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Inequalities on the (p, q)-Mixed Volume Involving Lp Centroid Bodies
and Lp Intersection Bodies
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Abstract. In this paper, applying for the Minkowski’s and Hölder’s integral inequalities, we obtain four
theorems about the (p, q)-mixed volume involving the Lp centroid bodies and the Lp intersection bodies,
respectively. The former two theorems reveal the convexity of the functionals related to the (p, q)-mixed
volume, in terms of the dual Blaschke addition introduced in [Journal of Geometric Analysis, 30 (2020)
3026-3034], and the latter two theorems expose the monotonicity of the other functionals related to the
(p, q)-mixed volume.

1. Introduction

The Brunn-Minkowski theory is a powerful apparatus for conquering problems involving metric quan-
tities. As a cornerstone of such theory, the Brunn-Minkowski inequality has a closed relationship with
other inequalities in geometry and analysis, and some applications (see e.g. [4]). In this paper, we intend
to establish, in terms of the (p, q)-mixed volume, some related inequalities which characterize the convexity
and the monotonicity of respectively functionals involving the Lp centroid bodies, the Lp intersection bodies
and their polars.

LetKn andSn
o denote the set of all convex bodies (i.e., compact, convex subsets with nonempty interiors)

and the set of all star bodies in the Euclidean n-spaceRn, respectively. LetKn
o andKn

s (resp. Sn
s ) denote the

set of all convex bodies containing the origin in their interiors and the set of all convex bodies (resp. star
bodies) that are origin symmetric, respectively. Denote by V(K) the n-dimensional volume of a body K in
Rn, and ωn the volume of the unit ball Bn. Let Sn−1 be the unit sphere of Rn.

Recently, a family of important Lp dual curvature measures (or the (p, q)-th dual curvature measures for
p, q ∈ R) was introduced by Lutwak, Yang and Zhang [17]. These measures are significant and they unify
the previous three kinds of measures proposed in [10], [11] and [14]. Associated to such measures, the
geometric quantity named as (p, q)-mixed volume, or Lp dual mixed volume, can be introduced as follows:

Definition 1.1 (cf. [17]). Suppose p, q ∈ R. If K,L ∈ Kn
o and Q ∈ Sn

o , define the Lp dual mixed volume, or
(p, q)-mixed volume, Ṽp,q(K,L,Q), by

Ṽp,q(K,L,Q) =
1
n

∫
Sn−1

( hL

hK

)p
(αK(u))

(ρK

ρQ

)q
(u)ρn

Q(u)du, (1)
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where hK, ρK and αK denote the support function, radial function and radial Gauss map for K respectively, the
integration is with respect to spherical Lebesgue measure.

The notion of the (p, q)-mixed volume unifies the Lp mixed volume and dual mixed volume ([17],
Proposition 7.2). Moreover, Lutwak, Yang and Zhang proved a newly Minkowski inequality about this
unified notion as well ([17], Theorem 7.4). Notice that, in terms of the classical mixed volume and the
Minkowski addition, the Minkowski’s first inequality and the Brunn-Minkowski inequality are equivalent.
Due to their close relations, both inequalities are central topics in modern convex geometry, and that they
have been studied extensively (see e.g. [1, 6, 20]).

The classical Brunn-Minkowski theory is mainly concerned with the analogues and generalizations of
the Brunn-Minkowski inequality for geometric quantities. In 2018, Zou and Xiong [22] has formulated the
Lp transference principle, and the Lp Brunn-Minkowski type inequalities they established, characterize the
concavity of existing functionals, in terms of the Lp addition of convex bodies. This paper first focus on
establishing Brunn-Minkowski type inequalities, in terms of the dual Blaschke addition (also called radial
Blaschke sum) introduced by Guo-Jia [7].

Before presenting our results, we first fix the notations: Let ⋆m denote the m-radial Blaschke addition
that will be given by Definition 2.1; Γp denote the Lp centroid operator given by Definition 2.2, and Ip denote
the Lp intersection operator given by Definition 2.3; Γ∗pL denote the polar of the Lp centroid body ΓpL, and
I∗pL denote the polar of the Lp intersection body IpL.

Then, our first result is the following Brunn-Minkowski type inequality about the Lp centroid bodies
and their polars:

Theorem 1.1. Let K ∈ Kn
o , L1,L2 ∈ S

n
s , p ≥ 1 and 1 ≤ m ≤ n − 1.

(i) For Q ∈ Sn
o and q ∈ R, it holds that[

Ṽp,q(K,Γp(L1 ⋆m L2),Q)V(L1 ⋆m L2)
] m

n+p

≤

[
Ṽp,q(K,ΓpL1,Q)V(L1)

] m
n+p

+
[
Ṽp,q(K,ΓpL2,Q)V(L2)

] m
n+p

; (2)

(ii) For Q ∈ Kn
o and q > n + mp

n+p , it holds that

[
Ṽp,q(K,Q,Γ∗p(L1⋆mL2))−

p
n−q V(L1⋆mL2)

] m
n+p

≤

[
Ṽp,q(K,Q,Γ∗pL1)−

p
n−q V(L1)

] m
n+p

+
[
Ṽp,q(K,Q,Γ∗pL2)−

p
n−q V(L2)

] m
n+p

. (3)

Moreover, the equality holds in each of the two inequalities (2) and (3) if and only if L1 and L2 are dilations.

The second result we obtained is the Brunn-Minkowski type inequality about the Lp intersection bodies
and their polars:

Theorem 1.2. Let K ∈ Kn
o , L1,L2 ∈ S

n
s , 0 < p < 1 and 1 ≤ m ≤ n − 1.

(i) For Q ∈ Kn
o and q < n − mp

n−p , it holds that

Ṽp,q(K,Q, Ip(L1 ⋆m L2))
mp

(n−p)(n−q) ≤ Ṽp,q(K,Q, IpL1)
mp

(n−p)(n−q) + Ṽp,q(K,Q, IpL2)
mp

(n−p)(n−q) ; (4)

(ii) For Q ∈ Sn
o and q ∈ R, it holds that

Ṽ−p,q(K, I∗p(L1 ⋆m L2),Q)
m

n−p ≤ Ṽ−p,q(K, I∗pL1,Q)
m

n−p + Ṽ−p,q(K, I∗pL2,Q)
m

n−p . (5)

Moreover, the equality holds in each of the two inequalities (4) and (5) if and only if L1 and L2 are dilations.

Applying for the above two theorems, we will characterize the convexity of four functionals in Theorem
3.1, in terms of the dual Blaschke addition.

Note that in each inequality of (2)-(5), the addition on the left hand side is for two star bodies. Next, about
the (p, q)-mixed volume, we can prove, for two distinct real numbers i, j ≥ 1, the monotonicity inequalities
for the centroid bodies, and their polars respectively.
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Theorem 1.3. Let K ∈ Kn
o , L ∈ Sn

o and 1 ≤ j < i.
(i) For Q ∈ Sn

o , p > 0 and q ∈ R, it holds that[
aiṼp,q(K,ΓiL,Q)

ai+ jṼp,q(K,Γi+ jL,Q)

]i2
<

[
a jṼp,q(K,Γ jL,Q)

ai+ jṼp,q(K,Γi+ jL,Q)

] j2
; (6)

(ii) For Q ∈ Kn
o , q > n and p ∈ R, it holds that[

biṼp,q(K,Q,Γ∗i L)

bi+ jṼp,q(K,Q,Γ∗i+ jL)

]i2
<

[ b jṼp,q(K,Q,Γ∗jL)

bi+ jṼp,q(K,Q,Γ∗i+ jL)

] j2
. (7)

Here, ai := (cn,i(n + i))
p
i , bi := (cn,i(n + i))

q−n
i , and cn,i is a positive constant given by Definition 2.2.

Analogously, for intersection bodies and their polars, we have

Theorem 1.4. Let K ∈ Kn
o , L ∈ Sn

o and 0 < j < i < i + j < 1.
(i) For Q ∈ Kn

o , q < n and p ∈ R, it holds that[
ciṼp,q(K,Q, IiL)

ci+ jṼp,q(K,Q, Ii+ jL)

]i2
<

[
c jṼp,q(K,Q, I jL)

ci+ jṼp,q(K,Q, Ii+ jL)

] j2
; (8)

(ii) For Q ∈ Sn
o , p < 0 and q ∈ R, it holds that[

diṼp,q(K, I∗i L,Q)

di+ jṼp,q(K, I∗i+ jL,Q)

]i2
<

[ d jṼp,q(K, I∗jL,Q)

di+ jṼp,q(K, I∗i+ jL,Q)

] j2
. (9)

Here, ci := (n − i)
n−q

i and di := (n − i)−
p
i .

Obviously, the case that i+ j is a constant in (6)-(9) yields, in terms of real j < i, the monotonicity of four
functionals related to the (p, q)-mixed volume.

Remark 1.1. If taking Q = K or q = n in (2), (5)-(6) and (9), we can obtain inequalities for the Lp mixed
volume; If taking Q = K in (3)-(4), and Q = K (or p = 0 ) in (7)-(8), we can get inequalities for the dual mixed
volume.

2. Preliminaries

In this section, for our later purpose, we collect some basic facts from the Brunn-Minkowski theory. For
more details we refer to Gardner [5] and Schneider [20].

2.1. Support function, radial function and polar body
Let K ∈ Kn, its support function hK : Rn

→ R is defined by hK(x) = max{x · y : y ∈ K} for x ∈ Rn, where
x · y denotes the standard inner product of x and y. Let K ⊂ Rn be a compact star-shaped set with respect
to the origin, its radial function ρK : Rn

\ {0} → R is defined by ρK(x) = max{λ ≥ 0 : λx ∈ K} for x ∈ Rn
\ {0}.

A star body is a compact star-shaped set with respect to the origin whose radial function is positive and
continuous. Two star bodies K and L are dilations (of one another) if ρK(u)/ρL(u) is independent of any
u ∈ Sn−1.

It is easily seen that, on Rn
\ {0}, the support function of a convex body and the radial function of a star

body are related by

ρK = 1/hK∗ and hK = 1/ρK∗ , (10)

where, K∗ := {x ∈ Rn : x · y ≤ 1, y ∈ K} is the polar body of K. It is easily seen that (λK)∗ = 1/λK∗ for λ > 0,
and (K∗)∗ = K for K ∈ Kn

o .
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2.2. Spherical image map, radial map and radial Gauss map
Let K ∈ Kn and σ ⊂ ∂K. Denote by HK(v) the support hyperplane to K with unit normal v. Then

νK(σ) = {v ∈ Sn−1 : x ∈ HK(v) for some x ∈ σ} ⊂ Sn−1

is called the spherical image of σ. Let σK ⊂ ∂K denote the set consisting of all x ∈ ∂K for which the set νK({x})
contains more than a single element. Then the spherical image map of K is given by νK : ∂K \ σK → Sn−1,
which is defined such that, for each x ∈ ∂K \ σK, νK(x) is the unique element in νK({x}).

For K ∈ Kn
o , the radial map rK : Sn−1

→ ∂K of K is defined by

rK(u) = ρK(u)u ∈ ∂K for u ∈ Sn−1.

Finally, we putωK = r−1
K (σK). Then the radial Gauss map of the convex body K is given byαK : Sn−1

\ωK →

Sn−1 with αK = νK ◦ rK. We refer to [10] for more details.

2.3. Radial Blaschke addition
In [2], Böröczky and Schneider showed that a star body is uniquely determined by the volumes and

centroids of its hyperplane sections through the origin. Based on this unique result and Theorem 7.2.6 of [5],
recently Guo-Jia [7] introduced the notions of radial Blaschke addition and the general m-radial Blaschke
addition.

Definition 2.1 (cf. [7]). Let K,L ∈ Sn
s and m be an integer with 1 ≤ m ≤ n − 1. The m-radial Blaschke sum of K

and L, denoted by K ⋆m L, is defined to be the unique star body symmetric about the origin such that

Vm((K ⋆m L) ∩ E) = Vm(K ∩ E) + Vm(L ∩ E)

for all E ∈ G(n,m). Here, G(n,m) denotes the Grassmannian of m-dimensional linear subspaces of Rn, and Vm
denotes m-dimensional Hausdorff measure.

In particular, K ⋆(n−1) L is the dual Blaschke sum of K and L.

From the polar formula for the volume of sections and the uniqueness theorem for spherical Radon
transform (cf. Lemma 3.1 of [7]), we immediately have

ρm
K⋆mL(u) = ρm

K (u) + ρm
L (u), for all u ∈ Sn−1. (11)

2.4. Lp centroid body and Lp intersection body
We first recall the notion of the Lp centroid body due to Lutwak and Zhang [18].

Definition 2.2 (cf. [18] and P.567 of [20]). For K ∈ Sn
o and p ≥ 1, the Lp centroid body ΓpK (which belongs toKn

s )
is defined such that its support function hΓpK is given by

hp
ΓpK(x) =

1
cn,pV(K)

∫
K
|x · y|pdy =

1
cn,p(n + p)V(K)

∫
Sn−1
|x · v|pρn+p

K (v)dv, for x ∈ Rn, (12)

where cn,p := ωn+p/ω2ωnωp−1.

Next, we recall the notion of Lp intersection body due to Haberl and Ludwig [9].

Definition 2.3 (cf. [8, 9] and P.581 of [20]). For K ∈ Sn
o and 0 < p < 1, the Lp intersection body IpK (which

belongs to Sn
s ) is defined such that its radial function ρIpK is given by

ρp
IpK(u) =

∫
K
|u · x|−pdx =

1
n − p

∫
Sn−1
|u · v|−pρn−p

K (v)dv, for u ∈ Sn−1. (13)

It is worthy to point out that the notion of Lutwak’s intersection body [13] is extremely useful, by which
the famous Busemann-Petty problem was effectively solved (see, e.g. [3, 12, 21]); and that in the last several
decades, the Lp centroid bodies and Lp intersection bodies have received great attention. See, e.g. [8, 16, 19].
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3. Proofs of the Theorems

This section is devoted to the proofs of our main results. To achieve this goal, first of all we recall the
following well-known Minkowski’s and Hölder’s integral inequalities. Let E be a measurable set and Lp(E)
denote the set of all functions defined on E which are in the Lp space. Then, we have:

Minkowski’s integral inequality. Let 0 , p ∈ R and f , 1 ∈ Lp(E). If p > 1, it holds that( ∫
E
| f (x)|pdx

) 1
p

+
( ∫

E
|1(x)|pdx

) 1
p

≥

( ∫
E
| f (x) + 1(x)|pdx

) 1
p

; (14)

If p < 0 or 0 < p < 1, the inequality is reversed. Moreover, the equality holds if and only if there exist two
constants c1 and c2 such that c1 f (x) = c21(x).

Hölder’s integral inequality. Let 0 , p, q ∈ R, f ∈ Lp(E), 1 ∈ Lq(E) and 1
p +

1
q = 1. If p < 0, or 0 < p < 1,

then it holds that( ∫
E
| f (x)|pdx

) 1
p
( ∫

E
|1(x)|qdx

) 1
q

≤

∫
E
| f (x)1(x)|dx; (15)

If p > 1, the inequality is reversed. Moreover, the equality holds if and only if there exist two constants c1
and c2 such that c1| f (x)|p = c2|1(x)|q.

Now, we are ready to prove each of our four theorems.

Proof of Theorem 1.1. Since n+p
m > 1, (14) implies that, for u ∈ Sn−1, it holds that

[ ∫
Sn−1
|u · v|p

(
ρm

L1
(v) + ρm

L2
(v)
) n+p

m

dv
] m

n+p

≤

[ ∫
Sn−1
|u · v|pρn+p

L1
(v)dv

] m
n+p

+
[ ∫

Sn−1
|u · v|pρn+p

L2
(v)dv

] m
n+p

. (16)

Then, by using (11), (12) and (16), we obtain, for any u ∈ Sn−1,[
hp
Γp(L1⋆mL2)(u)V(L1 ⋆m L2)

] m
n+p

≤

[
hp
ΓpL1

(u)V(L1)
] m

n+p

+
[
hp
ΓpL2

(u)V(L2)
] m

n+p

, (17)

and the equality holds if and only if L1 and L2 are dilations.
In case (i), Q ∈ Sn

o and q ∈ R, (1) and (17) with u replaced by αK(u) yield

nṼp,q(K,Γp(L1 ⋆m L2),Q)V(L1 ⋆m L2)

≤

∫
Sn−1

[((hΓpL1

hK

)p
(αK(u))V(L1)

) m
n+p

+
((hΓpL2

hK

)p
(αK(u))V(L2)

) m
n+p
] n+p

m

ρq
K(u)ρn−q

Q (u)du =: N1,
(18)

and, from the condition that the equality holds in (17), we see that the equality holds in (18) if and only if
L1 and L2 are dilations.

On the other hand, according to (1) and (14), we get

N
m

n+p

1 ≤

[
V(L1)

∫
Sn−1

(hΓpL1

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

] m
n+p

+
[
V(L2)

∫
Sn−1

(hΓpL2

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

] m
n+p

=
[
nṼp,q(K,ΓpL1,Q)V(L1)

] m
n+p

+
[
nṼp,q(K,ΓpL2,Q)V(L2)

] m
n+p

.

(19)

From (18) and (19), we get (2) as claimed.
Moreover, from the condition that the equality holds in (14), we see that the equality holds in (19) if and

only if hΓpL1 is proportional to hΓpL2 , or equivalently, ΓpL1 and ΓpL2 are dilations. From (12) and that L1 and
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L2 are dilations, we get that ΓpL1 and ΓpL2 are also dilations. Since that the equality holds in (2) is equivalent
to that the two equalities hold in (18) and (19), we finally obtain that the equality holds in (2) if and only if
L1 and L2 are dilations.

To deal with case (ii), we use q > n + mp
n+p , which implies that − (n+p)(n−q)

mp > 1. It follows from (1), (10) and
(17) that, for Q ∈ Kn

o ,

nṼp,q(K,Q,Γ∗p(L1 ⋆m L2))V(L1 ⋆m L2)−
n−q

p

=

∫
Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
Γ∗p(L1⋆mL2)(u)V(L1 ⋆m L2)−

n−q
p du

≤

∫
Sn−1

[(
ρ−p
Γ∗pL1

(u)V(L1)
) m

n+p

+
(
ρ−p
Γ∗pL2

(u)V(L2)
) m

n+p
]− (n+p)(n−q)

mp
(hQ

hK

)p
(αK(u))ρq

K(u)du =: N2,

(20)

and the equality holds if and only if L1 and L2 are dilations, which follows again from the condition that
the equality holds in (17).

Then, by using (14), we get

N
−

mp
(n+p)(n−q)

2 ≤

[ ∫
Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
Γ∗pL1

(u)du
]− mp

(n+p)(n−q)

V(L1)
m

n+p

+
[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
Γ∗pL2

(u)du
]− mp

(n+p)(n−q)

V(L2)
m

n+p

=
[
nṼp,q(K,Q,Γ∗pL1)

]− mp
(n+p)(n−q)

V(L1)
m

n+p +
[
nṼp,q(K,Q,Γ∗pL2)

]− mp
(n+p)(n−q)

V(L2)
m

n+p .

(21)

From (20) and (21), we get the desired inequality (3).
Similar to case (i), the equality holds in (21) if and only if Γ∗pL1 and Γ∗pL2 are dilations. From (12) and that

L1 and L2 are dilations, we get that Γ∗pL1 and Γ∗pL2 are also dilations. Since that the equality holds in (3) is
equivalent to that the two equalities hold in (20) and (21), we then come to the assertion that the equality
holds in (3) if and only if L1 and L2 are dilations.

We have completed the proof of Theorem 1.1. □

Remark 3.1. We mention that for p ≥ 1 not an even integer, the equality holds in (18) in case (19) becomes
an equation. To see this, we first notice that the operator Γp : Sn

s → K
n
s is injective: For any M,N ∈ Sn

s
satisfying ΓpM=ΓpN and that p ≥ 1 is not an even integer, by (12) and the fact that the p-cosine transformation
is injective on even functions if and only if p is not an even integer (cf. P.435 of [5]), we know that, for any
v ∈ Sn−1, the two even functions 1

V(M)ρ
n+p
M (v) and 1

V(N)ρ
n+p
N (v) are equal. Then the assertion M = N follows

from Proposition 1.11 of [15]. Now, (12) and the injectivity of Γp : Sn
s → K

n
s show that if the equality holds

in (19) then L1 and L2 are dilations, so that the equality holds in (18).
Analogously, for p ≥ 1 not an even integer and that if (21) is an equation, then the equality holds also in

(20). This fact follows directly from the properties of the polar.

Proof of Theorem 1.2. The fact n−p
m > 1 and (14) imply that, for u ∈ Sn−1,[ ∫

Sn−1
|u · v|−p

(
ρm

L1
(v) + ρm

L2
(v)
) n−p

m

dv
] m

n−p

≤

[ ∫
Sn−1
|u · v|−pρn−p

L1
(v)dv

] m
n−p

+
[ ∫

Sn−1
|u · v|−pρn−p

L2
(v)dv

] m
n−p

.

Then, according to (11) and (13), we have[
ρIp(L1⋆mL2)(u)

] mp
n−p
≤

[
ρIpL1 (u)

] mp
n−p
+
[
ρIpL2 (u)

] mp
n−p , (22)

and, according to the condition that the equality holds in (14), we see that the equality holds in (22) if and
only if ρL1 is proportional to ρL2 , or equivalently, L1 and L2 are dilations.
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In case (i), since Q ∈ Kn
o , and q < n − mp

n−p implies that (n−p)(n−q)
mp > 1, from (1) and (22) we have

nṼp,q(K,Q, Ip(L1 ⋆m L2)) ≤
∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)
(
ρ

mp
n−p

IpL1
(u) + ρ

mp
n−p

IpL2
(u)
) (n−p)(n−q)

mp

du =: N3, (23)

and the equality holds if and only if L1 and L2 are dilations, which follows from the condition that the
equality holds in (22).

On the other hand, by using (14) and (1), we can show that

N
mp

(n−p)(n−q)

3 ≤

[ ∫
Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
IpL1

(u)du
] mp

(n−p)(n−q)

+
[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
IpL2

(u)du
] mp

(n−p)(n−q)

=
[
nṼp,q(K,Q, IpL1)

] mp
(n−p)(n−q)

+
[
nṼp,q(K,Q, IpL2)

] mp
(n−p)(n−q)

.

(24)

From (23) and (24), we get the desired inequality (4).
From the condition that the equality holds in (14), we see that the equality holds in (24) if and only if

ρIpL1 is proportional to ρIpL2 , or equivalently, IpL1 and IpL2 are dilations.
As Li ∈ S

n
s for i = 1, 2 imply that ρLi is even, then Theorem 6 and equation (10) in [8] show that the

operator Ip : Sn
s → S

n
s is injective. Thus, together with (13), the equality holds in (24) if and only if L1 and

L2 are dilations.
This verifies the assertion that the equality holds in (4) if and only if L1 and L2 are dilations.

To deal with case (ii), we assume that Q ∈ Sn
o and q ∈ R.

Then, by (1), (10) and (22), but with u replaced by αK(u), we obtain

nṼ−p,q(K, I∗p(L1 ⋆m L2),Q) ≤
∫

Sn−1

[(hI∗pL1

hK

)− mp
n−p

(αK(u)) +
(hI∗pL2

hK

)− mp
n−p

(αK(u))
] n−p

m

ρq
K(u)ρn−q

Q (u)du =: N4, (25)

the equality holds if and only if L1 and L2 are dilations, which follows again from the condition that the
equality holds in (22).

On the other hand, by using (14) and (1), we can show that

N
m

n−p

4 ≤

[ ∫
Sn−1

(hI∗pL1

hK

)−p

(αK(u))ρq
K(u)ρn−q

Q (u)du
] m

n−p

+
[ ∫

Sn−1

(hI∗pL2

hK

)−p

(αK(u))ρq
K(u)ρn−q

Q (u)du
] m

n−p

=
[
nṼ−p,q(K, I∗pL1,Q)

] m
n−p

+
[
nṼ−p,q(K, I∗pL2,Q)

] m
n−p

.

(26)

Then the inequality (5) follows from (25) and (26).
Moreover, equality holds in (5) is equivalent to that both (25) and (26) become equality. Equality holds

in (25) if and only if L1 and L2 are dilations. According to the condition such that the equality holds in (14),
we see that the equality holds in (26) if and only if hI∗pL1 is proportional to hI∗pL2 , or equivalently, I∗pL1 and I∗pL2
are dilations. By (12) and the property of the polar, if L1 and L2 are dilations, then I∗pL1 and I∗pL2 are dilations
as well. This shows that equality holds in (5) if and only if L1 and L2 are dilations.

We have completed the proof of Theorem 1.2. □

Now, as applications of Theorems 1.1 and 1.2, we can show the convexity of the following four functionals
Fi : Sn

s → (0,∞) for i = 1, 2, 3, 4.

(i) For K ∈ Kn
o , Q ∈ Sn

o , 1 ≤ m ≤ n − 1, p ≥ 1 and q ∈ R, define F1(L) :=
[
Ṽp,q(K,ΓpL,Q)V(L)

] m
n+p

;

(ii) For K,Q ∈ Kn
o , 1 ≤ m ≤ n − 1, p ≥ 1 and q > n + mp

n+p , define F2(L) :=
[
Ṽp,q(K,Q,Γ∗pL)−

p
n−q V(L)

] m
n+p

;

(iii) For K,Q ∈ Kn
o , 1 ≤ m ≤ n − 1, 0 < p < 1 and q < n − mp

n−p , define F3(L) := Ṽp,q(K,Q, IpL)
mp

(n−p)(n−q) ;

(iv) For K ∈ Kn
o , Q ∈ Sn

o , 1 ≤ m ≤ n − 1, 0 < p < 1 and q ∈ R, define F4(L) := Ṽ−p,q(K, I∗pL,Q)
m

n−p .
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Theorem 3.1. If L1,L2 ∈ S
n
s , m is an integer with 1 ≤ m ≤ n − 1 and functions Fi for i = 1, 2, 3, 4 are defined as

above, then each Fi(λL1 ⋆m (1 − λ)L2) is convex for λ ∈ (0, 1), in terms of the dual Blaschke addition.

Proof. We only prove the case of F1, the proof of other cases follows along the same line and hence is
omitted.

From the definitions (1) and (12), it follows that Γp(λL) = λΓpL and Ṽp,q(K, λΓpL,Q) = λpṼp,q(K,ΓpL,Q),
for λ > 0. These together with (2) give that for λ ∈ (0, 1),

F1(λL1 ⋆m (1 − λ)L2)

=
[
Ṽp,q(K,Γp(λL1 ⋆m (1 − λ)L2),Q)V(λL1 ⋆m (1 − λ)L2)

] m
n+p

≤

[
Ṽp,q(K,Γp(λL1),Q)V(λL1)

] m
n+p

+
[
Ṽp,q(K,Γp((1 − λ)L2),Q)V((1 − λ)L2)

] m
n+p

= λmF1(L1) + (1 − λ)mF1(L2)
≤ λF1(L1) + (1 − λ)F1(L2),

which shows that F1(λL1 ⋆m (1 − λ)L2) is convex for λ ∈ (0, 1), in terms of the dual Blaschke addition. □

In addition to the Theorems 1.1 and 1.2, we can also give the following Brunn-Minkowski type inequal-
ities, motivated by the Theorem 3.3 of [7].

Proposition 3.1. Let K ∈ Kn
o , L1,L2 ∈ S

n
s and 1 ≤ m ≤ n − 1.

(i) For Q ∈ Kn
o and p ∈ R, we have[

Ṽp,q(K,Q,L1 ⋆m L2)
] m

n−q
≤

[
Ṽp,q(K,Q,L1)

] m
n−q
+
[
Ṽp,q(K,Q,L2)

] m
n−q (27)

for q < n −m; and[
Ṽp,q(K,Q,L1 ⋆m L2)

] m
n−q
≥

[
Ṽp,q(K,Q,L1)

] m
n−q
+
[
Ṽp,q(K,Q,L2)

] m
n−q (28)

for n −m < q , n. Moreover, the equality holds in either (27) or (28) if and only if L1 and L2 are dilations.

(ii) For Q ∈ Sn
o and q ∈ R, we have[

Ṽp,q(K, (L1 ⋆m L2)∗,Q)
]− m

p
≤

[
Ṽp,q(K,L∗1,Q)

]− m
p
+
[
Ṽp,q(K,L∗2,Q)

]− m
p (29)

for p < −m; and[
Ṽp,q(K, (L1 ⋆m L2)∗,Q)

]− m
p
≥

[
Ṽp,q(K,L∗1,Q)

]− m
p
+
[
Ṽp,q(K,L∗2,Q)

]− m
p (30)

for −m < p , 0. Moreover, if L1,L2 ∈ S
n
s \K

n
s are dilations, then the equality holds in both (29) and (30); if, however,

L1,L2 ∈ K
n
s , then the equality holds in either (29) or (30) if and only if L1 and L2 are dilations.

Proof. Since the proofs of the reverse inequalities (28) and (30) follow along the same lines, we shall prove
only the inequalities (27) and (29).

In case (i), noting that q < n −m implies n−q
m > 1, by (11) and (14), we have[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
L1⋆mL2

(u)du
] m

n−q

≤

[ ∫
Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
L1

(u)du
] m

n−q

+
[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
L2

(u)du
] m

n−q

,
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which combining with (1) then yields (27). Moreover, from the condition that the equality holds in (14),
we see that the equality holds in (27) if and only if ρL1 is proportional to ρL2 , or equivalently, L1 and L2 are
dilations.

In case (ii), from (10), we can rewrite (11) as h−m
(L1⋆mL2)∗ (u) = h−m

L∗1
(u) + h−m

L∗2
(u), for u ∈ Sn−1. Then, the fact

−
p
m > 1 and (14) imply that[ ∫

Sn−1

(h(L1⋆mL2)∗

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

]− m
p

≤

[ ∫
Sn−1

(hL∗1

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

]− m
p

+
[ ∫

Sn−1

(hL∗2

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

]− m
p

,

which combining with (1) yields (29).
Moreover, from the condition that the equality holds in (14), we see that the equality holds in (29) if

and only if hL∗1 is proportional to hL∗2 , or equivalently, L∗1 and L∗2 are dilations. Now, for L1,L2 ∈ S
n
s \ K

n
s , by

the properties of the polar, we know that if L1 and L2 are dilations, then L∗1 and L∗2 are dilations; while for
L1,L2 ∈ K

n
s , L∗1 and L∗2 are dilations if and only if L1 and L2 are dilations. Then the remaining assertion of

Proposition 3.1 immediately follows. □

Remark 3.2. If p = 0 (resp. Q = K) in (27)-(28) and if q = n (resp. Q = K) in (29)-(30), then Proposition 7.2 of
[17] implies that our results yield the Brunn-Minkowski type inequalities for the Lp mixed volume and the
dual mixed volume.

Remark 3.3. On the condition that (27) and (29) hold respectively, the following two functionals:

F5(λL1 ⋆m (1 − λ)L2) :=
[
Ṽp,q(K,Q, λL1 ⋆m (1 − λ)L2)

] m
n−q

,

F6(λL1 ⋆m (1 − λ)L2) :=
[
Ṽp,q(K, (λL1 ⋆m (1 − λ)L2)∗,Q)

]− m
p

are all convex for λ ∈ (0, 1), in terms of the dual Blaschke addition.

Remark 3.4. Let λ ∈ (0, 1), the geometric-arithmetic mean inequality and (28) yield that, if n − m < q < n,
then

Ṽp,q(K,Q, λ
1
m L1 ⋆m (1 − λ)

1
m L2) ≥

[
Ṽp,q(K,Q,L1)

]λ [
Ṽp,q(K,Q,L2)

]1−λ
;

if q > n, then this inequality is reversed; the equality holds in each case if and only if L1 = L2. Similar
argument can be used in inequality (30).

Next, in terms of subscripts p of the centroid body ΓpL and the intersection body IpL, we will prove four
monotonicity inequalities introduced in Theorems 1.3 and 1.4. In the proof, the Hölder’s integral inequality
will be used many times.

Proof of Theorem 1.3. The Hölder’s integral inequality (15) shows that for i, j ≥ 1, i , j, and u ∈ Sn−1,∫
Sn−1
|u · v|i+ jρn+i+ j

L (v)dv =
∫

Sn−1

(
|u · v|iρn+i

L (v)
) i

i− j
(
|u · v| jρn+ j

L (v)
)− j

i− j

dv

≥

[ ∫
Sn−1
|u · v|iρn+i

L (v)dv
] i

i− j
[ ∫

Sn−1
|u · v| jρn+ j

L (v)dv
]− j

i− j

.

From this and (12), it follows that

cn,i+ j(n + i + j)hi+ j
Γi+ jL

(u) ≥
[
cn,i(n + i)hi

ΓiL(u)
] i

i− j
[
cn, j(n + j)h j

Γ jL
(u)
]− j

i− j

, (31)
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for u ∈ Sn−1, and from the condition that the equality holds in (15), we see the equality holds in (31) if and
only if |u · v|i− jρi− j

L (v) = λ, λ > 0. By (10), this is equivalent to hL∗ (v) = λ
1

j−i |u · v|, or, L∗ is an origin-symmetric
line segment in the direction u.

In case (i), Q ∈ Sn
o , p > 0 and q ∈ R, from (1) and (31), but with u replaced by αK(u), we see that

n(cn,i+ j(n + i + j))
p

i+ j Ṽp,q(K,Γi+ jL,Q)

≥

∫
Sn−1

[(
cn,i(n + i)

) p
i
(hΓiL

hK

)p
(αK(u))

] i2

i2− j2
[(

cn, j(n + j)
) p

j
(hΓ jL

hK

)p
(αK(u))

]− j2

i2− j2

ρq
K(u)ρn−q

Q (u)du =: N5,
(32)

if equality holds in (32), then L∗ depends on the variables αK(u). Hence the inequality (32) is strict. Then, as
i > j, from (1) and (15) it follows immediately that

Ni2− j2

5 ≥

[ ∫
Sn−1

(
cn,i(n + i)

) p
i
(hΓiL

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

]i2
·

[ ∫
Sn−1

(
cn, j(n + j)

) p
j
(hΓ jL

hK

)p
(αK(u))ρq

K(u)ρn−q
Q (u)du

]− j2

=
[
n
(
cn,i(n + i)

) p
i Ṽp,q(K,ΓiL,Q)

]i2[
n
(
cn, j(n + j)

) p
j Ṽp,q(K,Γ jL,Q)

]− j2

.

This shows that (6) holds.

In case (ii), noticing that Q ∈ Kn
o , q > n and p ∈ R, by (10), (1) and (31) we obtain

nṼp,q(K,Q,Γ∗i+ jL)(cn,i+ j(n + i + j))
q−n
i+ j

=

∫
Sn−1

[
cn,i+ j(n + i + j)ρ−(i+ j)

Γ∗i+ jL
(u)
] (i− j)(q−n)

i2− j2
(hQ

hK

)p
(αK(u))ρq

K(u)du

≥

∫
Sn−1

[(
cn,i(n + i)ρ−i

Γ∗i L
(u)
)i(

cn, j(n + j)ρ− j
Γ∗jL

(u)
)− j
] q−n

i2− j2
(hQ

hK

)p
(αK(u))ρq

K(u)du =: N6.

(33)

If the equality holds in (33), then L∗ depends on the variables u. Hence the inequality (33) is strict.
As i > j, by using (1), (15) and (33), we have

Ni2− j2

6 ≥

[ ∫
Sn−1

(
cn,i(n + i)

) q−n
i
(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
Γ∗i L

(u)du
]i2

·

[ ∫
Sn−1

(
cn, j(n + j)

) q−n
j
(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
Γ∗jL

(u)du
]− j2

=ni2− j2
(
cn,i(n + i)

)i(q−n)
(cn, j(n + j))− j(q−n)Ṽp,q(K,Q,Γ∗i L)i2 Ṽp,q(K,Q,Γ∗jL)− j2 .

(34)

Combined with the above (33) and (34) directly, we can conclude the desired result (7). □

Remark 3.5. For x, y ∈ Rn, we denote by [x, y] the closed segment with two endpoints x and y. From the
fact h[−u,u](v) = |u · v| for u, v ∈ Sn−1, we see that equality holds in (31) if and only if L∗ = λ

1
j−i [−u,u].

Proof of Theorem 1.4. Assume that 0 < i, j < i + j < 1 and i , j. By (13) and (15), we can easily show that,
for u ∈ Sn−1,

(n − i − j)ρi+ j
Ii+ jL

(u) ≥ ((n − i)ρi
IiL(u))

i
i− j ((n − j)ρ j

I jL
(u))−

j
i− j , (35)

and the condition that the equality holds in (15) implies that the equality holds in (35) if and only if
|u · v|i− jρi− j

L (v) = λ, λ > 0. By (10), this is equivalent to hL∗ (v) = λ
1

j−i |u · v|, or, L∗ is an origin-symmetric line
segment in the direction u.
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In case (i), Q ∈ Kn
o , q < n and p ∈ R. By using (1) and (35), we have

nṼp,q(K,Q, Ii+ jL)(n− i− j)
n−q
i+ j ≥

∫
Sn−1

[(
(n− i)ρi

IiL(u)
) i

i− j
(
(n− j)ρ j

I jL
(u)
)− j

i− j
] n−q

i+ j
(hQ

hK

)p
(αK(u))ρq

K(u)du =: N7. (36)

Note that if equality holds in (36), then L∗ depends on the variables u. Hence the inequality (36) is strict.
As i > j, combining (1), (36) and (15), we obtain

Ni2− j2

7 ≥(n − i)i(n−q)
[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
IiL

(u)du
]i2

· (n − j)− j(n−q)
[ ∫

Sn−1

(hQ

hK

)p
(αK(u))ρq

K(u)ρn−q
I jL

(u)du
]− j2

=ni2− j2 (n − i)i(n−q)(n − j)− j(n−q)Ṽp,q(K,Q, IiL)i2 Ṽp,q(K,Q, I jL)− j2 .

(37)

Then, (36) and (37) yield the desired conclusion (8).
In case (ii), Q ∈ Sn

o , p < 0 and q ∈ R. By (1), (10) and (35), but with u replaced by αK(u), we have that

nṼp,q(K, I∗i+ jL,Q)(n − i − j)−
p

i+ j

≥

∫
Sn−1

[(
(n − i)

(hI∗i L

hK

)−i

(αK(u))
) i

i− j
(
(n − j)

(hI∗jL

hK

)− j

(αK(u))
)− j

i− j
]− p

i+ j

ρq
K(u)ρn−q

Q (u)du =: N8.
(38)

Similar to (36), the inequality (38) is also strict.
As i > j, by (1), (38) and (15) we can verify that

Ni2− j2

8 ≥ ni2− j2 (n − i)−pi(n − j)pjṼp,q(K, I∗i L,Q)i2 Ṽp,q(K, I∗jL,Q)− j2 . (39)

Then, the desired inequality (9) follows from (38) and (39). □
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