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On Cellular-Countably Compact Spaces
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Abstract. A space X is said to be cellular-countably compact if for each cellular family U in X, there
is a countably compact subspace K of X such that U N K # 0 for each U € U. The class of cellular-
countably compact spaces contain the classes of countably compact spaces and cellular-compact spaces and
contained in a class of pseudocompact spaces. We give an example of Tychonoff DCCC space which is not
cellular-countably compact. By using Erd6s and Rad¢’s theorem, we establish the cardinal inequalities for
cellular-countably compact spaces. We show that the cardinality of a normal cellular-countably compact

space with a Gs-diagonal is at most ¢. Finally, we study the topological behavior of cellular-countably
compact spaces on subspaces and products.

1. Introduction

In the last few years, there has been a great deal of activity regarding properties defined using cellular
families. Given a topological property #, a space X is said to be cellular-P if for every cellular family U
there is a subspace Y C X having property # such that UNY # 0, for every U € U. This program was
started by Bella and Spadaro, who in their article [3] defined cellular-Lindelof spaces and asked whether every
first-countable cellular-Lindelof space has cardinality continuum. Their original motivation to introduce
cellular-Lindelof spaces was to look for a common generalization to Arhangel’skii’s Theorem and the
Hajnal-Juhdsz inequality stating that every CCC first-countable space has cardinality at most continuum
(see [4]). Indeed in [3] the authors showed that the cardinality of a cellular-Lindelof first-countable space
does not exceed 2° and asked whether it is always bounded by the continuum. Bella and Spadaro managed
to find such a common generalization by other means (see [5]) but the original question is still open despite
several attacks by various authors (see, for example, [2, 5, 12, 14]). Moreover, the introduction of the
cellular-Lindelof property led several authors to study cellular-P-spaces, for various other properties £
(see, for example, [1, 14]).

In this paper, we study the case $ = countably compact of the above definition and investigate some
topological properties of cellular-countably compact spaces. Evidently, every countably compact space is
cellular-countably compact and every cellular-compact space is cellular-countably compact.

It is proved that cellularity of cellular-countably compact space with a Gs-diagonal is at most ¢. It is
also shown that the cardinality of a normal cellular-countably compact space with a Gs-diagonal is at most
¢. We establish the cardinal inequalities of cellular-countably compact spaces by using Erd6s and Radé’s
theorem. We prove that if X is a cellular-countably compact space with a symmetric g-functions such that
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N{g*(n,x) : n € w} = {x} for each x € X, then |X| < 2°. We also prove that if X is a cellular-countably compact
space with a symmetric g-function such that N{g(n,x) : n € w} = {x} for each x € X, then every weakly
separated subset Y C X has cardinality at most c.

2. Preliminaries

Throughout the paper, all spaces are assumed to be Hausdorff topological spaces unless otherwise is
stated. Given a space X, the collection 7(X) is a topology on X and 7(x, X) = {U € 7(X) : x € U} forany x € X.

Throughout the paper, the cardinality of a set is denoted by |A| and [X]*> denote the set of two-element
subsets of X. Let w denote the first infinite cardinal, w; the first uncountable cardinal, ¢ the cardinality of
the set of all real numbers. For each pair of ordinals a, § with a < , we write [a,8) = {y : a <y < B},
(@pl={y:a<y<pL(@p) ={y:a<y<pBllapl=1{y:a<y<p}. Asusual a cardinal is an initial
ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual
order topology.

As usual, Y(X) and d(X) denote respectively the pseudocharacter and the density of X.

Definition 2.1. A cellular family is a family of pairwise disjoint nonempty open sets. The cellularity of a
space X is the supremum of the cardinalities of the cellular families in X and is denoted by c¢(X).

Definition 2.2. A space X satisfies the countable chain condition (in short, X is CCC) if any disjoint family
of nonempty open subsets in X is countable, that is, the Souslin number (or cellularity) of X is at most w.

Definition 2.3. A space X satisfies the discrete countable chain condition (in short, X is DCCC) if every
discrete family of nonempty open subsets of X is countable.

Definition 2.4. A set S C X is weakly separated if there exists a subset A C S such that |A| = |S| and A has a
disjoint open expansion.

Definition 2.5. ([10]) A g-function for a space X is a map g : w X X — 7(X) such that for every x € X,
x € g(n,x)and g(n +1,x) C g(n,x) for all n € w.

Definition 2.6. ([10]) A g-function g is said to be symmetric if for any n € w and x,y € X, vy € g(n,x)
whenever x € g(n, y).

Definition 2.7. ([16]) A space X has a regular Gs-diagonal if there is a countable family {U, : n € w}

of open neighborhoods of the diagonal Ax in the square X X X such that Ax = N{U, : n € w}, where
Ax ={(x,x) : x € X}.

Definition 2.8. A space X has a rank 2-diagonal if there exists a sequence (U, : n € w) of open covers of X
such that for each x € X, {x} = N{St?(x, U,) : n € w}.

All notations and terminology not explained in the paper are given in [8].

3. Cellular-countably compact spaces
The following lemma follows from the definitions.

Lemma 3.1. The following statements hold:
1. Every countably compact space is cellular-countably compact.

2. Every cellular-compact space is cellular-countably compact.

Lemma 3.2. ([1, Corollary 3.2]) If a space X has a countably compact dense subspace D, then X is cellular-countably
compact.
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Using the above lemma we see that the Tychonoff Plank is an example of cellular-countably compact
non-countably compact.
We have the following observation from the [1, Proposition 3.5].

Observation 3.3. The following statements hold:

1. Ewvery cellular-countably compact space is feebly compact.

2. Every regular cellular-countably compact Lindeldf space is compact.
3. Every normal cellular-countably compact space is countably compact.
4. Every cellular-countably compact space is DCCC.

The following example shows that the converse of Observation 3.3(4) is not true.
Example 3.4. There exists a Tychonoff DCCC space which is not cellular-countably compact.

Proof. Let D(c) = {d, : @ < ¢} be a discrete space of cardinality ¢ and let Y = D(c) U {d*}, where d* ¢ D(¢) is the
one-point Lindel6fication. Then Y is Lindelof and every countably compact subset of Y is finite. Let

X = (Y x[0,w]) \ {d", @)}

be the subspace of the product space Y X [0, w]. Then X is DCCC space, since Y X w is a Lindelof dense
subset of X.

To show X is not cellular-countably compact. For each a < ¢, let U, = {d,} X [0, w]. Then each U, is open
in X. Let

U={U,:a<c}

Then U is a cellular family in X. It is enough to show that there exists a Ug € U such that Ug N K = 0, for
any countably compact subset K of X. Let K be any countably compact subset of X. Since {{(d,, w) : @ < ¢} is
a discrete closed subset of X, the set

Kn{{d,, o) : a < ¢ is finite. Then there exists a’ < ¢ such that

Kn{{dy, w)y:a>a’}=0.
Pick 8 > a’. Then Uy N K = (. Therefore X is not cellular-countably compact. [

4. Cardinal inequalities
Theorem 4.1. If X is a cellular-countably compact space with a Gs-diagonal, then ¢(X) < c.

Proof. Let U be a cellular family in X. Since X is cellular-countably compact, there is a countably compact
subset of K € X such that KN U # 0 for every U € U. Since every countably compact space with a
Gs-diagonal is metrizable, then |K| < ¢. Thus [U| <c¢. O

Theorem 4.2. Every cellular-countably compact Moore space X has cardinality at most c.

Proof. Every Moore space is perfect, so, by [13, Proposition 2.3], the space X is CCC. Since every Moore
space is first-countable the result follows from the Hajnal-Juhdsz inequality |X| < 24X 7

It is interesting to note that, in the above theorem “cellular-countably compact” cannot be replaced with
“cellularity at most continuum (see [6, Theorem 2.3]).

Bella and Spadaro proved that every normal cellular-Lindelof space X with a Gs-diagonal of rank 2 has
cardinality at most ¢ (see [5, Theorem 13]). We have a related result for cellular-countably compact spaces.

Theorem 4.3. Every normal cellular-countably compact space X with a Gs-diagonal has cardinality at most c.
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Proof. Every cellular-countably compact is feebly compact and every normal feebly compact space is count-
ably compact, then X has countable extent. By the Ginsburg-Woods inequality [9], every space with a
Gs-diagonal and countable extent has cardinality at most c. [

Bella and Spadaro proved that every cellular-Lindelof space with a regular Gs-diagonal has cardinality
at most 2¢ (see [5]).

Theorem 4.4. Every Tychonoff cellular-countably compact space with a regular Gs-diagonal has cardinality at most
c

Proof. Since every cellular-countably compact space is feebly compact, and thus pseudocompact. Every
Tychonoff pesudocompact space with a regular Gs-diagonal is compact and metrizable and thus it has
cardinality at most ¢. O

Problem 4.5. Does every cellular-countably compact space with a Gs-diagonal (of rank 2) have cardinality at most
?

For the next results, we need the following lemma due to Erd6s and Radé.

Lemma 4.6. ([11, p. 8]) Let x be an infinite cardinal, let X be a set with |X| > 2* and suppose [X]* = U{P, : & < k}.
Then there exist a < k and a subset S € X with |S| > « such that [S]* C P,,.

Theorem 4.7. If X is a cellular-countably compact space with a symmetric g-function such that N{g?(n,x) : n €
w} = {x} for each x € X, then |X| < 2°.

Proof. Let U, = {g(n, x) : x € X} for each n € w. Then each U, is an open cover of X and
Stx, Uy) = Ulg(n, &) : x € g(n, )} = Ulg(n, &) : & € g(n, )} = g*(n, x).

Since N{g*(n,x) : n € w} = {x} for each x € X, thus N{St(x, U,) : n € w} = {x} and hence X has a G,-diagonal.
Thus by Theorem 4.1, ¢(X) < .
Now we prove that |X| < 2¢. Suppose |X| > 2°. For each n € w, let

P, = {{x, vy e [X]?:x ¢ g*(n, y)}.

If g-function is symmetric, then gz is also symmetric, which make the sets P, well-defined. Thus [X]? =
U{P, : n € w}. Then by Lemma 4.6, there exists a subset S C X with [S| > ¢ and [S]? c P, for some 1 € w.
Thus for any two distinct points x,y € S, x ¢ g*(n,y), which implies that g(n,x) N g(n,y) = 0, since g is
symmetric. Thus {g(n, x) : x € S} is a cellular family of X with cardinality greater than ¢, contradict the fact
thatc(X) <c¢. O

Theorem 4.8. If X is a cellular-countably compact space with a symmetric g-function such that N{g>(n,x) : n €
w} = {x} for each x € X, then |X| < c.

Proof. Xuan [15] proved that if X is a DCCC space with a symmetric g-function such that N{g*(n,x) : n €
w} = {x} for each x € X, then |X| < ¢. Hence by Observation 3.3(4), the result follows. [

Theorem 4.9. If X is a cellular-countably compact space with a symmetric g-function such that N{g(n, x) : n € w} =
{x} for each x € X, then every weakly separated subset Y C X has cardinality at most c.

Proof. We first show that every countably compact subspace K C X has cardinality at most ¢. Suppose
IK| > ¢. For each 1 € w, define a subset P,, of [K]* by

P, = {{x, yle[KP?:x¢gn, y)}.
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Thus the sets P, are well-defined. Thus [K]> = U{P, : n € w}, by Lemma 4.6, there exists a subset S C X with
IS| > @ and [S]* C Px for some k € w. Thus by the definition of Py and for any two distinct points x,y € S,
x ¢ g(k, y)-

We claim that the set S is a closed discrete in X. If not, let £ € X is a accumulation point of X. Since X is
T1, the neighborhood g(k, &) of £ meets infinitely many members of S. Pick any x € g(k, £) N S. By symmetry
& € g(k,x), and hence, there exists y € (S \ {x}) N g(k, x), a contradiction. But K is countably compact, thus K
cannot have an uncountable closed discrete subset, which contradicts the fact that S ¢ K. Thus K] < ¢.

If Y ¢ X is weakly separated, then there is a subset A C Y such that |[A| = |Y] and A has a disjoint
expansion U = {U, : x € A}. By the cellular-countably compactness of X, there is a countably compact
subspace K’ C X such that K’ N U, # 0 for each x € A. Since [K’| < ¢, thus |U| < ¢, Therefore [Y| = |A| <¢. O

For a space X, we define hcee(X) = sup{c(Y) : Y is a countably compact subspace of X}.
The following result shows that ¢(X) < hcce(X) for any cellular-countably compact space X and its proof
follows immediately from the definitions.

Proposition 4.10. If X is a cellular-countably compact space and c(Y) < « for every countably compact subspace Y
of X, then ¢(X) < «x.

Since ¢(X) < |X] for any space X, the following corollary follows.

Corollary 4.11. If X is a cellular-countably compact space and every countably compact subspace of X has cardinality
not exceeding «, then ¢(X) < «.

We note that ¢(X) < heee(X) for a space X, need not hold in general, which can be seen in the following
example.

Example 4.12. There exists a Tychonoff Lindelof space X such that ¢(X) > hcee(X).

Proof. Let D(c) = {d. : @ < ¢} be a discrete space of cardinality ¢ and let X = D(c) U {d"}, where d* ¢ D(¢) is
the one-point Lindel6fication. Then X is Tychonoff Lindel6f space. Since D(¢) is the discrete subspace of X
with cardinality ¢, thus c¢(X) = c.

On the other hand, it is not difficult to see that every subspace K of X is countably compact if and only
if K is finite, thus heee(X) = w < ¢(X), which completes the proof. [

Since the extent of an infinite countably compact space is w and every normal cellular-countably compact
space is countably compact. The following corollary follows.

Corollary 4.13. If X is a normal cellular-countably compact space, then the extent of X is w.

5. Topological properties of cellular-countably compact spaces

Theorem 5.1. (i) Any space X with discrete topology and cardinality at least w is not cellular-countably compact.
(ii) Every clopen subset of a cellular-countably compact space is cellular-countably compact.

Proof. The proof is straightforward. [

Example 5.2. There exists a Tychonoff cellular-countably compact space having a closed subset which is
not cellular-countably compact.

Proof. Let D(c) = {d) : A < ¢} be a discrete space of cardinality ¢ and let
X = (BD(¢) X [0, ) U (D(c) x {c})
viewed as subspace of the product space BD(c) X [0, ¢]. Since fD(¢) X [0, ¢) is a dense countably compact
subset of X, thus X is cellular-countably compact. Since D X {c} is a closed discrete subset of X with
cardinality ¢. Therefore, D X {c} is not cellular-countably compact. [J
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The following result follows from [1, Lemma 3.3].
Theorem 5.3. A regular closed subset of a cellular-countably compact space is cellular-countably compact.

In [7], Dow and Stephenson gave several examples of spaces related to the preservation of cellular-
P property in products. The well-known example [8, Example 3.10.19], shows that the product of two
cellular-countably compact Tychonoff spaces need not be pseudocompact (hence, not cellular-countably
compact).

Example 5.4. There exist a Tychonoff countably compact space X and Tychonoff Lindel6f space Y such that
X X Y is not cellular-countably compact.

Proof. Let X = [0, w1) with the usual order topology. Then X is countably compact. Let D(w1) = {dy : @ < w1}
be a discrete space of cardinality w, let Y = DU {d"} be one-point Lindel6fication of D(w1), where d* ¢ D(ws).
Now we show that X X Y is not cellular-countably compact. Let U = {(a, w1) X {ds} : @ < w1}. Then U
is a disjoint family of open subsets of X X Y. Let K be any countably compact subset of X x Y. Then n(K) is
a countably compact subset of Y, where 71 : X X Y — Y is the projection. Hence n(K) is a finite subset of Y.
Thus there exists @ < w; such that KN ((a, w1) X {d,}) = 0.
This shows that X X Y is not cellular-countably compact. O

Dow and Stephenson showed that product of cellular-compact space and a compact space is not necessarily
cellular-Lindel6f (see [7, Theorem 2.4]). The following question seems natural.

Problem 5.5. Is the product of cellular-countably compact space and a compact space cellular-countably compact?
The proof of the following theorem is straightforward.
Theorem 5.6. A continuous image of a cellular-countably compact space is cellular-countably compact.

It is well-known that the Alexandorff duplicate AD(X) of a space X is countably compact if X is countably
compact. We show that a similar result is not hold for cellular-countably compact spaces. The Alexandorff
duplicate AD(X) = X x {0, 1} of a space X. The basic neighborhood of a point (x,0) € X x {0} is of the form
(Ux{0h) UU % {1}\ {{x, 1)}), where U is a neighborhood of x in X and each points (x, 1) € X X {1} are isolated
points.

Example 5.7. There exists a Tychonoff cellular-countably compact space X such that AD(X) is not cellular-
countably compact.

Proof. Let X be the same space X in the proof of Example 5.2. Thus X is cellular-countably compact. Let
A ={{{dx,),1) : A < c}. Then A is a clopen subset of AD(X) with |A| = ¢ and each point ({d}, ¢), 1) is isolated.
Hence AD(X) is not cellular-countably compact, since every clopen subset of a cellular-countably compact
space is cellular-countably compact and A is not cellular-countably compact. [

Remark 5.8. Let X be the same space of Example 5.2. Then by Example 5.7, X is cellular-countably compact,
but AD(X) is not. Define f : AD(X) — X by f({x,0)) = f({x,1)) = x for each x € X. Then f is a closed 2-to-1
continuous map. Thus the preimage of cellular-countably compact space under closed 2-to-1 continuous
map is not cellular-countably compact.
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