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Abstract. A space X is said to be cellular-countably compact if for each cellular family U in X, there
is a countably compact subspace K of X such that U ∩ K , ∅ for each U ∈ U. The class of cellular-
countably compact spaces contain the classes of countably compact spaces and cellular-compact spaces and
contained in a class of pseudocompact spaces. We give an example of Tychonoff DCCC space which is not
cellular-countably compact. By using Erdős and Radó’s theorem, we establish the cardinal inequalities for
cellular-countably compact spaces. We show that the cardinality of a normal cellular-countably compact
space with a Gδ-diagonal is at most c. Finally, we study the topological behavior of cellular-countably
compact spaces on subspaces and products.

1. Introduction

In the last few years, there has been a great deal of activity regarding properties defined using cellular
families. Given a topological property P, a space X is said to be cellular-P if for every cellular family U
there is a subspace Y ⊂ X having property P such that U ∩ Y , ∅, for every U ∈ U. This program was
started by Bella and Spadaro, who in their article [3] defined cellular-Lindelöf spaces and asked whether every
first-countable cellular-Lindelöf space has cardinality continuum. Their original motivation to introduce
cellular-Lindelöf spaces was to look for a common generalization to Arhangel’skii’s Theorem and the
Hajnal-Juhász inequality stating that every CCC first-countable space has cardinality at most continuum
(see [4]). Indeed in [3] the authors showed that the cardinality of a cellular-Lindelöf first-countable space
does not exceed 2c and asked whether it is always bounded by the continuum. Bella and Spadaro managed
to find such a common generalization by other means (see [5]) but the original question is still open despite
several attacks by various authors (see, for example, [2, 5, 12, 14]). Moreover, the introduction of the
cellular-Lindelöf property led several authors to study cellular-P-spaces, for various other properties P
(see, for example, [1, 14]).

In this paper, we study the case P = countably compact of the above definition and investigate some
topological properties of cellular-countably compact spaces. Evidently, every countably compact space is
cellular-countably compact and every cellular-compact space is cellular-countably compact.

It is proved that cellularity of cellular-countably compact space with a Gδ-diagonal is at most c. It is
also shown that the cardinality of a normal cellular-countably compact space with a Gδ-diagonal is at most
c. We establish the cardinal inequalities of cellular-countably compact spaces by using Erdős and Radó’s
theorem. We prove that if X is a cellular-countably compact space with a symmetric 1-functions such that
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∩{12(n, x) : n ∈ ω} = {x} for each x ∈ X, then |X| ≤ 2c. We also prove that if X is a cellular-countably compact
space with a symmetric 1-function such that ∩{1(n, x) : n ∈ ω} = {x} for each x ∈ X, then every weakly
separated subset Y ⊂ X has cardinality at most c.

2. Preliminaries

Throughout the paper, all spaces are assumed to be Hausdorff topological spaces unless otherwise is
stated. Given a space X, the collection τ(X) is a topology on X and τ(x,X) = {U ∈ τ(X) : x ∈ U} for any x ∈ X.

Throughout the paper, the cardinality of a set is denoted by |A| and [X]2 denote the set of two-element
subsets of X. Let ω denote the first infinite cardinal, ω1 the first uncountable cardinal, c the cardinality of
the set of all real numbers. For each pair of ordinals α, β with α < β, we write [α, β) = {γ : α ≤ γ < β},
(α, β] = {γ : α < γ ≤ β}, (α, β) = {γ : α < γ < β}, [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is an initial
ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual
order topology.

As usual, ψ(X) and d(X) denote respectively the pseudocharacter and the density of X.

Definition 2.1. A cellular family is a family of pairwise disjoint nonempty open sets. The cellularity of a
space X is the supremum of the cardinalities of the cellular families in X and is denoted by c(X).

Definition 2.2. A space X satisfies the countable chain condition (in short, X is CCC) if any disjoint family
of nonempty open subsets in X is countable, that is, the Souslin number (or cellularity) of X is at most ω.

Definition 2.3. A space X satisfies the discrete countable chain condition (in short, X is DCCC) if every
discrete family of nonempty open subsets of X is countable.

Definition 2.4. A set S ⊂ X is weakly separated if there exists a subset A ⊂ S such that |A| = |S| and A has a
disjoint open expansion.

Definition 2.5. ([10]) A g-function for a space X is a map 1 : ω × X → τ(X) such that for every x ∈ X,
x ∈ 1(n, x) and 1(n + 1, x) ⊂ 1(n, x) for all n ∈ ω.

Definition 2.6. ([10]) A g-function 1 is said to be symmetric if for any n ∈ ω and x, y ∈ X, y ∈ 1(n, x)
whenever x ∈ 1(n, y).

Definition 2.7. ([16]) A space X has a regular Gδ-diagonal if there is a countable family {Un : n ∈ ω}
of open neighborhoods of the diagonal ∆X in the square X × X such that ∆X = ∩{Un : n ∈ ω}, where
∆X = {(x, x) : x ∈ X}.

Definition 2.8. A space X has a rank 2-diagonal if there exists a sequence (Un : n ∈ ω) of open covers of X
such that for each x ∈ X, {x} =

⋂
{St2(x,Un) : n ∈ ω}.

All notations and terminology not explained in the paper are given in [8].

3. Cellular-countably compact spaces

The following lemma follows from the definitions.

Lemma 3.1. The following statements hold:

1. Every countably compact space is cellular-countably compact.
2. Every cellular-compact space is cellular-countably compact.

Lemma 3.2. ([1, Corollary 3.2]) If a space X has a countably compact dense subspace D, then X is cellular-countably
compact.
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Using the above lemma we see that the Tychonoff Plank is an example of cellular-countably compact
non-countably compact.

We have the following observation from the [1, Proposition 3.5].

Observation 3.3. The following statements hold:

1. Every cellular-countably compact space is feebly compact.
2. Every regular cellular-countably compact Lindelöf space is compact.
3. Every normal cellular-countably compact space is countably compact.
4. Every cellular-countably compact space is DCCC.

The following example shows that the converse of Observation 3.3(4) is not true.

Example 3.4. There exists a Tychonoff DCCC space which is not cellular-countably compact.

Proof. Let D(c) = {dα : α < c} be a discrete space of cardinality c and let Y = D(c)∪ {d∗}, where d∗ < D(c) is the
one-point Lindelöfication. Then Y is Lindelöf and every countably compact subset of Y is finite. Let

X = (Y × [0, ω]) \ {⟨d∗, ω⟩}

be the subspace of the product space Y × [0, ω]. Then X is DCCC space, since Y × ω is a Lindelöf dense
subset of X.

To show X is not cellular-countably compact. For each α < c, let Uα = {dα} × [0, ω]. Then each Uα is open
in X. Let

U = {Uα : α < c}.

ThenU is a cellular family in X. It is enough to show that there exists a Uβ ∈ U such that Uβ ∩ K = ∅, for
any countably compact subset K of X. Let K be any countably compact subset of X. Since {⟨dα, ω⟩ : α < c} is
a discrete closed subset of X, the set

K ∩ {⟨dα, ω⟩ : α < c} is finite. Then there exists α′ < c such that

K ∩ {⟨dα, ω⟩ : α > α′} = ∅.

Pick β > α′. Then Uβ ∩ K = ∅. Therefore X is not cellular-countably compact.

4. Cardinal inequalities

Theorem 4.1. If X is a cellular-countably compact space with a Gδ-diagonal, then c(X) ≤ c.

Proof. LetU be a cellular family in X. Since X is cellular-countably compact, there is a countably compact
subset of K ⊂ X such that K ∩ U , ∅ for every U ∈ U. Since every countably compact space with a
Gδ-diagonal is metrizable, then |K| ≤ c. Thus |U| ≤ c.

Theorem 4.2. Every cellular-countably compact Moore space X has cardinality at most c.

Proof. Every Moore space is perfect, so, by [13, Proposition 2.3], the space X is CCC. Since every Moore
space is first-countable the result follows from the Hajnal-Juhász inequality |X| ≤ 2χ(X)·c(X).

It is interesting to note that, in the above theorem “cellular-countably compact” cannot be replaced with
“cellularity at most continuum (see [6, Theorem 2.3]).

Bella and Spadaro proved that every normal cellular-Lindelöf space X with a Gδ-diagonal of rank 2 has
cardinality at most c (see [5, Theorem 13]). We have a related result for cellular-countably compact spaces.

Theorem 4.3. Every normal cellular-countably compact space X with a Gδ-diagonal has cardinality at most c.
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Proof. Every cellular-countably compact is feebly compact and every normal feebly compact space is count-
ably compact, then X has countable extent. By the Ginsburg-Woods inequality [9], every space with a
Gδ-diagonal and countable extent has cardinality at most c.

Bella and Spadaro proved that every cellular-Lindelöf space with a regular Gδ-diagonal has cardinality
at most 2c (see [5]).

Theorem 4.4. Every Tychonoff cellular-countably compact space with a regular Gδ-diagonal has cardinality at most
c.

Proof. Since every cellular-countably compact space is feebly compact, and thus pseudocompact. Every
Tychonoff pesudocompact space with a regular Gδ-diagonal is compact and metrizable and thus it has
cardinality at most c.

Problem 4.5. Does every cellular-countably compact space with a Gδ-diagonal (of rank 2) have cardinality at most
c?

For the next results, we need the following lemma due to Erdős and Radó.

Lemma 4.6. ([11, p. 8]) Let κ be an infinite cardinal, let X be a set with |X| > 2κ and suppose [X]2 = ∪{Pα : α < κ}.
Then there exist α < κ and a subset S ⊂ X with |S| > κ such that [S]2

⊂ Pα.

Theorem 4.7. If X is a cellular-countably compact space with a symmetric 1-function such that ∩{12(n, x) : n ∈
ω} = {x} for each x ∈ X, then |X| ≤ 2c.

Proof. LetUn = {1(n, x) : x ∈ X} for each n ∈ ω. Then eachUn is an open cover of X and

St(x,Un) = ∪{1(n, ξ) : x ∈ 1(n, ξ)} = ∪{1(n, ξ) : ξ ∈ 1(n, x)} = 12(n, x).

Since ∩{12(n, x) : n ∈ ω} = {x} for each x ∈ X, thus ∩{St(x,Un) : n ∈ ω} = {x} and hence X has a Gδ-diagonal.
Thus by Theorem 4.1, c(X) ≤ c.

Now we prove that |X| ≤ 2c. Suppose |X| > 2c. For each n ∈ ω, let

Pn =
{
{x, y} ∈ [X]2 : x < 12(n, y)

}
.

If 1-function is symmetric, then 12 is also symmetric, which make the sets Pn well-defined. Thus [X]2 =
∪{Pn : n ∈ ω}. Then by Lemma 4.6, there exists a subset S ⊂ X with |S| > c and [S]2

⊂ Pn for some n ∈ ω.
Thus for any two distinct points x, y ∈ S, x < 12(n, y), which implies that 1(n, x) ∩ 1(n, y) = ∅, since 1 is
symmetric. Thus {1(n, x) : x ∈ S} is a cellular family of X with cardinality greater than c, contradict the fact
that c(X) ≤ c.

Theorem 4.8. If X is a cellular-countably compact space with a symmetric 1-function such that ∩{13(n, x) : n ∈
ω} = {x} for each x ∈ X, then |X| ≤ c.

Proof. Xuan [15] proved that if X is a DCCC space with a symmetric 1-function such that ∩{13(n, x) : n ∈
ω} = {x} for each x ∈ X, then |X| ≤ c. Hence by Observation 3.3(4), the result follows.

Theorem 4.9. If X is a cellular-countably compact space with a symmetric 1-function such that ∩{1(n, x) : n ∈ ω} =
{x} for each x ∈ X, then every weakly separated subset Y ⊂ X has cardinality at most c.

Proof. We first show that every countably compact subspace K ⊂ X has cardinality at most c. Suppose
|K| > c. For each n ∈ ω, define a subset Pn of [K]2 by

Pn =
{
{x, y} ∈ [K]2 : x < 1(n, y)

}
.
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Thus the sets Pn are well-defined. Thus [K]2 = ∪{Pn : n ∈ ω}, by Lemma 4.6, there exists a subset S ⊂ X with
|S| > ω and [S]2

⊂ Pk for some k ∈ ω. Thus by the definition of Pk and for any two distinct points x, y ∈ S,
x < 1(k, y).

We claim that the set S is a closed discrete in X. If not, let ξ ∈ X is a accumulation point of X. Since X is
T1, the neighborhood 1(k, ξ) of ξmeets infinitely many members of S. Pick any x ∈ 1(k, ξ)∩S. By symmetry
ξ ∈ 1(k, x), and hence, there exists y ∈ (S \ {x}) ∩ 1(k, x), a contradiction. But K is countably compact, thus K
cannot have an uncountable closed discrete subset, which contradicts the fact that S ⊂ K. Thus |K| ≤ c.

If Y ⊂ X is weakly separated, then there is a subset A ⊂ Y such that |A| = |Y| and A has a disjoint
expansion U = {Ux : x ∈ A}. By the cellular-countably compactness of X, there is a countably compact
subspace K′ ⊂ X such that K′ ∩Ux , ∅ for each x ∈ A. Since |K′| ≤ c, thus |U| ≤ c, Therefore |Y| = |A| ≤ c.

For a space X, we define hccc(X) = sup{c(Y) : Y is a countably compact subspace of X}.
The following result shows that c(X) ≤ hccc(X) for any cellular-countably compact space X and its proof

follows immediately from the definitions.

Proposition 4.10. If X is a cellular-countably compact space and c(Y) ≤ κ for every countably compact subspace Y
of X, then c(X) ≤ κ.

Since c(X) ≤ |X| for any space X, the following corollary follows.

Corollary 4.11. If X is a cellular-countably compact space and every countably compact subspace of X has cardinality
not exceeding κ, then c(X) ≤ κ.

We note that c(X) ≤ hccc(X) for a space X, need not hold in general, which can be seen in the following
example.

Example 4.12. There exists a Tychonoff Lindelöf space X such that c(X) > hccc(X).

Proof. Let D(c) = {dα : α < c} be a discrete space of cardinality c and let X = D(c) ∪ {d∗}, where d∗ < D(c) is
the one-point Lindelöfication. Then X is Tychonoff Lindelöf space. Since D(c) is the discrete subspace of X
with cardinality c, thus c(X) = c.

On the other hand, it is not difficult to see that every subspace K of X is countably compact if and only
if K is finite, thus hccc(X) = ω < c(X), which completes the proof.

Since the extent of an infinite countably compact space isω and every normal cellular-countably compact
space is countably compact. The following corollary follows.

Corollary 4.13. If X is a normal cellular-countably compact space, then the extent of X is ω.

5. Topological properties of cellular-countably compact spaces

Theorem 5.1. (i) Any space X with discrete topology and cardinality at least ω is not cellular-countably compact.
(ii) Every clopen subset of a cellular-countably compact space is cellular-countably compact.

Proof. The proof is straightforward.

Example 5.2. There exists a Tychonoff cellular-countably compact space having a closed subset which is
not cellular-countably compact.

Proof. Let D(c) = {dλ : λ < c} be a discrete space of cardinality c and let
X = (βD(c) × [0, c)) ∪ (D(c) × {c})

viewed as subspace of the product space βD(c) × [0, c]. Since βD(c) × [0, c) is a dense countably compact
subset of X, thus X is cellular-countably compact. Since D × {c} is a closed discrete subset of X with
cardinality c. Therefore, D × {c} is not cellular-countably compact.
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The following result follows from [1, Lemma 3.3].

Theorem 5.3. A regular closed subset of a cellular-countably compact space is cellular-countably compact.

In [7], Dow and Stephenson gave several examples of spaces related to the preservation of cellular-
P property in products. The well-known example [8, Example 3.10.19], shows that the product of two
cellular-countably compact Tychonoff spaces need not be pseudocompact (hence, not cellular-countably
compact).

Example 5.4. There exist a Tychonoff countably compact space X and Tychonoff Lindelöf space Y such that
X × Y is not cellular-countably compact.

Proof. Let X = [0, ω1) with the usual order topology. Then X is countably compact. Let D(ω1) = {dα : α < ω1}

be a discrete space of cardinalityω1, let Y = D∪{d∗} be one-point Lindelöfication of D(ω1), where d∗ < D(ω1).
Now we show that X × Y is not cellular-countably compact. LetU = {(α,ω1) × {dα} : α < ω1}. ThenU

is a disjoint family of open subsets of X × Y. Let K be any countably compact subset of X × Y. Then π(K) is
a countably compact subset of Y, where π : X × Y→ Y is the projection. Hence π(K) is a finite subset of Y.
Thus there exists α < ω1 such that K ∩ ((α,ω1) × {dα}) = ∅.

This shows that X × Y is not cellular-countably compact.

Dow and Stephenson showed that product of cellular-compact space and a compact space is not necessarily
cellular-Lindelöf (see [7, Theorem 2.4]). The following question seems natural.

Problem 5.5. Is the product of cellular-countably compact space and a compact space cellular-countably compact?

The proof of the following theorem is straightforward.

Theorem 5.6. A continuous image of a cellular-countably compact space is cellular-countably compact.

It is well-known that the Alexandorff duplicate AD(X) of a space X is countably compact if X is countably
compact. We show that a similar result is not hold for cellular-countably compact spaces. The Alexandorff
duplicate AD(X) = X × {0, 1} of a space X. The basic neighborhood of a point ⟨x, 0⟩ ∈ X × {0} is of the form
(U×{0})

⋃
(U×{1} \ {⟨x, 1⟩}), where U is a neighborhood of x in X and each points ⟨x, 1⟩ ∈ X×{1} are isolated

points.

Example 5.7. There exists a Tychonoff cellular-countably compact space X such that AD(X) is not cellular-
countably compact.

Proof. Let X be the same space X in the proof of Example 5.2. Thus X is cellular-countably compact. Let
A = {⟨⟨dλ, c⟩, 1⟩ : λ < c}. Then A is a clopen subset of AD(X) with |A| = c and each point ⟨⟨dλ, c⟩, 1⟩ is isolated.
Hence AD(X) is not cellular-countably compact, since every clopen subset of a cellular-countably compact
space is cellular-countably compact and A is not cellular-countably compact.

Remark 5.8. Let X be the same space of Example 5.2. Then by Example 5.7, X is cellular-countably compact,
but AD(X) is not. Define f : AD(X)→ X by f (⟨x, 0⟩) = f (⟨x, 1⟩) = x for each x ∈ X. Then f is a closed 2-to-1
continuous map. Thus the preimage of cellular-countably compact space under closed 2-to-1 continuous
map is not cellular-countably compact.
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[8] R. Engelking, General topology, PWN, Warszawa, (1977).
[9] J. Ginsburg, R.G. Woods, A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64

(1977) 357–360.
[10] C. Good, D. Jennings, A.M. Mohammad, Symmetric 1-functions, Topol. Appl. 134 (2003) 111–122.
[11] R. Hodel, Cardinal functions I, In: K. Kunen, J. Vaughan (eds.), Handbook of Set-Theoretic Topology, pp 1-61, North-Holland,

Amsterdam (1984)
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