Filomat 36:5 (2022), 1433-1450
https://doi.org/10.2298/FIL2205433W

(S
&

Published by Faculty of Sciences and Mathematics,
University of Ni$, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

o

%
<,

b, &

Ty xS’

&
Ipapor®

L-topological Derived Neighborhood Relations and L-topological
Derived Remotehood Relations

Xiu-Yun Wu?, Chun-Yan Liao®, Yan-Hui Zhao?

?School of Mathematics and Statistics, Anhui Normal University, Wuhu, 241003, China
bSchool of Science, Hunan University of Science and Engineering, Yongzhou 425100, China

Abstract. Fuzzy relations and fuzzy derived operators are useful tools to characterize fuzzy mathematical
structures such as fuzzy topology, fuzzy convexity, fuzzy matroid and fuzzy convergence structure. In this
paper, notions of L-topological neighborhood relation space, L-topological derived neighborhood relation
space and L-topological derived neighborhood space are introduced. It is proved that all of these spaces
are categorically isomorphic to L-topological internal relation space and L-topological neighborhood space.
Also, notions of L-topological remotehood relation space, L-topological derived remotehood relation space
and L-topological derived remotehood space are introduced. It is proved that all of these spaces are
categorically isomorphic to L-topological enclosed relation space and L-topological remotehood space.

1. Introduction

Since the concept of fuzzy set was introduced in 1965 [37], many classic mathematical structures such
as topology, matroid, convergence structure and convex structure have been extended into fuzzy setting
[1,10, 18, 19, 21, 22, 25]. In order to describe these structures, a great many papers have being devoting on
characterizations of these structures such as fuzzy topology [3, 9, 35, 36, 39], fuzzy convergence structure
[5-7, 11, 13, 14, 34], fuzzy matroid [4, 19, 31, 40] and fuzzy convex structure [12, 13, 15-17, 21, 22, 27—
29, 32, 33, 38].

Fuzzy relations and fuzzy derived operators are useful tools to characterize fuzzy mathematical struc-
tures. Shi et al introduced L-topological internal relation and L-topological enclosed relation by which they
characterized L-topology [23]. Later, they further introduced (L, M)-fuzzy topological internal relation and
(L, M)-fuzzy topological enclosed relation by which they characterized (L, M)-fuzzy topology [24]. Liao
et al introduced L-convex enclosed relation and characterized L-convex structure. Meanwhile, they fur-
ther introduced L-topological-convex enclosed relation by which they characterized L-topological-convex
structure [8]. Wu et al introduced (L, M)-fuzzy convex enclosed relation and characterized (L, M)-fuzzy
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convex structure. In addition, they further introduced (L, M)-fuzzy topological-convex enclosed relation
and characterized (L, M)-fuzzy topological-convex structure [29]. Chen and Shen introduced M-fuzzifying
derived operator by which they characterize M-fuzzifying convex structure [2, 17]. Xin and Zhong intro-
duced M-fuzzifying derived operator by which they characterize M-fuzzifying matroid [31, 40]. Recently,
Wau et al introduced L-topological derived internal relation and L-topological derived enclosed relation by
which they characterized L-topology [30].

As mentioned above, L-topology can be characterized by both L-topological internal relation and L-
topological enclosed relation. Then, a natural question arises: is it possible to define L-topological
neighborhood relation or L-topological derived neighborhood relation which can be used to character-
ize L-topological internal relation or L-topological neighborhood system? Similarly, is it possible to define
L-topological remotehood relation or L-topological derived remotehood relation which can be used to
characterize L-topological enclosed relation or L-topological remotehood system?

The aim of this paper is to solve the above problems. The arrangement of this paper is as follows.
In Section 2, we recall some basic notions related to L-topological spaces. In Section 3, we introduce L-
topological neighborhood relation space by which we characterize L-topological internal relation space and
L-topological neighborhood space. In Section 4, we introduce L-topological derived neighborhood relation
space and L-topological derived neighborhood space by which we characterize L-topological neighborhood
relation space and L-topological derived internal relation space. In Section 5, we introduce L-topological
remotehood relation space by which we characterize L-topological enclosed relation space and L-topological
remotehood space. In Section 6, we introduce L-topological derived remotehood relation space and L-
topological derived remotehood space by which we characterize L-topological derived remotehood relation
space and L-topological derived enclosed relation space. In the conclusion section, we present a simple
example to show different relations mentioned.

2. Preliminaries

In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X. L is a completely
distributive lattice with an inverse involution . The smallest (resp. largest) element in L is denoted by L
(resp. T). Anelementa € L is called a co-prime, if forall b,c € L,a < b V c implies a < b or a < c. The set of
all co-primes in L\{L} is denoted by J(L). For any a € L, there is an L; C J(L) such thata = \/;,¢; b. A binary
relation < on L is defined by a < bif and only if foreach Ly C L, b < \/ L; implies some d € L; witha < d. The
mapping f : L — 2!, defined by p(a) = {b : b < a}, satisfies B(\/ ;e 4i) = Uie; f(ai) for any {a;}ier € L. For any
£ €L e denote 0) = o) (). We have = @) = V@) @) = Usepio ) and @) = Usepn 9
20, 26].

An L-fuzzy set on X is a mapping A : X — L. The set of all L-fuzzy sets on X is denoted by LX. The
smallest (resp, largest) element in LX is denoted by L (resp. T). An L-fuzzy point x; (A € L\{1}) is an
L-fuzzy set defined by x;(x) = A and x,(y) = L for any y € X\{x}. The set of all L-fuzzy points on L* is
denoted by PtLX). In addition, we denote J(LX) = {x, € PHLX) : A € J(L)}. For a mapping f : X — Y, the
L-fuzzy mapping f;> : L* — LY is defined by f;"(A)(y) = V{A®) : f(x) = y} for A € LX and y € Y, and the
mapping f;~ : LY — L¥ is defined by f,~(B)(x) = B(f(x)) for B € LY and x € X [20, 25].

Next, we recall some basic notions and results related to L-topological spaces.

Definition 2.1. ([25]) A subset 7~ C L¥ is called an L-topology on L* and (X, 7") is called an L-topological
space if

(LT T, LeT;

(LT2) V{Alict €T, Vi Ai €T

(LT3)VA,BeT,AANB€eT.

Theorem 2.2. ([25]) Let (X, T") be an L-topological space.

(1) The L-topological closure operator Cly : LX — LX of T is defined by Clr-(A) = \{B€ LX: A<B,B €T}
for any A € LX. It satisfies

(LTCI1) Clg(L) = L;

7
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(LTCI2) A < Cly(A);

(LTCI3) Cly-(Cly-(A)) = Cly-(A);

(LTCI4) Cly-(A V B) = Cly(A) V Cly(B).

Conversely, if an operator Cl : LX — LX satisfies (LTCI1)~(LTCI4), then the set T¢c; = {A € LX : CI(A’) = A’} is
an L-topology satisfying Cly,, = CI.

(2) The L-topological interior operator Int : LX — LX of T is defined by Intg-(A) = \/{B € T : B < A} for any
A € LX. It satisfies

(LTInt1) Inty-(T) = T,

(LTInt2) Inty-(A) < A;

(LTInt3) Intg-(Int-(A)) = Inty(A);

(LTInt4) Int(A A B) = Int+(A) A Intg(B).

Conversely, if an operator Int : LX — LX satisfies (LTInt1)-(LTInt4), then the set Ti = {A € LX : Int(A) = A}
is an L-topology satisfying Inty,, = Int.

Let (X, Tx) and (Y, Ty) be L-topological spaces. A mapping f : X — Yis called an L-continuous mapping,
if f(A) € Tx for any A € Ty. The category of L-topological spaces and L-continuous mappings is denoted
by L-TOP [20].

Definition 2.3. ([20]) A family N = {N,, € L¥ : x, € J(L¥)} is called an L-topological neighborhood system
on LX and the pair (X, NV) is called an L-topological neighborhood space, if for any x, € J(LX),

(LTN1) T € N, and L ¢ Ny, ;

(LTN2) A € N, implies x; < A;

(LTN3) A € N,, implies some B € Ny, such that B € N, for any y, € p°(B);

(LTN4) AAB e N,, ifand only if A, B € Ny,.

Let (X, Nx) and (Y, Ny) be L-topological neighborhood spaces. A mapping f : X — Y is called an
L-topological neighborhood preserving mapping if B € N¢-(y,) implies f(B) € Ny, forall x; € J(LX) and
B € LY. The category of L-topological neighborhood spaces and L-topological neighborhood preserving
mapping is denoted by L-TNS [20].

Definition 2.4. ([20]) A family R = {R,, € L¥ : x, € J(L¥)} is called an L-topological remotehood system on
L¥ and the pair (X, R) is called an L-topological remotehood space, if for any x, € J(L¥),

(LTRN1) L e Ry, and T ¢ Ry,;

(LTRN2) A € R,, implies x) £ A;

(LTRN3) A € Ry, implies some B € R,, such that A < B € R, forany y, £ B;

(LTRN4) AV B € R,, ifand only if A, B € R,,.

Let (X,Rx) and (Y, Ry) be L-topological remotehood spaces. A mapping f : X — Y is called an L-
topological remotehood preserving mapping if f~(B) € R,, for all x; € J(L*) and B € R, The category
of L-topological remotehood spaces and L-topological remotehood preserving mapping is denoted by
L-TRNS [20].

Definition 2.5. ([23]) A binary relation < on LX is called an L-topological enclosed relation and the pair
(X, <) is called an L-topological enclosed relation space, if < satisfies

(LTER1) L < L;

(LTER2) A < B implies A < B;

(LTER3) A 2 A\ Biifand only if A < B; foralli € [;

(LTER4) A < B implies some C € LX such that A < C < B;

(LTER5) Av B < Cifand onlyif A < Cand B < C.

Let (X, <x) and (Y, <y) be L-topological enclosed relation spaces. A mapping f : X — Y is called an
L-topological enclosed relation preserving mapping, if f;~(A) <x f;"(B) for all A,B € L with A <y B. The
category of L-topological enclosed relation spaces and L-topological enclosed relation preserving mappings
is denoted by L-TERS [23].



X.Y. Wu et al. / Filomat 36:5 (2022), 1433-1450 1436

Theorem 2.6. ([23]) (1) For an L-topological enclosed relation space (X, <), the operator Cl. : LX — LX, defined by
Cl.(A) = \{B € LX : A < B} for any A € L%, is the L-topological closure operator of some L-topology T .

(2) For an L-topological space (X, T"), the binary operator <3, defined by A < B if and only if Cly-(A) < B for all
A, B € L%, is an L-topological enclosed relation.

(3) L-TOP is isomorphic to L-TERS.

Definition 2.7. ([23]) A binary relation < on L* is called an L-topological internal relation and the pair (X, <)
is called an L-topological internal relation space, if < satisfies

(LTIR) T < T;

(LTIR2) A < B implies A < B;

(LTIR3) Ve Ai < Bifand only if A; < Bfor alli e I;

(LTIR4) A < B implies some C € LX such that A < C < B;

(LTIR5) A< BACifand onlyif A<Band A <C.

~ — — ~—

Let (X,<x) and (Y,<y) be L-topological internal relation spaces. A mapping f : X — Y is called an
L-topological internal relation preserving mapping, if f;~(A) <x f;~(B) for all A,B € LY with A <y B. The
category of L-topological internal relation spaces and L-topological internal relation preserving mappings
is denoted by L-TIRS [23].

Theorem 2.8. ([23]) (1) For an L-topological internal relation space (X, <), the operator Int : LX — LX, defined by
Int<(A) = \/{B € LX : B < A} for any A € L%, is the L-topological interior operator of some L-topology T <.

(2) For an L-topological space (X,T"), the binary operator <z, defined by A <q B if and only if A < Intg-(B) for
all A, B € LX, is an L-topological internal relation.

(3) L-TOP is isomorphic to L-TIRS.

3. L-topological neighborhood relation spaces

In this section, we introduce L-topological neighborhood relation by which we characterize L-topological
internal relation space and L-topological neighborhood space.

Definition 3.1. A binary relation C on J(LX) x L is called an L-topological neighborhood relation on LX and
the pair (X, C) is called an L-topological neighborhood relation space if for all x; € J(L*) and A, B € L%,

(LTNR1) x, E T;

(LTNR2) x, C A if and only if x, < C < A for some C € c(L¥), where (LX) = {C € L¥ : Yy, €
B(C), yu ECL

(LTNR3) x4 E A ABifand only if x, £ A and x, C B.

Let (X,Cx) and (Y, Cy) be L-topological neighborhood relation spaces. A mapping f : X — Y is called
an L-topological neighborhood relation preserving mapping, if f”(x)) Ey B implies x, Cx f;~(B) for all
xy € J(LX)and Be LY.

The category of L-topological neighborhood relation spaces and L-topological neighborhood relation
preserving mappings is denoted by L-TNRS. Next, we discuss relations between L-TNRS and L-TIRS.

Lemma 3.2. Let (X, C) be an L-topological neighborhood relation space. Let x),x, € | (LX) and A, B € LX. We have
(1) x, < xo & A < Bimplies x, C B;
(2) xp E Aifand only if x, C A for any p € p*(A).

Proof. (1) Notice that x) C A. By (LTNR2), there is a set D € ¢=(L¥) such that x) < D < A. Thus X, <D<B.
Hence x,, C B by (LTNR2).

(2) Letxy C A. By (1), wehavex, C A forany u € *(1). Conversely, assume thatx, C A forany u € °(A).
By (LTNR2), for any u € p*(A) there is a set D, € yc(L¥) such that x, < D, < A. Let D = V ey Du- To
prove that D € y(L¥), let z, € p*(D). Then there is a u € B*(A) such that z, € p*(D,). By D, € (LX), we
have z, C D, < D. Hence z, C D by (1). Therefore D € {c(L¥). Further, since x; <D < A and D € yc(L%),
we have x) C Aby (LTNR2). O
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Theorem 3.3. Let (X, E) be an L-topological neighborhood relation space. Define a binary relation <c on LX by
VA,BeLX, A<cB & Vx,€p'(A), xACB.
Then < is an L-topological internal relation.

Proof. We check that < satisfies (LTIR1)—(LTIRS).
(LTIR1). For any x, € p*(T), we have x; C T by (LTNR1). Thus T <c T.
(LTIR2). If A <c B, then x, C B for any x, € *(A). Thus x, < Bby (LTNR2). Hence A = \/ ¢g:(4) X2 < B.
(LTIR3). For all {A;};c; € LX and B € LX, we have

VAi<eB & vmep\/A)={Jp@), ueB
i€l i€l i€l

& VielVx, € B (A), x, CB

o Viel, A; <c B.

(LTIR4). Let A <c B. We need to find some D € LX such that A <c D <c B.

For any x, € f*(A), there is a point x,, € *(A) such that x, € f°(x,). By x, € p"(A) and A <c B, we have
xu C B. Further, by (LTNR2), there is a set Dy, € (LX) such that x, < D,, < B. Thus x, € g*(D,,) which
implies x) C Dx,. Let D =V, ¢g(4) Dx,- We next prove that A <c D <c B.

For any x, € §*(A), we have x; C Dy, < D. Thus x; E D by (1) of Lemma 3.2. Hence A <c D. Also, for
any y, € p(D), we have y, < D,, for some x; € p*(A). Since Dy, € (LX), we have y, C Dy, < D followed
by y, E D. Thus D <c D < B which implies D <c B. Therefore A <c D <c B as desired.

(LTIR5). For all A, B, C € LX, we obtain from (LTNR3) that

A<cBAC & Vx;€p(A), xxEBAC
© VYxp€epf(A), xpaEBandx; EC
& A<cBand A<cC.

Therefore <c is an L-topological internal relation. [

Theorem 3.4. Let (X,CEx) and (X,CEy) be L-topological neighborhood relation spaces. If f : X — Y is an L-
topological neighborhood relation preserving mapping, then f : (X,<g,) — (Y,<c,) is an L-topological internal
relation preserving mapping.

Proof. Let A,B € LY with A <c, B. To prove that 7 (A) <y f7(B), letxp € B*(f;~(A)). Then f,"(x)) € p*(A)
and f;(x)) Cy B. Hence xy Cx f~(B). By the arbitrariness of x) € p*(A), we have f~(A) <c, f; (B).
Therefore f is an L-topological internal relation preserving mapping. [

Theorem 3.5. Let (X, <) be an L-topological internal relation space. Define a binary relation C< on J(LX) x LX by
Vxy € JLX),VAeLX, x,C<A & x3<A.
Then Cx is an L-topological neighborhood relation on LX.

Proof. We check that C< satisfies (LTNR1)—-(LTNR3).

(LTNR1). Since x; < T < T by (LTIR1), we have x) < T. Thus x) C< T.

(LTNR2). Let x, E< A. We need to find some D € y_(L¥) such that x), < D < A.

By xy E< A, we have x, < A. Further, by (LTIR4), there is a set C € LX such that x, < C < A. Let
D=V{EeL¥:xy <E<A} Wehavex, <D < A. Next, we prove that D € y_(L¥).

Let y, € B'(D). Then there is a set E € L* such that x; < E < A and y, < E. Notice that E < A. By
(LTIR4), there is a set F € L¥ such that E < F < A. Thus y, < E < F < A which implies that y, < F. Further,
we have y, < F < Dby x) < E < F < A. Hence y, < D which implies y, E< D. Therefore D € yc_(L¥).

Conversely, assume that there is a set D € ic_(L¥) such that x, < D < A. We need to prove that x; C< A.
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For any u € (1), we have x;, € (D). Thus x, E< D. Hence x, < D < A followed by x, < A. Therefore
Xy = \/yeﬁ»()\) x, < A by (LTIR3). This implies that x) C< A.
(LTNR3). Let A, B € LX. By (LTIR5), we have

X2C<AAB © x)<AAB © xy<Aandx,<B & xyC<Aandx, C<B.
Therefore C< is an L-topological neighborhood relation. [

Theorem 3.6. Let (X, <x) and (Y, <y) be L-topological internal relation spaces. If f : X — Y is an L-topological in-
ternal relation preserving mapping, then f : (X,Cx,) — (Y, Ex,) is an L-topological neighborhood relation preserving

mapping.

Proof. Let x; € J(L*X) and B € LY. If f;>(x)) C<, B, then x; < f(f;"(xa)) <x f(B) which implies that
xa <x f{ (B). Thus x) C, f"(B). So f is an L-topological neighborhood relation preserving mapping. [J

Theorem 3.7. We have E<_=LC for any L-topological neighborhood relation space (X, <) and <c_=< for any L-

=<~ =

topological internal relation space (X, <).
Proof. Let (X, E) be an L-topological neighborhood relation space. By (2) of Lemma 3.2, we have
YWEA & Yuep'(A), xyCA & xa<c A & x C< A

In conclusion, for any x, € J(LX) and any A € LX, wehave x, C<_ Aifand only if x; £ A. Thatis, C<_=LC.

=<c ==c

Let (X, <) be an L-topological internal relation space. By (LTIR3) of <, we have
A<B © Vxpef(A), xx<B © Vx;€p(A), xC<B & A< B

In conclusion, for all A, B € L, we have A <c_ B if and only if A < B. Thatis, <c.=<. O

Based on Theorems 3.3 and 3.4, we obtain a functor IF : L-TNRS — L-TIRS by
F(X,0)) = (X,<c), F(f)=f.

Based on Theorems 3.3-3.7, we find that [F is an isomorphic functor. Thus we have the following conclusion.
Theorem 3.8. The category L-TNRS is isomorphic to the category L-TIRS.

Remark 3.9. Relations between L-topological neighborhood relations and L-topological neighborhood sys-
tems can be checked directly as follows.

(1) Let (X, C) be an L-topological neighborhood relation space. For any x, € J(LX), we define
(No)y, ={AeL¥:x, C AL

Then Nz = {(Ng)y, : x1 € J(LX)} is an L-topological neighborhood systems on LX.
(2) Let (X, N) be an L-topological neighborhood space. Define a binary mapping Cy by

Vxy € J(LX),YAeLX, x,CyA & AeN,,.

Then C is an L-topological neighborhood system.
(3) The category L-TNRS is isomorphic to the category L-TNS.



X.Y. Wu et al. / Filomat 36:5 (2022), 1433-1450 1439
4. L-topological derived neighborhood relation spaces

In this section, we introduce L-topological derived neighborhood relation space and L-topological
derived neighborhood space by which we characterize L-topological neighborhood relation space.

Definition 4.1. A binary relation £/ on J(LX) x LX is called an L-topological derived neighborhood relation
on LX and the pair (X, C%) is called an L-topological derived neighborhood relation space, if for all x, € J(L¥)
and A,Be L%,

(LTDNR1) x, 4 T;

(LTDNR2) x, C? A if and only if any u € B*(A) implies some D € (LX) such that x, < D < AV x,
where ¢-i(LX) = {B € LX : Yy, € $'(B), v, T B}.

(LTDNR3) x, % A A B if and only if x; ¢ A and x, T B.

Let (X,C%) and (Y,C%) be L-topological derived neighborhood relation spaces. A mapping f : X — Y
is called an L-topological derived neighborhood relation preserving mapping, if f;”(xa) C? B implies
X\ C% £ (BV f7(xy)) forall x; € J(LX) and Be LY,

The category of L-topological derived neighborhood relation spaces and L-topological derived neighbor-
hood relation preserving mappings is denoted by L-TDNRS. Next, we discuss relations between L-TNRS
and L-TDNRS.

Lemma 4.2. Let (X, %) bean L-topological derived neighborhood relation space. Forall x;, Xy € J(LX)and A, B € LX,
we have

(1) x < x, T B < A implies x, C* A;

(2) xo €% Aif and only if x, €% A for any u € *(A);

(3) A, B € Ya(LX) implies A A B € Pa(LX);

(4) A € Ya(LX) and x) ©4 A implies x, V A € Pea(LX).

Proof. (1) Letx) < x, C? B < A. If u € B*(A), then u € B*(n)). By Xy C¢ B, we obtain from (LTDNR2) that there
is a set D € Y-«(L¥) such that x, <D<BVx, <AVx, Hencex, c! A by (LTDNR2).

(2) If x C“ A, then x, T/ A for any u € p*(A) by (1). Conversely, assume that x, £ A for any u € B(A).
For any 6 € B°(A), there is a u € B*(A) such that 0 € p*(u). By the assumption, we have x, T A. By
(LTDNRY), there is a set B € {za(LX) such that xo < B < A V xg. Thus x; C? A by (LTDNR2).

(3) Let A, B € c(LX). For any x4 € B'(A A B), we have x, € f'(A) and x; € f(B). Thus x; C? A and
x) C? B. By (LTDNR3), we have x; C? A A B. Therefore A A B € a(L¥).

(4) Let y, € B (A V xa) = B (A) U B (xa). If y, € B*(A), then y, C?! Aby A € Yoa(LX). If Yy € B'(xa), then
Yu = xu. Since A € (LX) and x, £ A, we have x, T A by (2). Thus we have y, C? A < AV x, in either
case. Hence v, C? AV x; by (1). Therefore A V x, € Ye(LX). O

Theorem 4.3. Let (X,C) be an L-topological neighborhood relation space. Define a binary relation T2 on J(LX) x LX
by

X E‘é A & Yuep'(A), x,CAVx,.

Then € is an L-topological derived neighborhood relation on LX.

Proof. We check that CZ satisfies (LTDNR1)~(LTDNR3).

(LTDNR1). By (LTNR1), we have x, E T = T V x, for any u € *(A). Thus x; EE T.
(LTDNR?2). Let x, E‘i A and let u € f*(A). We need to find some D € l/lgg(LX) such thatx, <D <AV x,.
Since u € (1), we have x, C A V x;,. By (LTNR2), there is a set B € 1/)&(LX) such thatx, < B < AV x,.

To prove that B € (LX), we prove that y, CZ B for any y, € f°(B). Indeed, for any 0 € (1)), we have

Yo € P*(B) followed by 9 C B = BV ys. Thus y, £2 B. Hence B € P (LX). Therefore B is what as desired.
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Conversely, assume that any u € f°(1) implies some B € (LX) such that x, < B < AV x,. To prove
that x, CZ A, we need to prove that x, £ A V x, for any u € g*(A).

Let pu € B*(A). By the assumption, there is B € { (LX) such that x, < B < AV x,. For any 1 € B*(),

we have x, C2 B. Thus xg C BV x¢ = B for any 6 € (). Hence x, C B by (2) of Lemma 3.2. Again, by
arbitrariness of 17 € (1) and (2) of Lemma 3.2, we have x, C B. Since B < AV x,, we have x, E AV x, by
(1) of Lemma 3.2. Therefore x, EE A.

(LTDNR3). Let A, B € LX. By (LTNR3), we have

X\CLAAB © VYuep(A), xu,CAAB)Vx,=(AVx,)ABVx,)
© Yuepf(A), xy,CAVx,andx, CTBVx,

S x) E‘é A and x, E'é B.
Therefore C? is an L-topological derived neighborhood relation. [

Theorem 4.4. Let (X,Cx) and (Y,Cy) be an L-topological neighborhood relation spaces. If f : X — Y is an L-
topological neighborhood relation preserving mapping, then f : (X, E’éx) - (Y, Eéy) is an L-topological derived
neighborhood relation preserving mapping.

Proof. Let x; € J(LX) and B € LY with fr(xa) E‘éy B. For any u € (1), we have f,”(x,) € p°(f;"(x1)) Thus
f(xw) c? B.So fi () Sy BV f7(xy) < BV f”(x,) for any n € f*(u). By (2) of Lemma 3.2, we have

=Cx

fL_)(xlu) Cy B Vfi_(xy) < BVfi_(X/\).

Hence f,”(x,) Ey BV f(xa) followed by x, Cx f~(BV f”(x4)). By the arbitrariness if u € °(A), we have
x) EL f7(BV f(x))). So f is an L-topological derived neighborhood relation preserving mapping. [

=Cx

Theorem 4.5. Let (X,C¥) be an L-topological derived neighborhood relation space. Define a binary relation Cq on
LX by

Vxy € (LX), VAeLX, x,C.e A & dABe (LX), x4 T B, x; VB < A.
Then Cra is an L-topological neighborhood relation.

Proof. We check that C.. satisfies (LTNR1)—-(LTNR3).

(LTNR1). We have T € ¢-(LX) withxy ©? Tand x4 V T = T. Thus x) Eca T.

(LTNR2). If x) T A, then there is a set B € (LX) such that x; C?’Band x; VB < A. LetD =B Vx;,.
We have x, < D < A. Next, we prove that D € c_, (L¥).

Let y, € (D) = B*(B) U B*(x). If y, € B*(B), then y, £ Bby B € ¢r«(L¥). In addition, y, VB = B < D.
Thus y, Cce D. If y, € B(xa), then y, = x, € p*(x,). Since x; £ B, we have x, C? Bby (2) of Lemma 4.2. By
this result, B € ca(L¥) and B V x,, < D, we have x, Cce D. Therefore D € ¢, (L¥).

Conversely, assume that there is a D € ¢c_,(L*) such that x; < D < A. Next, we prove that D € iz (L¥).
Let y, € p*(D). Since D € ic_,(L¥), we have Yu Eci D. Thus there is a set B € {z(L¥) such that y, C7 B
and y, vV B < D. Since y, T/ B < D, we have y, C? D by (1) of Lemma 4.2. Therefore D € yzi(L¥).
Notice that x) < D and D € y(L¥). For any u € (1), we have x, ¢ D. Thus x, C? D by (2) of Lemma
4.2. Further, since DV x), = D < A, we have x; Eci A.
(LTNR3). For all A, B € LX, we have
X Eq AAB © ADeY(lX), xa D, x, VD <AAB
& AD e (LX), x, D, x; VD<Aandx, VD <B
= x3 Lo Aand xy) Ce B
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Conversely, from (LTDNR3) and (3) of Lemma 4.2, we have

XpExwAandx) E« B & BLI,VEI,DQ(LX),xAEdU,x;\EdV,xAVUsAandx;\VVSB
e A Vepu(lX), xC?UAV, x, V(IUAV)<AAB
= AD e (LX), x, D, x, VD<AAB
& xpCe AANB.

Therefore Cr. is an L-topological neighborhood relation. [

Theorem 4.6. Let (X,C%) and (Y,C%) be L-topological derived neighborhood relation spaces. If f : X — Y is an
L-topological derived neighborhood relation preserving mapping, then f : (X,Cca) — (Y, Ceo) is an L-topological

neighborhood relation preserving mapping.

Proof. Letx, € J(LX)and B € LY. If £, (x1) Cce B, then thereisaset D € Yy (LY) such that f,”(x;) € D and
DV f7(xa) < B. Thus x, Efg f DV f7(xa)) < f(B). Next, we prove that f, (D V f;7(x1)) € l,b;?((LX).

Ifty, € B'(f(DV f"(x1)), theny, € B*(f~ (D)) or y, € B*(f; (f,"(x1))). Since D € gbgi(LY) and f;>(x2) E% D,
we have f;”(y,) €4 D in either case. Thus

Yn Ex DV f7 ) < fT(DV 7 ().
Hence y, C% f-(DV f;(x1)). Therefore £, (D V f;7(x))) € wgg((LX).
By the above result, x, E?{ DV f7(xa) and f7(DV f7(x2)) V xa < f(B). We have x, Cee f(B)
Therefore f is an L-topological neighborhood relation preserving mapping. 0O

Lemma 4.7. Let (X,C) be an L-topological neighborhood relation space. For all x, € J(LX) and A € L*, we have
A € Y (LX) if and only if A € P (LX).

Proof. Let A € Lpgé(LX). For any y, € p*(A), we have y, C A. Thus y, T AV y, = A for any y, € p*(u).
Hence y, C A by (2) of Lemma 3.2. Therefore A € e (L%).

Conversely, let A € Y(L¥). For any y, € B*(A), we have y, C A. Thus y, T A = AV y, for any n € B*(u)
by (2) of Lemma 3.2. Hence y, Ei A. Therefore A € Yo . o

Theorem 4.8. We have Coa=C for any L-topological neighborhood relation space (X, E) and Ed —Ed for any L-
topological derived neighborhood relation space (X,C4).

Proof. Let (X,C) be an L-topological neighborhood relation space. Let x; € J(L¥) and A € LX.

If x, Coa A, then there is a set B € Pt (LX) such that x) C% Band B V x; < A. By (4) of Lemma 4.2, we
have BV x, € ¢ (LX). Thus BV x, € ¢c(LX) by Lemma 4.7. ‘Hence Xy T BVx, <Aforany u € p*(A). So
x, EAby (1) of Lemma 3.2. Therefore x, C A by (2) of Lemma 3.2.

Conversely, assume that x, E A. By (LTNR?2), there is a set B € IJJE(LX) such that x; < B < A. Thus
B € (L¥) by Lemma 4.7. For any u € p*(A), we have x, T Band sox, T B < A. Hencex, CA=AV x,.
By arbltrarmess of u € (1), we have x; CZ A. For any u € B*(A), we have x, 2 A by (2) of Lemma 4.2.
That s, x, £2 A = AV x, for any u € B(A). Therefore x, Cea A

In conclusion, we have x; Cod Aifandonlyifxy C A for any x, € | (LX) and any A € LX. That s, Cea=C.

Let (X,C7) be an L- topologlcal derived neighborhood relation space. Let x, € J(L¥) and A € LX.

If x, Ed . A, thenx, Cs AV x, for any u € f°(A). Thus there is a set B € Ya(LX) such that Xy c? B and
BVx, < AVx,. Further, by (4) of Lemma 4.2, we have BV x, € (LX). Hence Xy c?Bv x, by (2) of Lemma
4.2. So x, £ AV x, by (1) of Lemma 4.2. Therefore x; £¢ A by (LTDNRZ)

Conversely, let x) T A. By (2) of Lemma 4.2, we have x, T/ A for any u € p*(A). By (LTDNR?2), there

is a set B € ¢o«(L¥) such that x, < B < AV x,. For any 1 € p*(u), we have x,, € p*(B). Thus x,, C? B. Hence
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Xy C?B by (2) of Lemma 4.2. By this result and BV x, < AV x;,, we have x, <z« AV x,,. Further, by the
arbitrariness of u € $*(1), we have x, E’étd A.

In conclusion, for any A € LX and ahy x1 € J(LX), we have x, E‘étd A if and only if x, C? A. That is,
cf =t O

Based on Theorems 4.5 and 4.6, we obtain a functor G :L-TDNRS — L-TNRS by
G((X,CM) = (X,C), G(f) = f.

Based on Theorems 4.3—4.8, we find that G is an isomorphic functor. Thus we have the following conclusion.
Theorem 4.9. The category L-TDNRS is isomorphic to the category L-TNRS.

In Section 3, we find that there is a one-to-one correspondence between L-topological neighborhood
spaces and L-topological neighborhood relation spaces. Actually, we have a similar result with L-topological
derived neighborhood relations spaces. To show this, we present the following notion.

Definition 4.10. A set N¥ = {N? C L* : x; € J(L¥)} is called an L-topological derived neighborhood system

on LX and the pair (X, N¥) is called an L-topological derived neighborhood space, if for all A, B € LX and
x) € J(LY),
(LTDN1) T € N ;
(LTDN2) A € N¢ if and only if any u € p°(A) implies some D € N¢ such that x, < D < AV x, and
De Nf,lq for any y, € *(D);

(LTDN3) A A B € N¢ if and only if A, B € N2 .

Let (X, N§’<) and (Y, Ni) be L-topological derived neighborhood spaces. A mapping f : X — Y is called
an L-topological derived neighborhood preserving mapping, if B € N' ;‘IL—’ (x,) iMplies BV f7(x2) € N¢
forany x; € J(LX)and Be LY.

The category of L-topological derived neighborhood spaces and L-topological derived neighborhood
preserving mappings is denoted by L-TDNS. Similar to Remark 3.9, we have the following result.

Remark 4.11. (1) Let (X,C%) be an L-topological derived neighborhood relation space. For any x, € J(LX),
we define

(Ngd)x,\ = {A € LX LX) Ed A}

Then N?, = {(N é Dx, i X4 € J(LX)} is an L-topological derived neighborhood system on LX.

Ed
(2) Let (X, N") be an L-topological derived neighborhood space. Define a binary relation Ejivd on J(LX)xLX
by
Vx) € JLX),YAeLX, x i, A © AeNI.

Then ;7\/»1 is an L-topological derived neighborhood relation on LX.
(3) The category L-TDNRS is isomorphic to the category L-TDNS.

Isomorphisms among the categories mentioned in Sections 3 and 4 are presented by as follows.

L-TNS 232 | TNRS 242 | TDNRS

[20][ Th.3.8[ Re.4.111

L-TOP ~m L-TIRS L-TDNS
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5. L-topological remotehood relation spaces

In this section, we introduce L-topological remotehood relation space by which we characterize L-
topological enclosed relation space and L-topological remotehood space.

Definition 5.1. A binary relation € on J(LX) x L¥ is called an L-topological remotehood relation on LX and
the pair (X, T) is called an L-topological remotehood relation space, if for all x, € J(LX) and A, B € LX,
(LTRNR1) x,C.L;
(LTRNR2) x;EAifand onlyif xy £ B > A forsome B € i=(L*), where ¢=(L¥) = {D € L* : Yy, £ D, y,ED};
(LTRNR3) x,CA V B if and only if x,EA and x,CB.

Let (X,Cx) and (Y, Cy) be L-topological remotehood relation spaces. A mapping f : X — Y is called an
L-topological remotehood relation preserving mapping, if f;(x1)EyA implies x,Ex f;~(A) for all x, € J(L¥)
and AelLY.

The category of L-topological remotehood relation spaces and L-topological remotehood relation pre-
serving mappings is denoted by L-TRNRS. Next, we discuss relations between L-TRNRS and L-TERS.

Theorem 5.2. Let (X, ) be an L-topological remotehood relation space. Define a binary relation <= on LX by
VA,BeLX, A2=B & Vx; £B, x,CA.
Then < is an L-topological enclosed relation.

Proof. 1t is sufficient to check that <= satisfies (LTER1)—~(LTERS5).

(LTER1) For any x, € J(LX), we have x,C_L by (LTRNR1). Thus L <= L.

(LTER2) Let A <z B. For any x, £ B, we have x,CA. Thus x, £ A by (LTRNR2). Hence A < B.

(LTER3) Let {B;}ic; € LX. Assume that A <= A, B;. For any i € I and any x; £ B;, we have x3 £ ;¢ Bi.
Thus x,CA. Hence A <z B; forany i € I.

Conversely, assume that A <= B; for any i € I. For any x; £ A\ Bi, there is an index i € I such that
x) £ Bi. Thus x,CA by A <= B;. By the arbitrariness of x, £ /\;; Bi, we have A <= A\ Bi.

(LTER4) Let A <= B. We need to find some C € LX such that A <= C <= B.

For any x, £ B, we have x,CA by A <z B. Further, by (LTRNR2), there is a set C,, € wE(LX) such that
X0 £Cy, 2 A LetC= /\ym{B Cy,. Wehavex; £C> A for any x, £ B. Next, we prove that A <z C <z B.

For any z, £ C, there is a point y, £ B such thatz, £ C,,. Thus z, £ C,, > A. Hence z,CA by (LTRNR2).
Therefore A <= C. Also, for any ug £ B, we have ug £ C. Thus there is a point v, £ B such that ug £ C,,.
Since C,, € ¥=(LX), we have ugCC,,. Hence ug £ C,, > C. By (LTRNR2), we have uyCC. Therefore C <= B.
In conclusion, we have A <z C <z B as desired.

(LTERS5) Let A, B, C € LX. By (LTRNR3), we have

AVB<ZC & Vx, £ C, x,CAV B
& Vx) £C, x)CA and x,CB
(=1 A<ECandB<EC.

Therefore <= is an L-topological enclosed relation. [J

Theorem 5.3. Let (X, Cx)and (Y, Ex) be an L-topological remotehood relation spaces. If f : X — Y is an L-topological
remotehood relation preserving mapping, then f : (X,<z,) — (Y, <g,) is an L-topological enclosed relation preserving

mapping.

Proof. Let A,B € LY with A <z_B. To prove fi7(A) =&, f(B),letx) £ f~(B). We prove that x,Cx f;~ (A).
By xi £ f(B), we have f”(x)) £ B. By A <g, B, we have f;”(x))CyA. Thus x;Cxf;(A). Hence
f7(A) <z, f(B). Therefore f is an L-topological enclosed relation preserving mapping. [
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Theorem 5.4. Let (X, <) be an L-topological enclosed relation space. Define a binary relation E- on J(LX) x LX by
Vx) e J(LX),VAeLX, x;E.A o 3ABelLX, A<B#x,.
Then E. is an L-topological remotehood relation.

Proof. 1t is sufficient to check that (LTRNR1)-(LTRNR3) holds for C..
(LTRNR1) For any x, € J(LX), we obtain from (LTER1) that L < L # x,. Thus x,C<.L.
(LTRNR?2). Assume that x,C<A. We need to find some E € y=, (LX) such that x) £ E > A.

By x)C<A, there is a set B € LX such that A < B # x,. By A < B and (LTER4), there is a set D € LX such
that A< D < B. Let E= A{D € LX : A < D < B}. We have A < E < B by (LTER3) and (LTER2). Thus
x £ E>A.

To prove that E € z_(L¥), let y, £ E. We need to prove that y,C<E. By y, £ E, thereisa set D € L* such
that A < D < Band y, £ D. Further, by A < E and (LTER4), there is a set G € L* such that A < G < E. Thus
G < E by (LTER2). Further, since A < G < E < B,wehave A 2 G < B. Thus E < G. So G = E followed by
E < E # y,. Hence y,C<E. Therefore E € {=_(L¥) as desired.

Conversely, assume that there is a set D € iz, (LX) such that x; £ D > A. We aim to prove that x;C-A.

Since D € yg_(LX), we have y,C<D for any y, £ D. Thus there is a set By, € L¥X such that D < By, % Yu-
LetH = /\%zﬁ) By,. By (LTER3), we have D < H. Hence A < D < H % x) which implies that A < H # x,.
Therefore x,CLA.

(LTRNR3) Let A, B € LX. On one have, by (LTER5), it is clear that x,\C<A V B implies x,E<A and x,E<B.

On the other hand, we have

x\CzAand x,C.B & 3IACDelX, A<C#xy,andB=<D #x,
= 3ACDelX, A2CVD#x,andB<CVD #x,
= 3dAC,DelX, AVB=<CVD#x,
= dHelX, AVB<H#x,
& x)C<AVB.

Therefore C. is an L-topological remotehood relation. [J

Theorem 5.5. Let (X, Zx) and (Y, <y) be L-topological enclosed relation spaces. If f : X — Y is an L-topological
enclosed relation preserving mapping, then f : (X,C,) — (Y,Cx,) is an L-topological remotehood relation preserving
mapping.

Proof. Let x, € J(L¥) and A € LY with f;”(x1)E<,A. Then there is a set B € LY such that A <y B # f;>(x)).
Thus f~(A) <x f{~(B) # x). Hence x,Cx,f"(A). Therefore f is an L-topological remotehood relation
preserving mapping. O

Theorem 5.6. We have CT«_ = T for any L-topological remotehood relation space (X,T) and <z =< for any L-
topological enclosed relation space (X, <).

Proof. Let (X,C) be an L-topological remotehood relation space. Let x, € J(LX) and A € LX.

If x AE/EA, then there is a set B € LX such that A <= B # x,. This implies that x,CA. Conversely, assume
that x,CA. By (LTRNRY), there is a set D € =(L¥) such that x; £ D > A. To prove that A <= D, let y, £ D.
Since D € y=(L¥X), we have yuCD. Further, by D € Y=(LX) and Yy ¥ D > A, we obtain from (LTRNR2) that
yuCA. Thus A <= D # x; which implies that x,C_A.

In conclusion, for any x, € J(L*) and any A € LX, we have x,CA if and only if x,C-_A. Thatis, C._ = C.

Let (X, <) be an L-topological enclosed relation space. Let A, B € LX.

If A <= B, then x,C<A for any x, £ B. By x,C<A, there is a set Dy, € LX such that A < D, # x5. Let
D = Ay, Dx,- Then D < B. In addition, we have A < D by (LTER3). Thus A < B.

Conversely, assume that A < B. By (LTER4), there is a set D € LX such that A < D < B. Let
E=N\{CeL*:A<C=<B}. Wehave A < E < Bby (LTER3) and (LTER2). This implies that A < E ¥ x; for
any x, £ B. Thus x;C<A for any x, £ B. Therefore A <_B.

In conclusion, for all A, B € LX, we have A <z, Bifand only if A < B. Thatis, <z =<. O
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Based on Theorems 5.2 and 5.3, we obtain a functor H :L-TRNRS — L-TERS by
H((X,B) = (X,<e), H(f) = f.
Based on Theorems 5.2-5.6, we find that H is an isomorphic functor. Thus we have the following conclusion.
Theorem 5.7. The category L-TRNRS is isomorphic to the category L-TERS.

Remark 5.8. Relations between L-topological remotehood relation spaces and L-topological remotehood
spaces can be checked directly as follows.
(1) Let (X,C) be an L-topological remotehood relation space. For any x; € J(LX), we define

(R=)x, = {A € L : x,CA}.

Then R= = {(R=)y, : x4 € J(LX)} is an L-topological remotehood system on X.
(2) Let (X, R) be an L-topological remotehood space. Define a binary relation Eg by

Vxy € J(LX),YAeLX, x,CrA & AcR,,.

Then Eg is an L-topological remotehood relation.
(3) The category L-TRNRS is isomorphic to the category L-TRNS.

6. L-topological derived remotehood relation spaces

In this section, we introduce L-topological derived remotehood relation space by which we characterize
L-topological remote neighborhood relation space. For this, we recall the following denotations.

For A € LX and x, € B*(T), we denote Ay, = V{y, € B(A) : x) £ y,} and By(L) = {u € B (T) : A € B (W}
[30]. We have the following results.

Proposition 6.1. ([30]) For all x,, y, € B*(T), A € L* and {Ai}ier C L*, we have
(1) x) £ Aimplies Ay, = A;
(2) A < Bimplies Ay, < By,;
3) (A,m )x,\ = Ay,
(4) p € B(L) implies Ay, < Ay, and (Ay,)x, = (Ax))x, = Ax,;
(5) (Vier Aixy = Vier(Aix,-

Definition 6.2. A binary relation £ on J(LX) x LX is called an L-topological derived remotehood relation

on LX and the pair (X,Ed) is called an L-topological derived remotehood relation space, if for all x, € J(LX)
and A,B e L%,

(LTDRNR1) x,C° L;

(LTDRNR?2) x,\EdA if and only if any y € (1) implies some B € ¢ (LX) such that x; £ B > Ayx,, where
V(LX) = (D € LX : Yy, £ D, y,E'D);

(LTDRNR3) x,='A V B if and only if x,EA and x,E°B.

Let (X, E’}i{) and (Y, E@) be L-topological derived remotehood relation spaces. A mapping f : X —» Y
is called an L-topological derived remotehood relation preserving mapping if f,” (xA)EZI,B and f;7(xa) £ B
imply x,E% £~ (B) for all x; € J(LX) and B € LY,

The category of L-topological derived remotehood relation spaces and L-topological derived remote
neighborhood relation preserving mappings is denoted by L-TDRNRS.

Lemma 6.3. Let (X,Ed) be an L-topological derived remotehood relation space. For x, € J(LX) and A, B € L%,
(1) xAEdB > A implies xAEdA;
(2)A,Be ¢E4(LX) implies AV B € ngz(LX);
3) x,='A if and only ifoEdAxy for any p € B(A).
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Proof. From (LTDRNR?2), (LTDRNR3) and (2) of Proposition 6.1, (1) and (2) are clear.

(3) Let x/\EdA. For any n € (1), we have A, < A. Thus xAEdqu by (1). Conversely, assume that
xAEdqu for any n € *(A). For any p € p*(A), there is an element 1 € §*(A) such that u € §°(n). By x,\Edqu
and (LTDRNR?2), for any 6 € p*(A) there is a set B € I,D?(LX) such that x) £ B > (Ay,)y,- In particular, we
havex), £ B > (Ax,)x, = Ay, By the arbitrariness of u € *(A), we have xAEdA. O

Theorem 6.4. Let (X,Ed) be an L-topological derived remotehood relation space. Define a binary relation T by
Vxy € J(LX),VBe LY, ;ExB & 3AD e y(LY), mE'Dandxy £D > B,
where (LX) = {D € L* : Vy, £ D, nydD}. Then Ea is an L-topological remotehood relation on LX.

Proof. (LTRNR1) We have L € ¢ (LX), xy £ L and x,\Ed£ by (LTDRNR1). Thus x;C-.L.
(LTRNR2) If x/\EEdA, then there isaset D € l)[)Ed(LX) such that x,\EdD and xy £ D > A. Further, for any
Yu £ D, we have nydD by D € ¢_«(L¥). Hence D € Ve, (LX). So the necessity of (LTRNR?2) holds.
Conversely, assume that x, £ D > A for some D € = (LX). We need to prove that x,C_A.

For any y, £ D, we have y,E«D by D € ¢z ,(L¥). Then there is a set E € 1)—«(L¥) such that y},EdE and

Yy £ E > D. Thus y#EdD by (1) of Lemma 6.3. Hence D € ¢Ed(LX). From this resultand x, £ D > A, we

have x,\EdD > A. Therefore xAEEzA as desired.
(LTRNR3) We have

MEZAVB & 3ADey(LY), muE'Dandx, D> AV B
= 3D ey_(L¥), ;E'D, ;y £D>Aandx, £D > B
= XAEEuq and x/\Ech.
Conversely, by (LTDRNR3) and (2) of Lemma 6.3, we have
ME~Aand ;ELB & 3AD,E € y(L¥), xE'D,x;E'Eandx, £ DVE>AVB
= 3DVEe (L), uE'DVEandx, ¢ DVE>AVB
= XAE#A V B.
Therefore T is an L-topological remotehood relation. [
Theorem 6.5. Let (X,Ef() and (Y, E';) be L-topological derived remotehood relation spaces. If f : X — Y is an
L-topological derived remotehood relation preserving mapping, then f : (X, EE; ) = (Y, Eﬂ ) is an L-topological
remotehood relation preserving mapping.
Proof. Let xy € J(L*) and B € LY. Let f> (xA)EE; B. Then there is a set D € ¢ (LX) such that f;> (x\)EvD
and f”(x)) £ D > B. Thus xAE'j(fL‘_(D) > f7(B). Further, for any y, £ f(D), we have f”(y;) £ D and

fo(y)EYD by D € Pz (L%). Thus y,Ex f (D) which implies that £;~(D) € Y= (LX). Hence X, fi(B).
Therefore f is an L-topological remotehood relation preserving mapping. [

Theorem 6.6. Let (X,E) be an L-topological derived remotehood relation space. Define a binary relation E% on
J(LX) x LX by

Vxy € JLN), VA€ LX, ;E2A & YueB (1), 1A,

Then EdE is an L-topological derived remotehood relation on LX.
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Proof. (LTDRNR1) For any u € (1), we have x,C.L = L., by (LTRNR1). Thus foéi.
(LTDRNR2) For any B € LX, we check that B € Pt (LX) if and only if B € p=(LX).
Let B € ¢_: (L¥). For any z, £ B, we have z,CeBby B € = (LX). By z, £ B, there is an element 6 € §*(1))

such that zg £ B. Further, by sz%B, we have z,EB., = B. Hence B € 1=(L¥). Conversely, let B € =(L%).
For any y, £ B, we have yg £ B for some 6 € g*(n). Thus y¢CB by B € ¢=(L¥). Further, since y < y, and

B > B, for any 6 € (1)), we obtain from (LTRNR2) that y,CB,,. Thus ynEdEB. Therefore B € i« ().
Now, by the above fact and (LTRNR2), we have

NEEA & Vuep(A), nEA,
© Yuep(d), IBeY=(LY), xa £ B2 Ay,
& VYuep(d), IBe (LX), x) £ B> A,
So (LTDRNR2) holds for TZ.
(LTDRNR3) By (LTRNR3), we have
NEZAVB & Vuep ), xEAVB),
& Vuep ), xEAy, VB,
e Yuep@®), x,\EAxp and x,\EBXH
s xAE%A and xAE%B.

Therefore EdE is an L-topological derived remotehood relation. [

Theorem 6.7. Let (X,Cx) and (Y, Ey) be L-topological remotehood relation spaces. If f : X — Y is an L-topological

remotehood relation preserving mapping, then f : (X, ng) - (Y, Eéy) is an L-topological derived remotehood relation
preserving mapping.

Proof. Let x4 € J(LX) and B € LY. Let fL_)(xA)EdgyB and x) £ f;(B). Then thereis a u € p*(A) such that
xy & f(B). Thus f>(x,) £ B. By fL_’(xA)EéyB, we have fL_’(xA)EnyLa(xﬂ) = B. Thus x,Cxf;"(B). Hence

xAEdEXfi_(B) > f(B), for any 1 € f*(A). This implies that x,\EdEXfi_(B)xq for any 1 € *(A). Therefore f is an
L-topological derived remotehood relation preserving mapping. [

Theorem 6.8. We have E%Ed =& for any L-topological derived remotehood relation space (X,Ed) and EE% =C for
any L-topological remotehood relation space (X, C).

Proof. Let (X,C) be an L-topological remotehood relation space.
Let x;\EEgA. Then x) £ A by (LTRNR2). Thus there is a u € f*(A) such that x, £ A. So Ay, = A. Since

x?\Eﬁi A, thereisaset B € P (LX) such that x; £ B > A. This implies that xAEdEB > A. Hence x,\EdEA by (1)
of Lemma 6.3. Therefore x,CA,, = A.

Conversely, assume that x,CA. By (LTRNR?2), there is a set D € y=(L¥) such that x;, £ D > A. Since
D € y=(L¥), we have x,ED. In addition, for any u € (1), we have x,ED > Dy, > Ay,. Thus xAEAX# by

(LTRNR?2). Hence xAE%A. Further, by the proof of Theorem 6.6, we have D € ¢« (LX). Therefore XAEg; A.
In conclusion, for any x; € J(LX) any A € L%, we have x,CA if and only if xAEE?% A. Thatis, C = Eﬁé E
Let (X, Ed) be an L-topological derived remotehood relation space.
Let xAEdE#A. For any i € (1), we have xﬂngx”. Then thereisasetD € l)l)Ed(LX) suchthatx) £ D > A,,.

Since D € ¢ (LX), we have xAEdD > Ay,. Thus xAEdAx“. Hence x/\EdA by (3) of Lemma 6.3.
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Conversely, let x;\EdA. By (LTDRNR2), for any u € (1) thereisaset D € (LX) such that x,\EdD > Ay,
That is, XAEEdAxH for any p € g*(A). Hence x,\EdEﬂA.

In conclusion, forany x, € J(LX) any A € LX, we have x AEdA if and only if x AE%#A. Thatis, = Edfid . O

Based on Theorems 6.4 and 6.5, we obtain a functor U :L-CRNRS — L-CERS by
—d —
U((X/ - )) = (X/ EE’)/ U(f) = f
Based on Theorems 6.4-6.8, we find that U is an isomorphic functor. Thus we have the following conclusion.

Theorem 6.9. The category L-TDRNRS is isomorphic to the category L-TRNRS.

In Remark 4.11, we established connections between L-topological derived neighborhood relation space
and L-topological derived neighborhood space. Actually, we can introduce L-topological derived remote-
hood space and discuss its connections with L-topological derived remotehood relation space.

Definition 6.10. A set R! = {R! C LX : x, € J(L¥)} is called an L-topological derived remotehood system

on LX and the pair (X,R?) is called an L-topological derived remotehood space, if for all A,B € LX and
x) € J(L¥),
(LTDRN1) L € R ;
(LTDRN2) A € R? if and only if any u € B(A) implies some D € RY such thatx; £ D > Ay,and D € R‘;n
for any vy, £ D;

(LTDRN3) AV B € R? if and only if A, B € R? .

Let (X, R%) and (Y, R%) be L-topological derived remotehood spaces. A mapping f : X — Y is called an
L-topological derived remotehood preserving mapping, if B € 73?_) (xyy and f7(xA) £ Bimply f;~(B) € RY,
7 (x

forall x, € [(LX)and B LY.
The category of L-topological derived remotehood spaces and L-topological derived remotehood pre-
serving mappings is denoted by L-TDRNS. We have the following result.

Remark 6.11. (1) Let (X, Ed) be an L-topological derived remotehood relation space. We define
Yy € JILY), (RL)., ={A e ¥ Al

Then Ré .= {(R;d)x/\ : x) € J(LX)} is an L-topological derived remotehood systems on LX.

(2) Let (X, R%) be an L-topological derived remotehood space. Define a binary relation Ezed by
Vi, € J(LX) VA € IX, nEpA & AcRl.

Then Eéd is an L-topological derived remotehood relation on LX.
(3) The category L-TDRNRS is isomorphic to the category L-TDRNS.

Isomorphisms among the categories mentioned in Sections 5 and 6 are presented by as follows.

L-TRNS <% | TRNRS 22 | TDRNRS

[2011 Th.5.7[ Re.6.11]

L-TOP ~or L-TERS L-TDRNS
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7. Conclusions

(1) In this paper, we introduce notions of L-topological neighborhood relation space, L-topological
derived neighborhood relation space, L-topological remotehood relation space and L-topological derived
remotehood space. We find that all of these spaces are either isomorphic to L-topological internal relation
space or L-topological enclosed relation space. Thus they are all categorically isomorphic to L-topological
space. Specifically, these isomorphisms are presented by the diagrams in Sections 4 and 6.

(2) In the introduction section, we are looking for some fuzzy relations that can be used to character-
ize L-topological neighborhood space and L-topological remotehood space. Actually, in Remark 3.9, we
established a direct connection between L-topological neighborhood space and L-topological neighbor-
hood relation space. Similarly, in Remark 5.8, we established a direct connection between L-topological
remotehood space and L-topological remotehood relation space.

Also, we are seeking some L-topological derived neighborhood space and L-topological derived remote-
hood space that can be used to characterize L-topological neighborhood space and L-topological remote
neighborhood space. Indeed, in Sections 4 and 6, we respectively introduced them and obtain the desired
characterizations in Remarks 4.11 and 6.11.

(3) We present the following example to show the fuzzy relations mentioned in this paper.

Let X = {x} and L = {L,4,b, T} be a diamond lattice, where 2 and b are incomparable.

| v % x xr X x x Xy
X, | < < < < X1 < < < <
xﬂ < xa < <
Xp < < Xp <
Xt < XT <
Table 1: An L-topological internal relation. Table 2: An L-topological enclosed relation.
| xr X x Xt | xe % x xr
X, cC X, | C
Xp C C x| T C
Table 3: An L-topological neighborhood relation. Table 4: An L-topological remotehood relation.
| xs o o Xt | x. x w Xt
—d  —=d
X e X, | C [
d d d —d —d —=d
Xp " C° LC Xp | C C
Table 5: An L-topological derived neighborhood relation. Table 6: An L-topological derived remotehood relation.

Notions defined in the tables from (1) to (6) are mutually induced. In addition, they are all isomorphic
to the L-topology 7 = {x,, xp, x7}.

(4) Relations among L-topological space, L-topological neighborhood space, L-topological remotehood
space, L-topological neighborhood relation space, L-topological derived neighborhood relation space, L-
topological remotehood relation space and L-topological derived remotehood relation space may provide
some alternative ways in discussing relations among L-topological space, L-matroid, L-convex space and
L-convergence space.
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