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Abstract. The approximate controllability of fractional linear evolution systems is considered in this
paper. Firstly, the definitions of the mild solution and the approximate controllability of fractional linear
evolution systems are obtained by using the theory of C−semigroups. Secondly, a new set of necessary and
sufficient conditions are established to examine that linear system is approximately controllable with the
help of symmetric operator. Moreover, the restricted condition of the state space is weakened by means of
the dual mapping. Finally, as applications, the approximate controllability of nonlinear evolution systems
are derived under the assumption that the corresponding linear system is approximately controllable.
Our work essentially improves and generalized the corresponding results which are based on strongly
continuous semigroups.

1. Introduction

The concept of controllability in finite dimensional spaces has been proposed by Kalman in 1960, and
aroused close attention among scholars. Some of them generalized the definition to infinite dimensional
spaces. Controllability is the core problem in mathematical control theory. The significance of the controlla-
bility depends on the fact that it can steer a control system from an arbitrary initial state to arbitrary final state
using the set of admissible controls. Recently, Hernández and O’Regan [9] indicated that in the cases the
semigroup or the control function is compact, the controllability results would apply only to finite dimen-
sional space. Hence, a relatively weaker concept of controllability, namely approximate controllability, has
received a great deal of attention, and it is completely adequate in applications [1, 2, 5, 6, 10, 13, 16–18, 23, 26].

The necessary and sufficient conditions for linear evolution systems have been derived mostly based
on strongly continuous semigroups in the sense of integer order. Zhou [28] investigated the inequality
conditions of approximate controllability for linear system. Naito [24] considered the approximate control-
lability of the linear system under the range condition of the control operator. Mahmudov [20] derived
the necessary and sufficient conditions in a resolvent form for the approximate controllability of the linear
system. As a generation of strongly continuous semigroups, exponentially bounded C-semigroups which
was introduced by Davies and Pang [7] and extended by Tanaka and Miyadera [27], have received a great
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deal of attention, see [3, 11, 15, 21, 22, 25, 30, 31]. In fact, there are many differential operators that generate
C−semigroups rather than strongly continuous semigroups. A typical example is that the Schrödinger
oprator i∆ in the space Lp (p , 2), see [8].

Fractional differential equations have been served as efficient mathematical models in applied areas,
such as in biology, signal processing, control theory and so on. For more details, we refer to the book [12],
and the reference therein. However, to the best of our knowledge, the study of the necessary and sufficient
conditions for fractional linear systems based on C−semigroups is an untreated topic in the literature. In
order to fill this gap, in this paper, we are devoted to investigating the approximate controllability of the
following fractional linear evolution system:{

CDαx(t) = Ax(t) + Bu(t), t ∈ J = [0, b],
x(0) = x0 ∈ X, (1)

where 1
2 < α ≤ 1; the state x takes values in a reflexive Banach space X; A : D(A) ⊆ X → X is the generator

of an exponentially bounded C−semigroup {S(t)}t≥0; C ∈ B(X) is injective. the control function u is given
in L2(J, Y), Y is a Hilbert space; B is a bounded linear operator from Y to X. We establish four necessary
and sufficient conditions of approximate controllability in the resolvent form for system (1). The proof is
based on the characterization of the symmetric operator as well as the duality mapping. Moreover, the
approximate controllability of the corresponding nonlinear system is obtained under the assumption that
linear system (1) is approximately controllable. The results in our paper are new, and some of our results
are also new ever in the case of strongly continuous semigroups, which improve the related results on this
topic.

The rest of the paper is organized as follows. In section 2, we recall some definitions of Caputo
fractional derivatives and C−semigroups. We also obtain the definitions of mild solutions and approximate
controllability of system (1). The corresponding nonnegative and symmetric operator and duality mapping
are also introduced. We establish the new set of necessary and sufficient conditions for the approximate
controllability in a resolvent form of fractional linear system (1) in section 3. Section 4 solves the approximate
controllability of a class of fractional nonlinear differential systems provided that the corresponding linear
system is approximately controllable.

2. Preliminaries

Throughout this paper, we assume that the state space X is a reflexive Banach space, and the control
space Y is a Hilbert space. Let b > 0 be fixed. N, R and R+ denote the set of positive integer, real number,
and nonnegative real number, respectively. We denote by C(J,X) the space of X-valued continuous functions
on J with the norm ∥x∥ = sup{∥x(t)∥, t ∈ J}, and denote by Lp(J,X) the space of X-valued Bochner integrable

functions on J with the norm ∥ f ∥Lp = (
∫ b

0 ∥ f (t)∥pdt)1/p, where 1 ≤ p < ∞. We also denote by B(X) the space
of all bounded linear operators from X to X endowed with the operator norm ∥ · ∥. Let C be an injective
operator in B(X). Let T be a bounded linear operator in B(X). We denote by R(T) be the range of the
operator T. In this paper, we always suppose that A is a closed and densely defined linear operator on X.

First let us recall the following basic definitions and results about fractional derivative and resolvent.

Definition 2.1. [12] The Riemann-Liouville fractional integral of order α > 0 with the lower limit zero for a function
f (·) ∈ L1([0,∞),R) is defined as

Iα f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s) ds, t > 0,

provided the right side is point-wisely defined on [0,∞), where Γ(·) is the Gamma function.

Definition 2.2. [12] The Riemann-Liouville fractional derivative of order α > 0 with the lower limit zero for a
function f (·) ∈ L1([0,∞),R) is defined as

LDα f (t) =
1

Γ(n − α)
dn

dtn

∫ t

0
(t − s)n−α−1 f (s)ds, t > 0, n − 1 < α < n.
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Definition 2.3. [12] The Caputo fractional derivative of order α > 0 with the lower limit zero for a function
f (·) ∈ L1([0,∞),R) is defined as

CDα f (t) = LDα
(

f (t) −
n−1∑
k=0

tk

k!
f k(0)
)
, t > 0, n − 1 < α < n.

If f (·) ∈ Cn[0,∞), then

CDα f (t) = In−q f (n)(s) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds, t > 0, n − 1 < α < n.

If f is an abstract function with values in X, the integrals which appear in the above three definitions are
taken in Bochner’s sence.

Definition 2.4. [27] Let C ∈ B(X) be injective. A strongly continuous family {S(t)}t≥0 ⊆ B(X) is said to be a
C−semigroup, if it fufills

1. S(t + s)C = S(t)S(s), t, s ≥ 0;
2. S(0) = C;
3. ∥S(t)∥ ≤Meωt for some constants M, ω and all t ≥ 0.

The generator A : D(A) ⊆ X→ X is the operator
Ax = C−1 lim

t→0+
S(t)x−Cx

t , x ∈ D(A),

D(A) = {x ∈ X| lim
t→0+

S(t)x−Cx
t exists, and contains in R(C)}.

Lemma 2.5. [14] Let M ≥ 0, ω ∈ R and A be a linear operator on X. Then the following conditions are equivalent:

1. {S(t)}t≥0 is a C−semigroup generated by A, and ∥S(t)∥ ≤Meωt, t ≥ 0.
2. (ω,∞) ⊂ ρC(A), C−1AC = A. There exists a family of strongly continuous operators {S(t)}t≥0 ⊆ B(X) such

that ∥S(t)∥ ≤Meωt, t ≥ 0, and the C−resolvent of A satisfies

RC(λ; A)x = (λI − A)−1C =
∫
∞

0
e−λtS(t)xdt, λ > ω, x ∈ X, (2)

where ρC(A) := {r : R(C) ⊆ R(r − A) and r − A is injective} is the C−resolvent of A. D(C−1AC) = {x ∈ X :
Cx ∈ D(A), ACx ∈ R(C)}. Furthermore, if condition 2 holds, then A is the infinitesimal generator of C−semigroup
{S(t)}t≥0.

Now, we give the mild solution of system (1) by using the Laplace transformation, some proper density
function as well as the definition and properties of C−semigroup.

Applying Laplace transform to (1), we have

ĈDαx(λ) = Ax̂(λ) + Bû(λ),

λαx̂(λ) − λα−1x(0) = Ax̂(λ) + Bû(λ),

(λαI − A)x̂(λ) = λα−1x0 + Bû(λ).

That is

x̂(λ) = λα−1(λαI − A)−1x0 + (λαI − A)−1Bû(λ).

It follows from the fact S(t)C = CS(t) that

Cx̂(λ) = λα−1(λαI − A)−1Cx0 + (λαI − A)−1CBû(λ). (3)
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(2) together with (3) lead to the conclusion that

Cx̂(λ) = λα−1
∫
∞

0
e−λ

αtS(t)x0dt +
∫
∞

0
e−λ

αtS(t)Bû(λ)dt. (4)

If α = 1, (4) indicates that

Cx̂(λ) = Ŝ(λ)x0 + Ŝ(λ)Bû(λ).

Take advantage of the inversion of Laplace transform, one gets

Cx(t) = S(t)x0 +

∫ t

0
S(t − s)Bu(s)ds. (5)

If 0 < α < 1, similar to construction in [29], consider the one-sided stable probability density [19]

ωα(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα + 1)
n!

sin(πnα), θ ∈ (0,∞),

whose Laplace transform is given by∫
∞

0
e−λθωα(θ)dθ = e−λ

α
, α ∈ (0, 1). (6)

Using (4) and (6), one has

Cx̂(λ) =

∫
∞

0
e−λt(
∫
∞

0
ωα(θ)S(

tα

θα
)x0dθ)dt

+ α

∫
∞

0
e−λt(
∫ t

0

∫
∞

0
ωα(θ)S(

(t − s)α

θα
)
(t − s)α−1

θα
Bu(s)dθds)dt,

Employing the inversion of Laplace transform, one gets

Cx(t) =

∫
∞

0
ωα(θ)S(

tα

θα
)x0dθ + α

∫ t

0

∫
∞

0
ωα(θ)S(

(t − s)α

θα
)
(t − s)α−1

θα
Bu(s)dθds

=

∫
∞

0
hα(θ)S(tαθ)x0dθ

+α

∫ t

0

∫
∞

0
θ(t − s)α−1hα(θ)S((t − s)α−1θ)Bu(s)dθds,

where hα(θ) = 1
αθ
−1− 1

αωα(θ−
1
α ) ≥ 0, θ ∈ (0,∞) is a probability density function satisfying∫

∞

0
hα(θ)dθ = 1,

∫
∞

0
θvhα(θ)dθ =

Γ(1 + v)
Γ(1 + αv)

, v ∈ [0, 1].

Due to the argument above, we give the following definition of the mild solution of (1).

Definition 2.6. A function x ∈ C(J,X) is called a mild solution of (1) if it satisfies the following integral equation:

Cx(t) = Tα(t)x0 +

∫ t

0
(t − s)α−1

Sα(t − s)Bu(s)ds,

for t ∈ J, where

Tα(t) =
{ ∫ ∞

0 hα(θ)S(tαθ)dθ, 0 < α < 1,
S(t), α = 1,

Sα(t) =
{
α
∫
∞

0 θhα(θ)S(tαθ)dθ, 0 < α < 1,
S(t), α = 1.
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Remark 2.7. For t ∈ J, set

v(t) = Tα(t)x0 +

∫ t

0
(t − s)α−1

Sα(t − s)Bu(s)ds. (7)

Then, Definition 2.6 implies that

Cx(t) = v(t).

Lemma 2.8. [29] For any fixed t ∈ J, Tα(t) and Sα(t) are linear and bounded operators on X. Moreover, for any
x ∈ X,

∥Tα(t)x∥ ≤M∥x∥, ∥Sα(t)x∥ ≤
Mα
Γ(1 + α)

∥x∥, (8)

where M is the constant such that sup
t∈J
∥S(t)∥ =M.

Define the operator Qb : L2(J,Y)→ X as

Qbu =
∫ b

0
(b − s)α−1

Sα(b − s)Bu(s)ds.

Since 1
2 < α ≤ 1, by means of the Hölder inequality, we can deduce that

∥Qbu∥ ≤
Mα
Γ(1 + α)

∥B∥(
∫ b

0
|(b − s)2(α−1)

|ds)
1
2 ∥u∥L2

=
Mα
Γ(1 + α)

∥B∥(
b2(α−1)+1

2(α − 1) + 1
)

1
2 ∥u∥L2 ,

for each u ∈ L2(J,Y), which means that Qb ∈ B(L2(J,Y),X). Denote by Q∗b : X∗ → L2(J,Y) the dual operator of
Qb. Then

⟨Qbu, x∗⟩ =
∫ b

0
(b − s)α−1

⟨Sα(b − s)Bu(s), x∗⟩ds

=

∫ b

0
⟨u(s), (b − s)α−1B∗S∗α(b − s)x∗⟩ds

= ⟨u,Q∗bx∗⟩, (9)

for each u ∈ L2(J,Y) and x∗ ∈ X∗, that is

Q∗bx∗(·) = (b − ·)α−1B∗S∗α(b − ·)x
∗, (10)

and

∥Q∗bx∗∥ = (
∫ b

0
∥(b − s)α−1B∗S∗α(b − s)x∗∥2ds)

1
2 , (11)

for every x∗ ∈ X∗.

Definition 2.9. We say that fractional linear system (1) is

1. approximately controllable on J if for any x0, x1 ∈ X and ε > 0, there exists a control u ∈ L2(J,Y) such that
∥v(b) − Cx1∥ < ε, i.e., ∥Tα(b)x0 +Qbu − Cx1∥ < ε.

2. approximately null controllable on J if for any x0 ∈ X and ε > 0, there exists a control u ∈ L2(J,Y) such that
∥v(b)∥ < ε, i.e., ∥Tα(b)x0 +Qbu∥ < ε.
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Remark 2.10. Definition 2.9 implies the following conclusions:

1. fractional linear system (1) is approximately controllable on J if and only if R(C) ∪ R(Tα(b)) ⊆ R(Qb).
2. fractional linear system (1) is approximately null controllable on J if and only if R(Tα(b)) ⊆ R(Qb).

Throughout the paper, without loss of generality, we may assume that X and X∗ are strictly convex. For
each x ∈ X, define the duality mapping F : X→ X∗ as

F(x) = {x∗ ∈ X∗ : ⟨x∗, x⟩ = ∥x∥2 = ∥x∗∥2},

By virtue of Barbu [4], F is bijective, demicontinuous and strictly monotonic. Moreover, F−1 : X∗ → X is
also a duality mapping.

Remark 2.11. For each λ > 0, the operator λI + Λb
0F : X → X is bijective, where Λb

0 = QbQ∗b is a nonnegative
symmetric operator. In fact, on one hand, if

λF−1x∗1 + Λ
b
0x∗1 = λF−1x∗2 + Λ

b
0x∗2,

for some x∗1, x∗2 ∈ X∗, then
λ⟨F−1x∗1 − F−1x∗2, x

∗

1 − x∗2⟩ = ⟨Λ
b
0(x∗2 − x∗1), x∗1 − x∗2⟩.

By virtue of the fact that F−1 is a duality mapping and Λb
0 is nonnegative and symmetric, we have

0 ≤ λ(∥x∗1∥ − ∥x
∗

2∥)
2 = −∥Q∗bx∗2 −Q∗bx∗1∥

2,

which implies that ∥x∗1∥ = ∥x
∗

2∥ and Q∗bx∗2 = Q∗bx∗1, i.e., x∗1 = x∗2, which implies that it is injective.
On the other hand, by Lemma 2.2 of [20], we have that for every λ > 0 and x ∈ X, the equation

λzλ + Λb
0F(zλ) = λx

has a unique solution zλ = λ(λI + Λb
0F)−1x. That is, the operator λI + Λb

0F is surjective.

3. Approximate controllability and approximate null controllability for linear system (1)

In this section, we give the necessary and sufficient conditions in a resolvent form of approximate
controllability and approximate null controllability for fractional linear system (1).

Lemma 3.1. For every λ > 0 and x ∈ X, one has

λ∥F(λI + Λb
0F)−1x∥ ≤ ∥x∥.

Proof. For every λ > 0 and x ∈ X, set
yλ = F(λI + Λb

0F)−1x,

that is
x = λF−1yλ + Λb

0yλ.

Then

⟨x, yλ⟩ = λ⟨F−1yλ, yλ⟩ + ⟨Λb
0yλ, yλ⟩

= λ∥yλ∥2 + ∥Q∗byλ∥2

≥ λ∥yλ∥2,

which implies that λ∥yλ∥2 ≤ ∥yλ∥∥x∥, i.e., λ∥yλ∥ ≤ ∥x∥. This completes the proof.
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Lemma 3.2. For every λ > 0 and x∗ ∈ X∗, we have

∥F(λI + Λb
0F)−1Λb

0x∗∥ ≤ ∥x∗∥.

Proof. For every x∗ ∈ X∗, set
zλ = F(λI + Λb

0F)−1Λb
0x∗,

that is
Λb

0x∗ = λF−1zλ + Λb
0zλ.

Then

0 ≤ ⟨x∗ − zλ,Λb
0(x∗ − zλ)⟩ = λ⟨x∗,F−1zλ⟩ − λ⟨zλ,F−1zλ⟩,

which implies that
∥zλ∥2 ≤ ∥zλ∥∥x∗∥,

that is,
∥(λF−1 + Λb

0)−1Λb
0x∗∥ ≤ ∥x∗∥.

This completes the proof.

Remark 3.3. Exploiting Lemma 3.2, we can deduce that

λF(λI + Λb
0F)−1x→ 0, (12)

as λ→ 0+ for every x ∈ R(QbQ∗b). This together with Lemma 3.1 gives that (12) holds for every x ∈ R(QbQ∗b). Taking
into account the fact R(QbQ∗b) = N(Q∗b)⊥ = R(Qb), one gets that (12) holds for every x ∈ R(Qb).

Theorem 3.4. Fractional linear system (1) is approximately controllable if and only if one of the following conditions
holds:

1. λF(R(λ,−Λb
0F)C)→ 0 and λF(R(λ,−Λb

0F)Tα(b))→ 0 as λ→ 0+ in the strong topology, where R(λ,−Λb
0F) =

(λI + Λb
0F)−1.

2. λR(λ,−Λb
0F)C→ 0 and λR(λ,−Λb

0F)Tα(b)→ 0 as λ→ 0+ in the strong topology.
3. λF(R(λ,−Λb

0F)C)→ 0 and λF(R(λ,−Λb
0F)Tα(b))→ 0 as λ→ 0+ in the weak topology.

4. λR(λ,−Λb
0F)C→ 0 and λR(λ,−Λb

0F)Tα(b)→ 0 as λ→ 0+ in the weak topology.

Proof. In view of Remark 2.11, linear system (1) is approximately controllable if and only if
R(C)

⋃
R(Tα(b)) ⊆ R(Qb). This together with Remark 3.3 yields that condition 1 holds.

The definition of duality mapping F gives that condition 1 implies condition 2. Moreover, it is obvious
that condition 1 implies condition 3 and condition 2 implies condition 4. Now, we prove that if condition 3
holds, then condition 2 also holds. Owing to condition 3 and the reflexivity of X, one has

⟨x, λF(R(λ,−Λb
0F)Cx⟩ → 0 (13)

as λ→ 0+ for every x ∈ X. Set R(λ,−Λb
0F)Cx = xλ. Then, Cx = λxλ + Λb

0Fxλ, and

⟨Cx,Fxλ⟩ = λ∥xλ∥2 + ⟨Λb
0Fxλ,Fxλ⟩

≥ λ∥xλ∥2,

which implies that

λ2
∥xλ∥2 ≤ ⟨Cx, λFxλ⟩. (14)

This yields λ∥xλ∥ → 0 as λ→ 0+ since (13) holds, in other words,

λ(λI + Λb
0F)−1Cx→ 0. (15)
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With analogous arguments as above, we can prove that λ(λI + Λb
0F)−1

Tα(b)x → 0 as λ → 0+ provided that
λF(R(λ,−Λb

0F)Tα(b))→ 0 as λ→ 0+ in the weak topology. This gives that condition 2 holds.
Finally, we verify that condition 4 implies that (1) is approximately controllable on J. For every λ > 0

and x ∈ X, let yλ = (λI + Λb
0F)−1Cx. Then, Cx = λyλ + Λb

0Fyλ. By virtue of condition 4,

⟨λyλ, x∗⟩ → 0 (16)

for every x∗ ∈ X∗. Morover, for every x∗ ∈ N(Q∗b),

⟨Cx, x∗⟩ = ⟨λyλ, x∗⟩ + ⟨Λb
0Fyλ, x∗⟩

= ⟨λyλ, x∗⟩. (17)

(16) and (17) yields

⟨y, x∗⟩ = 0, (18)

for every x∗ ∈ N(Q∗b) and y ∈ R(C). Next, we prove that R(C) ⊆ R(Qb). If not, with the help of Hahn-Banach
theorem, there exist an x0 ∈ R(C)\R(Qb) and some y∗ ∈ X∗ such that

⟨x0, y∗⟩ = 1, (19)

and

⟨y, y∗⟩ = 0, (20)

for every y ∈ R(Qb). By virtue of the fact that R(Qb) = R(QbQ∗b), together with (20) gives

⟨QbQ∗bx∗, y∗⟩ = 0,

for x∗ ∈ X∗. Especially,
⟨QbQ∗by∗, y∗⟩ = 0,

which implies that Q∗by∗ = 0, that is, y∗ ∈ N(Q∗b). We now turn back to (18) and (19), which implies that the
assumption is not true, and R(C) ⊆ R(Qb). A similar manner utilized above gives that R(Tα(b)) ⊆ R(Qb),
which means that R(C)

⋃
R(Tα(b)) ⊆ R(Qb), that is (1) is approximately controllable on J. This completes

the proof.

Remark 3.5. The restricted condition of state space is weakened by taking full advantage of the dual mapping. Here,
the state space just satisfies the reflexivity condition. Therefore, the results in our paper essentially generalize those in
[20, 24, 28], and the references therein, where the state space must be a Hilbert space.

Corollary 3.6. Fractional linear system (1) is approximately null controllable on J if and only if one of the following
conditions holds:

1. λF(R(λ,−Λb
0F)Tα(b))→ 0 as λ→ 0+ in the strong topology.

2. λR(λ,−Λb
0F)Tα(b)→ 0 as λ→ 0+ in the strong topology.

3. λF(R(λ,−Λb
0F)Tα(b))→ 0 as λ→ 0+ in the weak topology.

4. λR(λ,−Λb
0F)Tα(b)→ 0 as λ→ 0+ in the weak topology.

Corollary 3.7. If C = I, then fractional linear system (1) is approximately controllable on J if and only if one of the
following conditions holds:

1. λF(R(λ,−Λb
0F))→ 0 as λ→ 0+ in the strong topology.

2. λR(λ,−Λb
0F)→ 0 as λ→ 0+ in the strong topology.

3. λF(R(λ,−Λb
0F))→ 0 as λ→ 0+ in the weak topology.

4. λR(λ,−Λb
0F)→ 0 as λ→ 0+ in the weak topology.

Remark 3.8. Theorem 2.3 of Mahmudov[20] is conditions 2 and 3 of Corollary 18 in the case of α = 1.
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4. Applications

Consider the approximate controllability of the following fractional nonautonomous differential system:{
CDαx(t) = Ax(t) + Bu(t) + f (t), t ∈ J = [0, b],
x(0) = x0 ∈ X, (21)

where 1
2 < α ≤ 1. x(·) ∈ X. X is a reflexive Banach space. A : D(A) ⊆ X → X is a infinitesimal generator of

an exponentially bounded C−semigroup {S(t)}t≥0. C ∈ B(X) is injective. The control function u ∈ L2(J, Y). Y
is a Hilbert space, B ∈ B(X) and f ∈ L1(J,X).

Definition 4.1. A function x ∈ C(J,X) is called a mild solution of fractional nonautonomous differential system (21)
if {

Cx(t) = y(t), t ∈ J,
y(t) = Tα(t)x0 +

∫ t

0 (t − s)α−1
Sα(t − s)[Bu(s) + f (s)]ds, t ∈ J,

for each t ∈ J.

Definition 4.2. System (21) is said to be approximately controllable on J if for each x0, x1 ∈ X and ε > 0 small
enough, there exists an u ∈ L2(J, Y) such that ∥y(b) − Cx1∥ < ε.

Theorem 4.3. Let one of the conditions of Theorem 3.4 be satisfied. Assume that x0 ∈ R(C), and f (t) ∈ R(C),
Bu(t) ∈ R(C) for 0 ≤ t ≤ b. Then, fractional nonautonomous differential system (21) is approximately controllable on
J.

Proof. It follows from the facts x0 ∈ R(C), and f (t) ∈ R(C), Bu(t) ∈ R(C) for 0 ≤ t ≤ b that the function y(t)
defined in Definition 4.1 satisfies that y(t) ∈ R(C) for 0 ≤ t ≤ b, i.e., the mild of system (21) is well defined.

In view of Theorem 3.4, one can obtain that

λF(R(λ,−Λb
0F)Cx)→ 0, λF(R(λ,−Λb

0F)Tα(b)x)→ 0,

as λ→ 0+ for each x ∈ X. For each x0, x1 ∈ X, λ > 0 and a.e. t ∈ J, set

uλ(t) = (b − t)α−1B∗S∗α(b − t)[F(R(λ,−Λb
0F)Cy0) − F(R(λ,−Λb

0F)Tα(b)x0)], (22)

where y0 = x1 − C−1(
∫ b

0 (b − s)α−1
Sα(b − s) f (s)ds) ∈ X. Notice that f (t) ∈ R(C) indicates

∫ b

0 (b − s)α−1
Sα(b −

s) f (s)ds) ∈ R(C), i.e., y0 is well defined. We will verify that ∥yλ(b)−Cx1∥ → 0 as λ→ 0+ through the control
function uλ. In fact,

yλ(b) = Tα(b)x0 + Λ
b
0[F(R(λ,−Λb

0F)Cy0) − F(R(λ,−Λb
0F)Tα(b)x0)]

+

∫ b

0
(b − s)α−1

Sα(b − s) f (s)ds)

= Tα(b)x0 + Cy0 − λ(R(λ,−Λb
0F)Cy0) − Tα(b)x0

+λ(R(λ,−Λb
0F)Tα(b)x0) +

∫ b

0
(b − s)α−1

Sα(b − s) f (s)ds)

= Cx1 − λR(λ,−Λb
0F)Cy0 + λR(λ,−Λb

0F)Tα(b)x0.

Moreover,

∥yλ(b) − Cx1∥ = ∥λR(λ,−Λb
0F)Cy0 − λR(λ,−Λb

0F)Tα(b)x0)∥

≤ ∥λR(λ,−Λb
0F)Cy0∥ + ∥λR(λ,−Λb

0F)Tα(b)x0∥.

It follows from Theorem 3.4 that,
∥yλ(b) − Cx1∥ → 0,

as λ→ 0+. This completes the proof.
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