 0 < 1, < 41 < 17, we have

VYm — Hm+1 = R(1 - nm) - 77m+1(1 + 77m+1) + R(77111+12 - T]m+1)
2 R(1 - nm+1) - nm+1(1 + T]m+l) + R(nfm_l - 7]m+1)

2 (34)
2 81 =m) =0 +n)+K0" -n)
> —(1-8)n* = (1 +28)n + K.
Combining (33) and (34), we get
Tys1 = Do < =0lxms1 = %l (35)
where, 6 := —(1 — 8)n> — (1 + 28)n + K. According to (27) we can get 6 > 0.
So, we have
T — T <0. (36)

Therefore, the sequence {I';,;} is nonincreasing.
On the other hand, due to p,, > 0, we get

2 2 2
Lo = llxp = OlI° - 7]m||xm—1 -0l + Hm”xm = X1l

2 2
> ||x, — O - T]m”xm—l -o|.
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This means
X = OIFF < Nullxm-1 — O + Ty
< nlxw-r — OIF + Ty
<<l = O + To(1 + o + ™) (37)
Iy
1-1n

IN

"o = 01 +

Similarly,
1—‘m+1 = ”xm+1 - GHZ - T]m+1||xm - 6”2 + Hm+1||xm+1 - xmllz
> [We1 = O = sl — OIF (38)
>~ llm — 61
From (37) and (38), we get

Iy
Tt < sl = O < nllxs = 61 < 7™ ixo — O + 1”_—17

It follows from (35) that

I'y
1-1

k
2 2
8 ) It = xull® < Ty = Trr < 11" lxo — O +
m=1
Iy

< lkvo = 01 + =

So we get Yr% |41 — Xmll* < 00 and [[Xy41 — Xl — 0. Note that
||xm+1 - wm||2 = ”xm+1 - xml|2 + T]mz”xm - xm—1||2 - 27]m<xm+1 — Xm, Xm — xm—1>-
So, lIXu+1 — wwll = 0. By (30) and Lemma 2.4, we have
lim |x, - 6> = 1.
m—+oo
And from (29), we can get
o = OIF = 112 = O + Il = OIF = =1 = OI) + ML + M)l — X I
We know the sequence {1,,} is bounded, and
lim ||lw, -6l =1.
m—+0o
Thus, {x,,}, {w,} and {z,,} are all bounded. O

Theorem 3.7. Suppose that the sequence {x,,} is defined by Algorithm 3.3. Then the sequence {x,,} weakly converges
to 0 € VI(C, D).

Proof. Because {x,,} is bounded, there exists a subsequence of {x,,}, which weakly converges to 6 € H.
Without loss of generality, we use {x,,} to represent the subsequence, that is x,, < 6. Since ||x,, — Wl = 0,
Wy < 0. Since Yy, = Pg, (wm — pu®Pwi), Vx € C, we have
0< <ym — Wy t+ Pmchmrx - ]/m)

= (ym - Wy, X — }/m) + Pm(q)a)m/x - ym>

= <ym - Wy, X — ym> + pm(q)wrn/x - wm) + pm(q)xmr Xm — ]/m>

< <]/m — Wy, X — ym> + pm(qum/x - W) + Pm(‘DCUm/ Wy — ]/m>
Let m — +o0o, then, Yx € C, we have (PO, x — 0) > 0 and 0 € VI(C, ®). This completes the proof. O
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4. Numerical illustrations

In section 4, we give some concrete examples to illustrate the efficiency of the suggested algorithms. All
the projection over C are computed effectively by math, numpy and matplotlib.pyplot in Python 3.8. All the
programs are performed on a PC Desktop Intel(R) Core(TM) i5-5200U @ 2.20Ghz 2.20Ghz, RAM 4.00GB.
We apply Algorithm 3.1 (shortly, Alg.2) and Algorithm 3.3 (shortly, Alg.3) for numerical calculations to
solve VIPs and some other algorithms are used for comparison. We will write the results of the numerical
calculations in the table below, among them, ‘Iter.” and 'Msec.” respectively represent the iteration steps
and total running time of the algorithm (in milliseconds). In addition, we rename the following algorithm.

1. Algorithm 3.1 (Alg.2),
2. Algorithm 3.3 (Alg.3),
3. Migorski’s algorithm[5] (Algorithm M).

Example 4.1. We consider the space of H = R*, operator @ := T =

05 01 O 0

-01 05 O 0
0 0 04 01
0 0 011 05

C:Y}  xy=0.

Now we use Algorithm M and Alg.2 to solve this problem

1. Setstep size p =0.5and u = 0.5,
2. Error < 0.001,
3. P = ﬁ"’m = 2(ml+1)’

Case 1. x0=(6,6,1,2), x1=(0,7,3,2),

Case 2. x0=(0,0,1,2), x1=(0,0,3,2),

Case 3. x0=(1,1,1,2), x1=(2,2,2,4).

Table 1: Comparison of Algorithm M and Algorithm 1

Case.1 Case.2 Case.3
Iter. Msec. Iter. Msec. Iter. Msec.
1 Alg.2 335 87005 335 78604 335 90604
2' Algorithm M 959 125006 953 105008 1045 135010

Example 4.2. Let H = R?. Define the operator ® := T =
05 01
01 05

and C: Y21 X = 0.

Now we use Alg.2 and Alg.3 to solve this problem.

1. Setstep size p=0.5and u = 0.5,
2. Error < 0.001,

— 1 — _1
3. ﬁm = g Vm = 2(m+1)"
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Case 1. x0=(0,1), x1=(2,2),
Case 2. x0=(3,1), x1=(4,2),
Case 3. x0=(13,11), x1=(14,12).

Table 2: Comparison of Algorithm 1, Algorithm 2 and Algorithm 3

Case.l Case.2 Case.3
Iter. Msec. Iter. Msec. Iter. Msec.
1. Alg.2 37 2000 41 13000 24 4000
2. Alg.3 20 3000 24 3000 81 12000

It can be seen from Table 1 that the number of iteration steps of Algorithm 3.1 is less than Migorski’s

Algorithm, and the running time is also faster than Migorski’s algorithm; from Table 2 we can see that
Algorithm 3.2 is stronger than Algorithm 3.1 in terms of iterative steps and running time.
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