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Abstract. In this paper, we establish some new quantum Hermite-Hadamard type inequalities for differ-
entiable convex functions by using the g2-quantum integral. The results presented in this paper extend
the results of Bermudo et al. (On g-Hermite-Hadamard inequalities for general convex functions, Acta

Mathematica Hungarica, 2020, 162, 363-374). Finally, we give some examples to show validation of new
results of this paper.

1. Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard (see, e.g., [17], [29,
p-137]) is one of the most well-established inequalities in the theory of convex functions with a geometrical

interpretation and many applications. These inequalities state that if # : [ — R is a convex function on the
interval I of real numbers and «1, x, € I with k1 < x5, then

2

Both inequalities hold in the reversed direction if # is concave. We note that Hermite-Hadamard inequality
may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.
Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a
remarkable variety of refinements and generalizations have been studied. In recent years, inequalities have
been studied for different types of fractional integrals, different types of convexity, (see, [23, 30-33]).

On the other hand, several works in the field of g-analysis are being carried out, beginning with Euler, in
order to achieve mastery in the mathematics that drives quantum computing. The link between physics and
mathematics is referred to as g-calculus. It has a wide range of applications in mathematics, including num-
ber theory, combinatorics, orthogonal polynomials, basic hyper geometric functions, and other disciplines,
as well as mechanics, relativity theory, and quantum theory [19, 22]. Quantum calculus also has many
applications in quantum information theory which is an interdisciplinary area that encompasses computer
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science, information theory, philosophy, and cryptography, among other areas [11, 12]. Euler is thought
to be the inventor of this significant branch of mathematics. In Newton’s work on infinite series, he used
the g-parameter. Jackson [18, 20] was the first to present the g-calculus that knew without limits calculus
in a methodical manner. In 1966, Al-Salam [9] introduced a g-analogue of the g-fractional integral and
g-Riemann-Liouville fractional. Since then, the related research has gradually increased. In particular, in
2013, Tariboon and Ntouyas introduced , D;-difference operator and g, -integral in [36]. In 2020, Bermudo
et al. introduced the notion of *2D, derivative and g*?-integral in [10].

Many integral inequalities have been studied using quantum and post-quantum integrals for various
types of functions. For example,in[1,5,7,8,10, 13,14, 21,25, 26], the authors used ,, D;,*? D;-derivatives and
Jr,,q*2-integrals to prove Hermite-Hadamard integral inequalities and their left-right estimates for convex
and coordinated convex functions. In [27], Noor et al. presented a generalized version of quantum integral
inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum
integral inequalities in [28]. Khan et al. proved quantum Hermite-Hadamard inequality using the green
function in [24]. Budak et al. [15], Ali et al. [2, 3] and Vivas-Cortez et al. [37] developed new quantum
Simpson’s and quantum Newton’s type inequalities for convex and coordinated convex functions. For
quantum Ostrowski’s inequalities for convex and co-ordinated convex functions on can consult [4, 6, 16].

Inspired by the ongoing studies, we use the g-integrals to develop some new Hermite-Hadamard type
inequalities for differentiable functions. We also discuss some special case of newly established inequalities
and obtain new inequalities.

The following is the structure of this paper: Section 2 provides a brief overview of the fundamentals of g-
calculus as well as other related studies in this field. In Section 3, we prove different refinements of Hermite-
Hadamard type inequalities for differentiable convex functions. In Section 4, we give some examples to
show the validation of newly established inequalities. Section 5 concludes with some recommendations
for future research.

2. Preliminaries of g-Calculus and Some Inequalities

In this section, we recall some basic notions, notations, and results about the quantum calculus. Additionally,
here and further we use the following notation (see, [22]):

n

qq =1+q+q*+..+q"", g€(0,1).

1-

[n], =

In [20], Jackson gave the g-Jackson integral from 0 to x, for 0 < g < 1 as follows:

f?'(%) dgx =(1-9)x2 Zq”?—'(mq”) 2)
0 n=0

provided the sum converge absolutely. Moreover, he gave the g-Jackson integral in a generic interval [, k2]
as:

K2

f?(%) dyn =f?(%) dyu —f‘?(%) dgnt .
0 0

K1

Definition 2.1. [36] For a continuous function ¥ : [x1,x2] — R, the gy, -derivative of ¥ at x € [Kky, k2] is
characterized by the expression

F ) —F (qn+(1-q)x1)
(1-q) (¢ —x1)

For x = x1, we state . D;F (k1) = limy ., Dy () if it exists and it is finite.

KlD,;? n) = , X F K. 3)
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Definition 2.2. [10] For a continuous function ¥ : [x1,x2] — R, the g*-derivative of ¥ at x € [y, k2] is
characterized by the expression

2D, F (n) = T(q%(Jlr (_1[1;(67,()2%)%_)7:(%), H # K.

For % = 3, we state >D,F (x1) = lim, ., D, F () if it exists and it is finite.

Definition 2.3. [36] Let ¥ : [k1, k2] = R be a continuous function. Then, the q,,-definite integral on [x1, k2] is
defined as:

K2 o 1
f?—'(x) wdgt =1 =q) (k2 — Kl)Zq”T(q”KQ +(1-g")x1) = (k2 — 1) fT((l — ) K1 +tip) dyt .
K1 n=0 0

In [7], Alp et al. proved the following g,,-Hermite-Hadamard inequalities for convex functions in the
setting of quantum calculus:

Theorem 2.4. Let F : [k1, k2] — R be a convex differentiable function on [k1, k2] and 0 < g < 1. Then g-Hermite-
Hadamard inequalities are as follows:

gK1 + K2 1 r qF (k1) + F (x2)
‘F( o, )s p— f?(x) adgn < ST (4)

In [7] and [26], the authors established some bounds for the left and right hand sides of the inequality
(4).

On the other hand, Bermudo et al. gave the following new definition and related Hermite-Hadamard type
inequalities:

Definition 2.5. [10] Let ¥ : [x1, k2] — R be a continuous function. Then, the q**-definite integral on [x1,%>] is
defined as:

K2

1
f?(%) szq% = (1 - q) (K2 — Kl)qul?(qul + (1 - qn) Kz) = (K2 - Kl) f?(tkl + (1 - t) Kz) dqt .
n=0 0

K1

Theorem 2.6. [10] Let F : [x1, k2] — Rbea convex function on [k1, k] and 0 < g < 1. Then, g-Hermite-Hadamard
inequalities are as follows:

7o) s ot 700 mape < TSI, ®
2 T R1

[Z]q [2]‘7

From Theorem 2.4 and Theorem 2.6, one can the following inequalities:

Corollary 2.7. [10] For any convex function F : [x1, k2] = Rand 0 < g <1, we have

gK1 + K2 K1+ i 1 A " .
T( 21, )+¢( 2], )Sm-m f”‘) g +f?'<%> dp b <F (k) +F () (6)

and

K1+ K2 1 h h “ F (1) + F (x2)
7—'( . )sz(m_m) f?(%) gt +f¢(%) dp ps 2T %
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3. Main Results

In this section, we present some new Hermite-Hadamard type inequalities for differentiable convex
functions by using the g*2-quantum integral.

Theorem 3.1. Suppose that ¥ : [k1, k2] — R is a differentiable convex function on (x1, 12) for k3 € (x1, k2), and
let q be a constant with 0 < g < 1. Then, we have the following inequalities for the g'*-quantum integral

gk +x3) + (1 —¢q) Kz)
7”( 2,
q(r1 +x3) + (1 — q)Kz) (q(2K2 — K1 —K3) + K1 — K2
(2], (2],

(8)

+?"(

! f?"(%) “2d,n

K2 — K1

IN

< F (k1) + qF (x2)
< —[2],7 .

q(K1+K3)+(1—I])K2 c

Proof. Since the function ¥ is differentiable on (x1, x7), there exists a tangent line at the point ]
q

(x1, %2), we have

_ g(x1 +x3) + (1 — g) k2
h(x) = 7—'( a2 ) )
, 4(K1+K3)+(1—4)K2)( _q(K1+K3)+(1—Q)K2)
o ( 2], * 2],

Since ¥ is a convex function on [k, k2], it follows that h(x) < F (%) for all x € [k1, k2]. After g**-integrating
to (9) on [x1, k2], we have

K2

f h(x) “2d,x

K1

_ ﬁf(qm+K3>+(1—q>xz)+¢,(q<m+1<3>+<1—q)1<z

. 2, 2,
>; (% _ A+ K3;2+]q<1 —9 K)] “dyx
= (- (1000
(e SE g [f” e e P00 Kz]
- (- Klﬂ‘(‘“’“ * "Si;]q(l 9 K2)
T (q(m + Ksi;]q(l ) Kz) ((KZ ) % ey — e 1L K3E2+]q(1 - q) Kz)
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(1-9) (1 +1<3)+q1<2)+7_~,((1 —q) (k1 +1<3)+q1<2)(q(21<2 — K1 —K3) + K1 —Kz)]

(2 "‘”[T ( ) 2, 2,

ff(%) 2d,u.

On the other hand, since ¥ is a convex function, we obtain

IN

1 1 °°
1 [Feoman = [(1—q)(1<2—1<1)nz=0q"¢(q”1<1+(1—17”)K2)}

(1-9) ) q"F ("1 + (1 - g")x2)
n=0

IA

(1=9) ) " [9"F (k1) + (1 = ") F (x2)]
n=0

F(k1) F(k2) Fx2)
(1_q)[1—q2 * 1-g * 1-¢2
F (1) + qF (x2)

(2], '

The proof is complete. [

Corollary 3.2. In Theorem 8, if g € (O &] and F”(x3) = 0, we can reduce the left-hand side of Theorem 8 as:

7 2Kp—K1—K3

q(x1 + x3) + (1 - q)r2 f o T(Kl) F (k1) + g7 (i2)
‘F( o ) <o | Fe0 s =2

. - +(1—
Proof. Since F'(x3) =0and g € (0, 2,{;?,(:(1,{3] then q(KﬁKEZi( 2 ¢ (x1, x3). Thus we have

(g1 +x3) + (1= g2\ (2K — k1 — K3) + K1 — K2
d ( 1, )( 21, ) =0

This completes the proof. O

Theorem 3.3. Suppose that ¥ : [k1, k2] — R is a differentiable convex function on (x1, k2) such that ' (k3) =
for k3 € (1, k), and let q be a constant with 0 < g < 1. Then, we have the following inequalities for the g*2-quantum
integral

7__((1 —q) K1 +q (k3 +1<2))+7__,((1 —q)x1 +q (k3 +1<2))(q(1<1 —K3)) (10)

2], [2], (2],

IA

1 2
K2
P— ff(x) dyu

F (k1) + qF (k2)
< —[Z]q )
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(1-q)x1+q(3+12) c

Proof. Since the function ¥ is differentiable on (x1, x7), there exists a tangent line at the point B
q

(k1,x2), we get

k(}t) _ 7__((1 —Q)Kl +Q(K3 +K2))+7__,((1 —Q)Kl +Q(K3 +K2))(% B (1 —t])Kl +Q(K3 +K2) .

2, 2], 2, an

Since ¥ is a convex function on [«1, k»], it follows that k() < F () for all % € [x1, k2]. After g*>-integrating
to (11) on [k, k2], we have

K2

f k(%) “2d, %

K1

_ f[y_ﬂ((l—q)m +q(1<3+1<2))+?_~,((1—q)1<1 + g (k3 + %2)

. (2], 2],

T
:(m—mﬁ(O_WM&TQ+mU

(42 g e f(% st — (k2 — ey 0 g o+
- (e (2 i +))

L ((1 —q)K1 [;]Z (k3 + Kz)) ((K2 ) ((Kl [;]ZKz) (-9 [er]Z (13 + 1<2)))
) [7__((1 - q)Kl[;]Z (13 + Kz)) . ((1 —9) Kl[;j (13 + Kz))

52

f?(x) “2d,u.

K1

IA

The proof is completed. [

Corollary 3.4. In Theorem 10, if g € (0 @] and F'(x3) = 0, We can reduce the left-hand side of Theorem 10 as:

7 Ka—K1

F (1) + qF (k2)

1 (.
F < P— f?—'(%) dygn < 2,

(1-q)x1+g (k3 + Kz))
(2],

Proof. Since#”(k3) = 0andg € (0 K3_K1]then (gt € (x1,x3). Thus, wehave ((1—q)K1+'1(’<3+“2))(”7("1"‘3) =

s o, o, 2,

0, which completes the proof. O
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Theorem 3.5. [Generalized 4*-Hermite-Hadamard inequality for convex differentiable functions].Let F : [x1, k2] —
R be a differentiable convex function on (x1, %) such that F'(x3) = 0 for k3 € (x1,%2), and 0 < g < 1. Then, we
have the following inequalities for the q*2-quantum integral

max {11, Iz sz 77(1{1) + qT(KZ) (12)
[Z]q
where
_ q(x1 +K3)+(1—q)1<2) ,(q(xl +13) + (1 _q)K2)(l](2K2—K1 — k) + 1 _K2)
" ¢( 2], d (2], [2],
= (1—Q)K1+q(1<3+1<2)) ,((1_Q)K1+‘1(K3+K2))(‘1(K1—K3))
b= 7—'( (2], . [2], 2],

Proof. A combination (8) and(10) yields (12). Thus, the proof is complete. [

4. Examples

In this section, we give some examples to show the validation of newly established inequalities in the
previous section.

Example 4.1. Define the function f (x) = x> on [-1,3], and let q € (0,1). Applying Theorem 3.1 with 11 = -1,
Ko = 3, and k3 = 0, the left-hand side becomes:

T(Q(Kl +x3) +(1-¢q) Kz)

(2],
(a(k1 +x3) + (1 - q)Kz) (6](21(2 —K1—K3)+ Ky — Kz)
v ( 2, 2],

K2
1 .
g f F (%) dyn

3
L (3-4q\  (3-49\(79-4\ 1 [ .,
B ?(Hq)”(lw)(lw) 4fx A
-1
3 1
@@+17 (P +q+1)
For the right hand side, we have

Kz (Kl) + qT(KZ)
f T R

(494" - 74> + 9¢* — 249 + 16) < 0.

K2 — K1

16—<0
P+22+29+1

Example 4.2. Define function f(x) = x> on [-1,1], and let q € (0,1). Applying Corollary 3.2 with xy = =1, %2 = 1
and k3 = 0, the left hand-side becomes:

gl +13) + (1 —gpra) 1 h "
7 2, ) P— f?—'(%) dyn
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q 3 2
= - 6—-30°—g-—qg) <0.
(q+1>2<q2+q+1>( )

The right hand side is:

g T (k1) +qF (i)
f Foq B - =

Ky — K

7
<
4q3+2q2+2q+1 <0

Example 4.3. Define functions f(x) = x> on [-3,1], and let q € (0,1). Applying Theorem 3.3 withx; = =3, k2 = 1,
and k3 = 0, the left-hand side becomes:

7—'((1 —Q)w +q (s +K2))+¢,((1 Q) k1 +q (s +K2>)(q(1<1 —Ks))_ 1 fﬂ”) oy
K2 — K1

2], 2], 2],

q 3 2
= - 99° +9g° +9g + 16) < 0.
e g O YT o)

The right hand side is:

) 7:(1<1) + QT(Kz)
f T R

K2 — K1
7
-16————<
P+2¢%+2q9+1

Example 4.4. Define function f(x) = x> on [-1,1], and let q € (0,1). Applying Corollary 3.4 with x, = =1, %2 = 1
and k3 = 0, the left hand-side becomes:

1- 7
?(( 9w+ (ks KZ)) __1 f () 2d
Ky — K1

(2],

q 3 2
= - 6-33°—g —q)<0.
(q+1)2(q2+q+1)( 7= ~1)

The right hand side is:

g o T (1) +qF (k2)
f Fo0) gt [Z]q

Ky — K1

7
_— <
4q3+2qz+2q+1 <0

5. Conclusions

In this paper, using the g*2-integrals, we developed certain Hermite-Hadamard type inequalities for dif-
ferentiable convex functions. The findings of this study expand previously established results in the area
of quantum Hermite-Hadamard inequalities. In Section 4, we also demonstrated the validation of newly
proven results using some examples. It is an intriguing and novel problem, and future scholars will be able
to demonstrate analogous inequalities for many types of convexities in their future study.

We would like to point out that in [34, p. 340] and [35, pp. 1511-1512], the authors show that since the
simple and forced-in parameter p is unnecessary, converting known g-calculus results to (p, g)-calculus is
unnecessary.
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