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Available at: http://www.pmf.ni.ac.rs/filomat

Solution of Equations with q-Derivatives and Ward’s Derivatives Using
an Operational Method

Gabriel Bengocheaa, Luis Verde-Starb, Manuel Ortigueirac

aColegio de Ciencia y Tecnologı́a, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
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Abstract. We show that several types of differential equations that involve q-derivatives, Fibonacci deriva-
tives, and other Ward’s derivatives, can be solved by an algebraic operational method that does not use
integrals nor integral transforms. We deal with extensions of the Ward’s derivatives that can be applied to
formal Laurent series. Several examples of linear and nonlinear equations are presented.

1. Introduction

It is well-known that formal power series play a central role in the resolution of ordinary differential
equations. This is mainly due to the fact that the usual derivative D acts on the monomials xn in a simple
way, that is, Dxn = nxn−1. In order to extend this property of D, Appell [1] defined polynomial sequences,
called Appell sequences, {pn(x)}n∈N0 , that satisfy Dpn(x) = npn−1(x) and such that the degree of pn(x) is equal
to n, for all n ≥ 0. The Appell sequences constitute a useful tool for solving several kinds of differential and
difference equations. Many properties of Appell sequences have been studied using the theory of umbral
calculus. See the books [7] and [8].

In an attempt to generalize previous work of Jackson [3], Ward [11] introduced several “derivatives”, that
is, generalizations of the usual derivative, by replacing the ordinary binomial coefficients by the generalized
binomial coefficients

[n, r] =
hnhn−1 · · · hn−r+1

h1h2 · · · hr
,

where {hk}
∞

k=0 is a fixed sequence of complex numbers such that h0 = 0, h1 = 1, and hk , 0, for k > 1 . In
others words, for the usual derivative we have Dxn =

(n
1
)
xn−1, and for the new derivative, denoted by Dh,

we have Dhxn = [n, 1]xn−1. Each sequence {hk}
∞

k=0 yields a new derivative. Among the most important are
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the Fibonacci derivative, the zero Jackson derivative, and the Jackson derivative, or q-derivative, which we
will consider in this paper. It is important to mention that the Ward’s calculus and the Appell sequences are
closely related. A sequence of the form

{
xn

h1h2···hn

}
n≥0

is an Appell sequence with respect to Ward’s derivative
Dh, that is,

Dh
xn

h1h2 · · · hn
=

xn−1

h1h2 · · · hn−1
, n ≥ 0,

and Dh1 = 0.
Recently, Luzón, Morón, and Ramı́rez [6] extended the theory of Ward’s calculus and studied its

connections with Sheffer polynomial sequences and Riordan matrices.
In this paper, we study the extension of generalized difference operators from formal series to formal

Laurent series. For this, we will define the h-factorial function for any integer. An important case of such
generalized operators is the Ward’s derivative. We obtain properties of generalized difference operators
showing that the Ward’s derivative satisfies Dhpn = pn−1, for every nonzero integer n, and Dhp0 = 0, when
pn =

xn

h1h2···hn
. Consequently, the derivative Dh can be applied to any formal Laurent series of the form

a =
∞∑

k≥v(a)

akpk, v(a) ∈ Z, av(a) , 0.

This is the key property that allows us to apply the general algebraic operational calculus, that we introduced
in [2], to solve equations with Ward’s derivatives, without using neither integrals nor integral transforms.

The paper is organized as follows. Section 2 presents the basic theory of the operational method
introduced in [2]. In Section 3 we study the generalized difference operator and extend its domain to the
complex vector space of formal Laurent series. We consider some particular cases that include the Ward’s
derivative, the Fibonacci derivative, the zero Jackson derivative, and the q-derivative. The application of
the operational method to Ward’s calculus is presented in Section 4. Finally, Section 5 contains the main
conclusions.

2. The operational method

In this section, we summarize the main results obtained in [2]. Let {pk : k ∈ Z} be a group with the
multiplication defined by pkpn = pk+n, for k, n ∈ Z. Let F be the set of all the formal series of the form

a =
∑
k∈Z

akpk,

where the coefficients ak are complex numbers and, either, all the ak are equal to zero, or there exists an
integer v(a) such that ak = 0 whenever k < v(a), and av(a) , 0. In the first case we write a = 0 and define
v(0) = ∞. Addition in F and multiplication by complex numbers are defined in the usual way.

The usual Cauchy product series is used to extend the multiplication of the group {pk : k ∈ Z} to a
multiplication on F as follows. If a =

∑
akpk and b =

∑
bkpk are elements of F then ab = c =

∑
cnpn, where

the coefficients cn are defined by

cn =
∑

v(a)≤k≤n−v(b)

akbn−k.

Note that v(ab) = v(a) + v(b). This multiplication in F is associative and commutative and p0 is its unit
element. Define Fn = {a ∈ F : v(a) ≥ n}, for n ∈ Z. It was proved in [2] that F is a field and that F0 is a
subring of F .

Some important properties of the series in F are the following.
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• For x ∈ C

(p0 − xp1)
∑
n≥0

xnpn = p0.

The series
∑

k≥0 xkpk is denoted by ex,0 and called the geometric series associated with x.

• For x ∈ C and k > 0 we define

ex,k =
pk

(p0 − xp1)k+1
.

Then we have

ex,k = pk(ex,0)k+1 =
Dk

x

k!
ex,0 =

∑
n≥k

(
n
k

)
xn−kpn, k ≥ 0, (1)

where Dx denotes the usual differentiation operator with respect to x.

• For x, y ∈ C such that x , y

p1ex,mey,n =

m∑
k=0

(n+k
k
)
(−1)kex,m−k

(x − y)1+n+k
+

n∑
j=0

(m+ j
j

)
(−1) jey,n− j

(y − x)1+m+ j , n,m ∈N.

Note that the right-hand side is a linear combination of the elements of the sets {ex,k : 0 ≤ k ≤ m} and
{ey, j : 0 ≤ j ≤ n}. A simple particular case is

p1ex,0ey,0 =
ex,0 − ey,0

x − y
. (2)

Denote by Pn the projection on ⟨pn⟩, the subspace generated by pn, that is, if a is in F then Pna = anpn.
We define a linear operator L on F as follows. Lpk = p−1pk = pk−1 for k , 0, and Lp0 = 0. Then, for a in F
we have

La = L
∑

k≥v(a)

akpk = p−1(a − a0p0) = p−1(I − P0)a,

and

Lka = p−k

I −
k−1∑
j=0

P j

 a, k ≥ 1, (3)

where I is the identity operator. We call L the modified left shift. Note that L is not invertible, since its kernel
is the subspace ⟨p0⟩.

For k ≥ 0 let F[0,k] = Ker(P0 + P1 + · · · + Pk). If k = 0,we write F[0] instead of F[0,0].
Let

w(t) =
r∏

j=0

(t − x j)m j+1,

where x0, x1, . . . , xr are distinct complex numbers, m0,m1, . . . ,mr are nonnegative integers, and we set n+1 =∑
j(m j + 1).We define the operator

w(L) = (L − x0I)m0+1(L − x1I)m1+1
· · · (L − xrI)mr+1. (4)
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Theorem 2.1 ([2], p. 339.). , Let w(L) be as defined in (4). Define

dw = pr+1ex0,m0 ex1,m1 · · · exr,mr ,

and

Kw = ⟨ex j,i : 0 ≤ j ≤ r, 0 ≤ i ≤ m j⟩.

Then 1 is in the image of w(L) if and only if dw1 ∈ F[0,n], Kw = Ker(w(L)), and for every 1 ∈ Im(w(L)) we have
w(L)(dw1) = 1 and thus

{ f ∈ F : w(L) f = 1} = {dw1 + h : h ∈ Kw}.

3. Generalized difference operators and Ward’s derivatives

Let {uk(t)}k≥0 be a sequence of monic polynomials in C[t] such that uk has degree k for k ≥ 0. We say that
{uk(t)}k≥0 is a polynomial sequence. It is clear that every polynomial sequence is a basis for the vector space
C[t].

Let (hk)∞k=0 = (h0, h1, h2, . . .) be a sequence of complex numbers such that h0 = 0 and hk , 0 for k ≥ 1, and
let {uk(t)}k≥0 be a polynomial sequence. We define the generalized difference operator Dh on the vector space
of polynomials through Dhuk = hkuk−1 for k ≥ 0. If uk(t) = tk for k ≥ 0 then Dh is called the Ward’s derivative
associated with the sequence (hk)k≥0. The usual derivative is obtained when hk = k for k ≥ 0.

The usual difference operator with increment d , 0 is obtained when the polynomial sequence uk(t) is
defined by u0(t) = 1 and

uk(t) = t(t − d)(t − 2d) · · · (t − (k − 1)d), k ≥ 1.

In this case we have

uk(t + d) − uk(t)
d

= kd uk−1(t), k ≥ 0,

and therefore, if we define hk = kd for k ≥ 0, the generalized difference associated with {uk} and (hk) is the
usual difference operator

Dhp(t) =
p(t + d) − p(t)

d
, p ∈ C[t].

Note that this difference operator is not a Ward’s derivative.
If Dh is the generalized difference operator associated with a polynomial sequence {uk}k≥0 and sequence

(hk)k≥0 then Dh can be extended to a linear operator on the vector space of formal series of the form∑
∞

k=0 ak uk(t), where the coefficients ak are complex numbers, by defining

Dh

∞∑
k=0

ak uk(t) =
∞∑

k=1

ak hk uk−1(t).

Now let {wk(t) : k ≥ 0} be another polynomial sequence and extend the sequence (hk)k≥0 to a bilateral
sequence (hk)k∈Z, with hk , 0 if k , 0. Define the rational functions

u−k(t) =
1

wk(t)
, k ≥ 1.

Let Lu be the complex vector space of the formal Laurent series of the form

a =
∑
k∈Z

akuk(t),
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where the coefficients ak are complex numbers, and if not all the ak are zero then there exists an integer v(a)
such that ak = 0 whenever k < v(a) and av(a) , 0. We extend the generalized difference Dh to an operator on
Lu, which we also denote by Dh, as follows

Dha = Dh

∑
k≥v(a)

akuk(t) =
∑
k∈Z

akhkuk−1(t), a ∈ Lu.

If Dh is a Ward’s derivative, then uk(t) = tk for k ≥ 0 and we take wk(t) = tk for k ≥ 0. Therefore in that case,
Lu is the usual vector space of formal Laurent power series, that we denote by L , and the extension of Dh
to L is given by

Dha =
∑

k≥v(a)

akhk tk−1, a ∈ L .

If (hk)k∈Z is a bilateral sequence such that h0 = 0 and hk , 0 for k , 0 then we define the h-factorial function
ck as follows, c0 = 1, c−1 = 1,

ck = h1h2 · · · hk, k > 0, (5)

and

ck =
1

h−1h−2 · · · hk+1
, k < −1. (6)

If Dh is the generalized difference operator associated with the sequence {uk}k∈Z and the bilateral sequence
(hk)k∈Z then we have

Dh
un(t)

cn
=

un−1(t)
cn−1

, n , 0, (7)

and if Dh is the Ward’s derivative associated with (hk)k∈Z then we have

Dh
tn

cn
=

tn−1

cn−1
, n , 0. (8)

From (7), we see that if we take pn =
un(t)

cn
then the generalized difference operator Dh plays the role of

the modified left shift L and therefore we can use the operational method presented in Section 2 to solve
equations of the form w(Dh) f = 1, where w is a polynomial. The multiplication pkpn = pk+n becomes a
convolution product on the space L defined by

uk(t)
ck
∗

un(t)
cn
=

uk+n(t)
ck+n

, k,n ∈ Z.

The generalized difference operators include a large class of difference and differential operators with
variable coefficients and different orders.

From this point on, we restrict our attention to the case when un(t) = tn, for n ∈ Z, that is, when Dh
is a Ward’s derivative on the space L of formal Laurent power series. We present next some particular
examples of such Ward’s derivatives on the space L .

Example 3.1. The finite Fibonacci derivative DF [5] is obtained when (hk)k≥0 is the sequence of Fibonacci numbers

(Fk)∞k=0 = (0, 1, 1, 2, 3, 5, 8, . . . ),

that satisfy the difference equation Fn = Fn−1 + Fn−2, for n ≥ 2, with initial conditions F0 = 1, F1 = 1. Using the
same recurrence relation, written as Fn−2 = Fn − Fn−1, we extend the sequence (Fn) to the bilateral sequence

(Fk)∞k=−∞ = (. . . , 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .),
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and then the Fibonacci derivative acts on formal Laurent power series as follows

DFa = DF

∞∑
n=v(a)

antn =

∞∑
n=v(a)

Fnantn−1.

Example 3.2. The usual derivative D is obtained when hk = k for k ∈ Z, and it acts on formal Laurent power series
as

D
∞∑

n=v(a)

antn =

∞∑
n=v(a)

nantn−1.

In the paper [6] the authors prove that the only derivative Dh on the space of formal power series that satisfies both the
Leibniz rule and the chain rule is the usual derivative. Their proof can be adapted to show that the same result holds
for derivative operators Dh on the space of formal Laurent power series.

Example 3.3. The zero Jackson derivative D0 is the Ward’s derivative associated with the sequence

(zk)∞k=1 = (1, 1, 1, . . . ).

Extending this sequence to the bilateral sequence

(zk)∞k=−∞ = (. . . ,−1,−1,−1, 0, 1, 1, 1, . . . ),

we obtain the extension of D0 to the space of formal Laurent power series. For a =
∑
∞

n=v(a) antn we have

D0a =
∞∑

n=1

antn−1
−

−1∑
n=v(a)

antn−1.

Example 3.4. The q-derivative Dq, also called Jackson derivative, is the Ward’s derivative associated with the sequence

(Jk)∞k=1 = ([1]q, [2]q, [3]q, . . . ), [n]q =
qn
− 1

q − 1
.

When q = 1, Dq becomes the usual derivative, and when q = 0 we obtain the zero Jackson derivative. Since the
definition of q-integer [n]q makes sense for n ∈ Z, the bilateral sequence

(Jk)∞k=−∞ = (. . . , [−3]q, [−2]q, [−1]q, [0]q, [1]q, [2]q, [3]q, . . . ),

gives us the extension of Dq to the space of formal Laurent power series. Observe that [−n]q = −[n]qq−n. For
a =

∑
∞

n=v(a) antn we have Dqa =
∑
∞

n=v(a)[n]qantn−1.

Some authors use the (p, q)-integers, defined by

[n]p,q =
pn
− qn

p − q
, n ∈ Z,

to replace the q-integers and they define an operator Dp,q, called the (p, q)-derivative, or difference. The
theory of such operators is not a generalization of the theory of the Jackson derivative, and the additional
parameter p turns out to be redundant. The results obtained in the (p, q)-calculus can be easily produced,
by straightforward parametric and argument variations, from the corresponding results in the q-calculus.
For example,

[n]p,q = pn−1[n] q
p
, [n]q = p1−n[n]p,pq,

and

(Dp,q f )(z) =
(
D q

p
f
)

(pz), (Dq f )(z) = (Dp,pq f )
(

z
p

)
, 0 < q < p ≤ 1.

See [9] and [10, Sect. 5].

Remark 3.5. It is important to note that for every derivative operator Dh on the space L of formal Laurent power
series we have Dh

tn

cn
= tn−1

cn−1
,n , 0, and Dh

t0

c0
= 0, where cn is the corresponding h-factorial function.
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4. Application of the operational method to Ward’s derivatives

In this section we apply the operational method presented in Section 2 to solve equations that involve
Ward’s derivatives.

Let Dh be the derivative operator on the space L of formal Laurent power series associated with the
bilateral sequence (hk)k∈Z. Define L = Dh and pn =

tn

cn
with n ∈ Z, where cn is the h-factorial function defined

in (5) and (6). From (8) we see that Lpn = pn−1 for n , 0, and Lp0 = 0, and therefore we can use the results in
Section 2 to solve h-differential equations, that is, equations constructed with the derivative operator Dh.

The geometric series is in this case

ex,0 =

∞∑
k=0

xk tk

ck
, x ∈ C,

and

ex,k =

∞∑
n=k

(
n
k

)
xn−k tn

cn
, x ∈ C.

The multiplication of the pk gives us the convolution on L defined by

tk

ck
∗

tn

cn
=

tk+n

ck+n
, k,n ∈ Z.

Let us note that our geometric series ex,0 coincides with the one introduced in [6].

Remark 4.1. The set {ex,k : x ∈ C, k ∈ N} is a basis for the vector space Eh of the h-exponential polynomials. By
Theorem 2.1 the space of solutions of every homogeneous equation of the form w(Dh) f = 0, where w is a polynomial,
is a finite dimensional subspace of Eh whose dimension is equal to the degree of w. When hn = n, for n ∈ Z, the
derivative Dh is the usual operator of differentiation with respect to t, and the h-exponential polynomials are the usual
exponential polynomials, also called pseudo-polynomials.

We present next some examples that illustrate how the operational method is used to solve equations
involving particular derivative operators Dh.

4.1. Fibonacci derivative
For the Fibonacci derivative DF, the F-factorial function is given by c0 = c−1 = 1,

ck = F1F2 · · · Fk, k ≥ 1,

and

ck = F−1F−2 · · · Fk+1, k < −1,

where the Fk are the Fibonacci numbers.
The geometric series are

ex,0 =

∞∑
n=0

xn tn

cn
(9)

and

ex,k =
Dk

x

k!
ex,0 =

∞∑
n≥k

(
n
k

)
xn−k tn

cn
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Remark 4.2. The series (9) coincides with the Fibonacci exponential function ext
F presented in [5, 6].

Example 4.3. Consider the equation

D2
F y(t) + 2DFy(t) + y(t) = et

F.

This equation can be rewritten as

(DF + I)2y(t) = et
F.

Observe that et
F = e1,0. Suppose that y =

∑
yn

tn

cn
=

∑
ynpn. By Theorem 2.1, a particular solution is given by

dwe1,0 = p1e−1,1e1,0 = −
1
2

e−1,1 −
1
4

e−1,0 +
1
4

e1,0.

and the space of solutions of the homogeneous equation is

Kw =
〈
e−1,0, e−1,1

〉
.

Finally, we obtain the general solution

y =
(
d1 −

1
2

)
e−1,1 +

(
d2 −

1
4

)
e−1,0 +

1
4

e1,0,

where d1 and d2 are arbitrary constants. In terms of the concrete realization we have

y(t) = C1

∞∑
n=1

n(−1)n−1 tn

cn
+ C2

∞∑
n=0

(−1)n tn

cn
+

∞∑
n=0

tn

cn

=

∞∑
n=0

(
n(−1)n−1C1 + (−1)nC2 + 1

) tn

cn
.

The constants C1 and C2 allow us to work with initial conditions.

4.2. Zero Jackson derivative
Recall that the bilateral sequence associated with the zero Jackson derivative is given by

(. . . ,−1,−1,−1, 0, 1, 1, 1, . . . ).

In this case the h-factorial function is given by

ck = 1, k ≥ 0,

and

ck = (−1)−k+1, k < 0.

The geometric series ex,0 becomes

ex,0 =

∞∑
n=0

xntn =
1

1 − xt
, (10)

and from (1)

ex,k =
Dk

x

k!
ex,0 =

∞∑
n≥k

(
n
k

)
xn−ktn =

tk

(1 − xt)k+1

where Dx is the usual derivation with respect to x.
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Remark 4.4. Our geometric series (10) coincides with the zero exponential function ext
0 presented in [6].

Example 4.5. Consider the equation

D0y(t) − y(t) = t3 + e−3t
0 .

This equation can be transformed into

(L − I)y(t) = p3 + e−3,0.

Suppose that y =
∑

yntn =
∑

ynpn. Applying Theorem 2.1, we obtain the particular solution

dw(p3 + e−3,0) = p1e1,0(p3 + e−3,0)
= p4e1,0 + p1e1,0e−3,0

= p4e1,0 +
e1,0 − e−3,0

4
,

and the space of solutions of the homogeneous equation is Kw =
〈
e1,0

〉
. Finally, we obtain the general solution

y =
(
d1 +

1
4

)
e1,0 + p4e1,0 −

1
4

e−3,0,

where d1 is an arbitrary constant.
In terms of the concrete realization, we have

y(t) =
∞∑

n=0

(
d1 +

1
4
−

(−3)n

4

)
tn +

∞∑
n=4

tn.

4.3. Jackson derivative (q-derivative)
We recall that the bilateral sequence associated with the Jackson derivative Dq is the sequence of q-

integers [k]q and therefore the h-factorial function is given by c0 = c−1 = 1,

ck = [1]q[2]q · · · [k]q, k ≥ 1,

and

ck =
1

[−1]q[−2]q · · · [k + 1]q
, k < −1.

The q-analogue of the binomial coefficients is given by[
n
j

]
q
=

cn

c jcn− j
. (11)

The geometric series ex,0 is in this case

ex,0 =

∞∑
n=0

xn tn

cn
, (12)

and from (1) we obtain

ex,k =
Dk

x

k!
ex,0 =

∞∑
n≥k

(
n
k

)
xn−k tn

cn
,

where Dx is the usual derivative with respect to x.
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Remark 4.6. The series (12) coincides with the q-analogue of the exponential function ext
q presented in [4].

In this concrete realization, the q-trigonometric functions can be expressed as linear combinations of geo-
metric series, this is

sinq(ωt) =
eiω,0 − e−iω,0

2i

and

cosq(ωt) =
eiω,0 + e−iω,0

2
.

The next examples can be easily solved by the direct application of Theorem 2.1, but we prefer to show
another procedure based in the same theory, which helps us to understand better some aspects of the theory.

Example 4.7. Several problems appearing in physics can be described by means of the classical q-oscillator equation
which is

D2
q y(t) + ω2y(t) = 0. (13)

Suppose that the solution y can be represented as a sum of the form
∑

ynpn. Equation (13) can be written as

(L2 + ω2I)y = 0.

From (3), L2 = p−2(p0 − P0 − P1), and then

(p−2(p0 − P0 − P1) + ω2p0))
∑

ynpn = 0.

After some algebraic manipulations (remember that P0y = y0p0 and P1y = y1p1) and simplifications we get

(p0 + iωp1)(p0 − iωp1)y = y0p0 + y1p1.

The multiplicative inverses of (p0 + iωp1) and (p0 − iωp1) are e−iω,0 and eiω,0, respectively. Then

y = (y0p0 + y1p1)e−iω,0eiω,0.

From (2) we obtain

eiω,0e−iω,0 = p−1
eiω,0 − e−iω,0

2iω
,

and thus

y = y0p−1
eiω,0 − e−iω,0

2iω
+ y1

eiω,0 − e−iω,0

2iω

= y0
eiω,0 + e−iω,0

2
+

y1

ω

eiω,0 − e−iω,0

2i
,

where y0 and y1 are arbitrary values that are determined by the initial conditions. In terms of the concrete realization
we have

y(t) = C1 cosq(ωt) + C2 sinq(ωt).

We can also solve non-linear equations using a slightly different procedure. In the next example, we
consider a q-analogue of the logistic equation.
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Example 4.8. Consider the q-analogue of the logistic equation

Dqy(t) − βy(t) = −βy2(t). (14)

Before we solve the equation, we need to deal with the non-linear term. If we suppose that the solution y(t) can be
written as the q-Taylor series

∑
n≥0 yn

tn

cn
, then

y2(t) =
∞∑

n=0

bn
tn

cn
,

where

bn =

n∑
j=0

[
n
j

]
q

y jyn− j. (15)

In terms of the pk’s, we have y =
∑

n≥0 ynpn and y2 =
∑
∞

n=0 bnpn.
On the other hand, it is clear that (14) can be written as

(L − βI)y = −βy2,

and in terms of the pk’s this is

(p−1(p0 − P0) − βp0)y = −βy2,

which can be rewritten as

(p0 − βp1)y = y0p0 − βp1y2.

Since eβ,0 is the multiplicative inverse of (p0 − βp1), we obtain

y = y0eβ,0 − βp1eβ,0y2

= y0

 ∞∑
n=0

βnpn

 − β
 ∞∑

n=0

βnpn


 ∞∑

n=0

bnpn+1


=

∞∑
n=0

y0β
n
−

n−1∑
j=0

β j+1bn− j−1

 pn,

where
∑n−1

j=0 β
j+1bn− j = 0, for n = 0. This result leads us to the recursive formula

yn = y0β
n
−

n−1∑
j=0

β j+1bn− j−1,

where bn− j−1 is computed by means of (15), and y0 is the initial condition. A few of the initial coefficients are the
following

y0 = y0

y1 = βy0 − βb0 = βy0 − βy2
0

y2 = βy1 − β(b1 + βb0) = βy1 − β(2y0y1 + y2
0)

y3 = βy2 − β(b2 + βb1 + β
2b0) = βy2 − β

2y0y2 +

[
2
1

]
q

y2
1 + 2βy0y1 + β

2y2
0


...

...
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Finally, the solution in terms of the concrete realization is given by

y(t) =
∞∑

n=0

y0β
n
−

n−1∑
j=0

β j+1bn− j−1

 tn

cn
. (16)

For q = 1, β = 1 and y0 =
1
2 , (16) can be written in closed form as y(t) = 1

1+e−t . It would be interesting to investigate
if (16) is related with 1

1+e−t
q

.

5. Conclusions

Based on the theory presented in [2], we developed an algebraic method to solve several kinds of h-
differential equations in Ward’s calculus. We extended the domain of the Ward’s derivatives from the space
of formal power series to the space of formal Laurent series. We showed through several examples that the
theory can be applied in two ways. The first one uses Theorem 2.1, which gives us quickly the solution,
but dealing with initial conditions is not simple. The second one is more laborious, but the incorporation
of initial conditions is more natural. A main feature of this theory is that the concept of integral in Ward’s
calculus is not required. Finally, we leave for future works the application of the operational method in the
more general case of equations with generalized difference operators and delta operators.

References
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