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Abstract. Fuzzy relations and fuzzy derived operators are useful tools to characterize fuzzy mathematical
structures such as fuzzy topology, fuzzy convexity, fuzzy matroid and fuzzy convergence structure. In this
paper, notions of L-topological neighborhood relation space, L-topological derived neighborhood relation
space and L-topological derived neighborhood space are introduced. It is proved that all of these spaces
are categorically isomorphic to L-topological internal relation space and L-topological neighborhood space.
Also, notions of L-topological remotehood relation space, L-topological derived remotehood relation space
and L-topological derived remotehood space are introduced. It is proved that all of these spaces are
categorically isomorphic to L-topological enclosed relation space and L-topological remotehood space.

1. Introduction

Since the concept of fuzzy set was introduced in 1965 [37], many classic mathematical structures such
as topology, matroid, convergence structure and convex structure have been extended into fuzzy setting
[1, 10, 18, 19, 21, 22, 25]. In order to describe these structures, a great many papers have being devoting on
characterizations of these structures such as fuzzy topology [3, 9, 35, 36, 39], fuzzy convergence structure
[5–7, 11, 13, 14, 34], fuzzy matroid [4, 19, 31, 40] and fuzzy convex structure [12, 13, 15–17, 21, 22, 27–
29, 32, 33, 38].

Fuzzy relations and fuzzy derived operators are useful tools to characterize fuzzy mathematical struc-
tures. Shi et al introduced L-topological internal relation and L-topological enclosed relation by which they
characterized L-topology [23]. Later, they further introduced (L,M)-fuzzy topological internal relation and
(L,M)-fuzzy topological enclosed relation by which they characterized (L,M)-fuzzy topology [24]. Liao
et al introduced L-convex enclosed relation and characterized L-convex structure. Meanwhile, they fur-
ther introduced L-topological-convex enclosed relation by which they characterized L-topological-convex
structure [8]. Wu et al introduced (L,M)-fuzzy convex enclosed relation and characterized (L,M)-fuzzy
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convex structure. In addition, they further introduced (L,M)-fuzzy topological-convex enclosed relation
and characterized (L,M)-fuzzy topological-convex structure [29]. Chen and Shen introduced M-fuzzifying
derived operator by which they characterize M-fuzzifying convex structure [2, 17]. Xin and Zhong intro-
duced M-fuzzifying derived operator by which they characterize M-fuzzifying matroid [31, 40]. Recently,
Wu et al introduced L-topological derived internal relation and L-topological derived enclosed relation by
which they characterized L-topology [30].

As mentioned above, L-topology can be characterized by both L-topological internal relation and L-
topological enclosed relation. Then, a natural question arises: is it possible to define L-topological
neighborhood relation or L-topological derived neighborhood relation which can be used to character-
ize L-topological internal relation or L-topological neighborhood system? Similarly, is it possible to define
L-topological remotehood relation or L-topological derived remotehood relation which can be used to
characterize L-topological enclosed relation or L-topological remotehood system?

The aim of this paper is to solve the above problems. The arrangement of this paper is as follows.
In Section 2, we recall some basic notions related to L-topological spaces. In Section 3, we introduce L-
topological neighborhood relation space by which we characterize L-topological internal relation space and
L-topological neighborhood space. In Section 4, we introduce L-topological derived neighborhood relation
space and L-topological derived neighborhood space by which we characterize L-topological neighborhood
relation space and L-topological derived internal relation space. In Section 5, we introduce L-topological
remotehood relation space by which we characterize L-topological enclosed relation space and L-topological
remotehood space. In Section 6, we introduce L-topological derived remotehood relation space and L-
topological derived remotehood space by which we characterize L-topological derived remotehood relation
space and L-topological derived enclosed relation space. In the conclusion section, we present a simple
example to show different relations mentioned.

2. Preliminaries

In this paper, X and Y are nonempty sets. The power set of X is denoted by 2X. L is a completely
distributive lattice with an inverse involution ’. The smallest (resp. largest) element in L is denoted by ⊥
(resp. ⊤). An element a ∈ L is called a co-prime, if for all b, c ∈ L, a ≤ b ∨ c implies a ≤ b or a ≤ c. The set of
all co-primes in L\{⊥} is denoted by J(L). For any a ∈ L, there is an L1 ⊆ J(L) such that a =

∨
b∈L1

b. A binary
relation ≺ on L is defined by a ≺ b if and only if for each L1 ⊆ L, b ≤

∨
L1 implies some d ∈ L1 with a ≤ d. The

mapping β : L → 2L, defined by β(a) = {b : b ≺ a}, satisfies β(
∨

i∈I ai) =
⋃

i∈I β(ai) for any {ai}i∈I ⊆ L. For any
a ∈ L, we denote β∗(a) = β(a)∩ J(L). We have a =

∨
β(a) =

∨
β∗(a), β(a) =

⋃
b∈β∗(a) β(b) and β∗(a) =

⋃
b∈β∗(a) β

∗(b)
[20, 26].

An L-fuzzy set on X is a mapping A : X → L. The set of all L-fuzzy sets on X is denoted by LX. The
smallest (resp, largest) element in LX is denoted by ⊥ (resp. ⊤). An L-fuzzy point xλ (λ ∈ L\{⊥}) is an
L-fuzzy set defined by xλ(x) = λ and xλ(y) = ⊥ for any y ∈ X\{x}. The set of all L-fuzzy points on LX is
denoted by Pt(LX). In addition, we denote J(LX) = {xλ ∈ Pt(LX) : λ ∈ J(L)}. For a mapping f : X → Y, the
L-fuzzy mapping f→L : LX

→ LY is defined by f→L (A)(y) =
∨
{A(x) : f (x) = y} for A ∈ LX and y ∈ Y, and the

mapping f←L : LY
→ LX is defined by f←L (B)(x) = B( f (x)) for B ∈ LY and x ∈ X [20, 25].

Next, we recall some basic notions and results related to L-topological spaces.

Definition 2.1. ([25]) A subset T ⊆ LX is called an L-topology on LX and (X,T ) is called an L-topological
space if

(LT1) ⊤,⊥ ∈ T ;
(LT2) ∀{Ai}i∈I ⊆ T ,

∨
i∈I Ai ∈ T ;

(LT3) ∀A,B ∈ T , A ∧ B ∈ T .

Theorem 2.2. ([25]) Let (X,T ) be an L-topological space.
(1) The L-topological closure operator ClT : LX

→ LX of T is defined by ClT (A) =
∧
{B ∈ LX : A ≤ B,B′ ∈ T }

for any A ∈ LX. It satisfies
(LTCl1) ClT (⊥) = ⊥;
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(LTCl2) A ≤ ClT (A);
(LTCl3) ClT (ClT (A)) = ClT (A);
(LTCl4) ClT (A ∨ B) = ClT (A) ∨ ClT (B).
Conversely, if an operator Cl : LX

→ LX satisfies (LTCl1)–(LTCl4), then the set TCl = {A ∈ LX : Cl(A′) = A′} is
an L-topology satisfying ClTCl = Cl.

(2) The L-topological interior operator IntT : LX
→ LX of T is defined by IntT (A) =

∨
{B ∈ T : B ≤ A} for any

A ∈ LX. It satisfies
(LTInt1) IntT (⊤) = ⊤;
(LTInt2) IntT (A) ≤ A;
(LTInt3) IntT (IntT (A)) = IntT (A);
(LTInt4) IntT (A ∧ B) = IntT (A) ∧ IntT (B).
Conversely, if an operator Int : LX

→ LX satisfies (LTInt1)–(LTInt4), then the set TInt = {A ∈ LX : Int(A) = A}
is an L-topology satisfying IntTInt = Int.

Let (X,TX) and (Y,TY) be L-topological spaces. A mapping f : X→ Y is called an L-continuous mapping,
if f←L (A) ∈ TX for any A ∈ TY. The category of L-topological spaces and L-continuous mappings is denoted
by L-TOP [20].

Definition 2.3. ([20]) A familyN = {Nxλ ⊆ LX : xλ ∈ J(LX)} is called an L-topological neighborhood system
on LX and the pair (X,N) is called an L-topological neighborhood space, if for any xλ ∈ J(LX),

(LTN1) ⊤ ∈ Nxλ and ⊥ < Nxλ ;
(LTN2) A ∈ Nxλ implies xλ ≤ A;
(LTN3) A ∈ Nxλ implies some B ∈ Nxλ such that B ∈ Nyµ for any yµ ∈ β∗(B);
(LTN4) A ∧ B ∈ Nxλ if and only if A,B ∈ Nxλ .

Let (X,NX) and (Y,NY) be L-topological neighborhood spaces. A mapping f : X → Y is called an
L-topological neighborhood preserving mapping if B ∈ N f→L (xλ) implies f←L (B) ∈ Nxλ for all xλ ∈ J(LX) and
B ∈ LY. The category of L-topological neighborhood spaces and L-topological neighborhood preserving
mapping is denoted by L-TNS [20].

Definition 2.4. ([20]) A family R = {Rxλ ⊆ LX : xλ ∈ J(LX)} is called an L-topological remotehood system on
LX and the pair (X,R) is called an L-topological remotehood space, if for any xλ ∈ J(LX),

(LTRN1) ⊥ ∈ Rxλ and ⊤ < Rxλ ;
(LTRN2) A ∈ Rxλ implies xλ ≰ A;
(LTRN3) A ∈ Rxλ implies some B ∈ Rxλ such that A ≤ B ∈ Ryµ for any yµ ≰ B;
(LTRN4) A ∨ B ∈ Rxλ if and only if A,B ∈ Rxλ .

Let (X,RX) and (Y,RY) be L-topological remotehood spaces. A mapping f : X → Y is called an L-
topological remotehood preserving mapping if f←L (B) ∈ Rxλ for all xλ ∈ J(LX) and B ∈ R f→L (xλ). The category
of L-topological remotehood spaces and L-topological remotehood preserving mapping is denoted by
L-TRNS [20].

Definition 2.5. ([23]) A binary relation ⋞ on LX is called an L-topological enclosed relation and the pair
(X,⋞) is called an L-topological enclosed relation space, if ⋞ satisfies

(LTER1) ⊥ ⋞ ⊥;
(LTER2) A ⋞ B implies A ≤ B;
(LTER3) A ⋞

∧
i∈I Bi if and only if A ⋞ Bi for all i ∈ I;

(LTER4) A ⋞ B implies some C ∈ LX such that A ⋞ C ⋞ B;
(LTER5) A ∨ B ⋞ C if and only if A ⋞ C and B ⋞ C.

Let (X,⋞X) and (Y,⋞Y) be L-topological enclosed relation spaces. A mapping f : X → Y is called an
L-topological enclosed relation preserving mapping, if f←L (A) ⋞X f←L (B) for all A,B ∈ LY with A ⋞Y B. The
category of L-topological enclosed relation spaces and L-topological enclosed relation preserving mappings
is denoted by L-TERS [23].
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Theorem 2.6. ([23]) (1) For an L-topological enclosed relation space (X,⋞), the operator Cl⋞ : LX
→ LX, defined by

Cl⋞(A) =
∧
{B ∈ LX : A ⋞ B} for any A ∈ LX, is the L-topological closure operator of some L-topology T⋞.

(2) For an L-topological space (X,T ), the binary operator ⋞T , defined by A ⋞T B if and only if ClT (A) ≤ B for all
A,B ∈ LX, is an L-topological enclosed relation.

(3) L-TOP is isomorphic to L-TERS.

Definition 2.7. ([23]) A binary relation≼ on LX is called an L-topological internal relation and the pair (X,≼)
is called an L-topological internal relation space, if ≼ satisfies

(LTIR1) ⊤ ≼ ⊤;
(LTIR2) A ≼ B implies A ≤ B;
(LTIR3)

∨
i∈I Ai ≼ B if and only if Ai ≼ B for all i ∈ I;

(LTIR4) A ≼ B implies some C ∈ LX such that A ≼ C ≼ B;
(LTIR5) A ≼ B ∧ C if and only if A ≼ B and A ≼ C.

Let (X,≼X) and (Y,≼Y) be L-topological internal relation spaces. A mapping f : X → Y is called an
L-topological internal relation preserving mapping, if f←L (A) ≼X f←L (B) for all A,B ∈ LY with A ≼Y B. The
category of L-topological internal relation spaces and L-topological internal relation preserving mappings
is denoted by L-TIRS [23].

Theorem 2.8. ([23]) (1) For an L-topological internal relation space (X,≼), the operator Int≼ : LX
→ LX, defined by

Int≼(A) =
∨
{B ∈ LX : B ≼ A} for any A ∈ LX, is the L-topological interior operator of some L-topology T≼.

(2) For an L-topological space (X,T ), the binary operator ≼T , defined by A ≼T B if and only if A ≤ IntT (B) for
all A,B ∈ LX, is an L-topological internal relation.

(3) L-TOP is isomorphic to L-TIRS.

3. L-topological neighborhood relation spaces

In this section, we introduce L-topological neighborhood relation by which we characterize L-topological
internal relation space and L-topological neighborhood space.

Definition 3.1. A binary relation ⊑ on J(LX)×LX is called an L-topological neighborhood relation on LX and
the pair (X,⊑) is called an L-topological neighborhood relation space if for all xλ ∈ J(LX) and A,B ∈ LX,

(LTNR1) xλ ⊑ ⊤;
(LTNR2) xλ ⊑ A if and only if xλ ≤ C ≤ A for some C ∈ ψ⊑(LX), where ψ⊑(LX) = {C ∈ LX : ∀yµ ∈

β∗(C), yµ ⊑ C};
(LTNR3) xλ ⊑ A ∧ B if and only if xλ ⊑ A and xλ ⊑ B.

Let (X,⊑X) and (Y,⊑Y) be L-topological neighborhood relation spaces. A mapping f : X → Y is called
an L-topological neighborhood relation preserving mapping, if f→L (xλ) ⊑Y B implies xλ ⊑X f←L (B) for all
xλ ∈ J(LX) and B ∈ LY.

The category of L-topological neighborhood relation spaces and L-topological neighborhood relation
preserving mappings is denoted by L-TNRS. Next, we discuss relations between L-TNRS and L-TIRS.

Lemma 3.2. Let (X,⊑) be an L-topological neighborhood relation space. Let xλ, xη ∈ J(LX) and A,B ∈ LX. We have
(1) xη ≤ xλ ⊑ A ≤ B implies xη ⊑ B;
(2) xλ ⊑ A if and only if xµ ⊑ A for any µ ∈ β∗(λ).

Proof. (1) Notice that xλ ⊑ A. By (LTNR2), there is a set D ∈ ψ⊑(LX) such that xλ ≤ D ≤ A. Thus xη ≤ D ≤ B.
Hence xη ⊑ B by (LTNR2).

(2) Let xλ ⊑ A. By (1), we have xµ ⊑ A for any µ ∈ β∗(λ). Conversely, assume that xµ ⊑ A for any µ ∈ β∗(λ).
By (LTNR2), for any µ ∈ β∗(λ) there is a set Dµ ∈ ψ⊑(LX) such that xµ ≤ Dµ ≤ A. Let D =

∨
µ∈β∗(λ) Dµ. To

prove that D ∈ ψ⊑(LX), let zη ∈ β∗(D). Then there is a µ ∈ β∗(λ) such that zη ∈ β∗(Dµ). By Dµ ∈ ψ⊑(LX), we
have zη ⊑ Dµ ≤ D. Hence zη ⊑ D by (1). Therefore D ∈ ψ⊑(LX). Further, since xλ ≤ D ≤ A and D ∈ ψ⊑(LX),
we have xλ ⊑ A by (LTNR2).
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Theorem 3.3. Let (X,⊑) be an L-topological neighborhood relation space. Define a binary relation ≼⊑ on LX by

∀A,B ∈ LX, A ≼⊑ B ⇔ ∀xλ ∈ β∗(A), xλ ⊑ B.

Then ≼⊑ is an L-topological internal relation.

Proof. We check that ≼⊑ satisfies (LTIR1)–(LTIR5).
(LTIR1). For any xλ ∈ β∗(⊤), we have xλ ⊑ ⊤ by (LTNR1). Thus ⊤ ≼⊑ ⊤.
(LTIR2). If A ≼⊑ B, then xλ ⊑ B for any xλ ∈ β∗(A). Thus xλ ≤ B by (LTNR2). Hence A =

∨
xλ∈β∗(A) xλ ≤ B.

(LTIR3). For all {Ai}i∈I ⊆ LX and B ∈ LX, we have∨
i∈I

Ai ≼⊑ B ⇔ ∀xλ ∈ β∗(
∨
i∈I

Ai) =
⋃
i∈I

β∗(Ai), xλ ⊑ B

⇔ ∀i ∈ I,∀xλ ∈ β∗(Ai), xλ ⊑ B
⇔ ∀i ∈ I, Ai ≼⊑ B.

(LTIR4). Let A ≼⊑ B. We need to find some D ∈ LX such that A ≼⊑ D ≼⊑ B.
For any xλ ∈ β∗(A), there is a point xµ ∈ β∗(A) such that xλ ∈ β∗(xµ). By xµ ∈ β∗(A) and A ≼⊑ B, we have

xµ ⊑ B. Further, by (LTNR2), there is a set Dxλ ∈ ψ⊑(LX) such that xµ ≤ Dxλ ≤ B. Thus xλ ∈ β∗(Dxλ ) which
implies xλ ⊑ Dxλ . Let D =

∨
xλ∈β∗(A) Dxλ . We next prove that A ≼⊑ D ≼⊑ B.

For any xλ ∈ β∗(A), we have xλ ⊑ Dxλ ≤ D. Thus xλ ⊑ D by (1) of Lemma 3.2. Hence A ≼⊑ D. Also, for
any yµ ∈ β∗(D), we have yµ ≺ Dxλ for some xλ ∈ β∗(A). Since Dxλ ∈ ψ⊑(LX), we have yµ ⊑ Dxλ ≤ D followed
by yµ ⊑ D. Thus D ≼⊑ D ≤ B which implies D ≼⊑ B. Therefore A ≼⊑ D ≼⊑ B as desired.

(LTIR5). For all A,B,C ∈ LX, we obtain from (LTNR3) that

A ≼⊑ B ∧ C ⇔ ∀xλ ∈ β∗(A), xλ ⊑ B ∧ C
⇔ ∀xλ ∈ β∗(A), xλ ⊑ B and xλ ⊑ C
⇔ A ≼⊑ B and A ≼⊑ C.

Therefore ≼⊑ is an L-topological internal relation.

Theorem 3.4. Let (X,⊑X) and (X,⊑Y) be L-topological neighborhood relation spaces. If f : X → Y is an L-
topological neighborhood relation preserving mapping, then f : (X,≼⊑X ) → (Y,≼⊑Y ) is an L-topological internal
relation preserving mapping.

Proof. Let A,B ∈ LY with A ≼⊑Y B. To prove that f←L (A) ≼⊑X f←L (B), let xλ ∈ β∗( f←L (A)). Then f→L (xλ) ∈ β∗(A)
and f→L (xλ) ⊑Y B. Hence xλ ⊑X f←L (B). By the arbitrariness of xλ ∈ β∗(A), we have f←L (A) ≼⊑X f←L (B).
Therefore f is an L-topological internal relation preserving mapping.

Theorem 3.5. Let (X,≼) be an L-topological internal relation space. Define a binary relation ⊑≼ on J(LX) × LX by

∀xλ ∈ J(LX),∀A ∈ LX, xλ ⊑≼ A ⇔ xλ ≼ A.

Then ⊑≼ is an L-topological neighborhood relation on LX.

Proof. We check that ⊑≼ satisfies (LTNR1)–(LTNR3).
(LTNR1). Since xλ ≤ ⊤ ≼ ⊤ by (LTIR1), we have xλ ≼ ⊤. Thus xλ ⊑≼ ⊤.
(LTNR2). Let xλ ⊑≼ A. We need to find some D ∈ ψ⊑≼ (LX) such that xλ ≤ D ≤ A.
By xλ ⊑≼ A, we have xλ ≼ A. Further, by (LTIR4), there is a set C ∈ LX such that xλ ≼ C ≼ A. Let

D =
∨
{E ∈ LX : xλ ≼ E ≼ A}. We have xλ ≤ D ≤ A. Next, we prove that D ∈ ψ⊑≼ (LX).

Let yµ ∈ β∗(D). Then there is a set E ∈ LX such that xλ ≼ E ≼ A and yµ ≤ E. Notice that E ≼ A. By
(LTIR4), there is a set F ∈ LX such that E ≼ F ≼ A. Thus yµ ≤ E ≼ F ≼ A which implies that yµ ≼ F. Further,
we have yµ ≼ F ≤ D by xλ ≼ E ≼ F ≼ A. Hence yµ ≼ D which implies yµ ⊑≼ D. Therefore D ∈ ψ⊑≼ (LX).

Conversely, assume that there is a set D ∈ ψ⊑≼ (LX) such that xλ ≤ D ≤ A. We need to prove that xλ ⊑≼ A.
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For any µ ∈ β∗(λ), we have xµ ∈ β∗(D). Thus xµ ⊑≼ D. Hence xµ ≼ D ≤ A followed by xµ ≼ A. Therefore
xλ =

∨
µ∈β∗(λ) xµ ≼ A by (LTIR3). This implies that xλ ⊑≼ A.

(LTNR3). Let A,B ∈ LX. By (LTIR5), we have

xλ ⊑≼ A ∧ B ⇔ xλ ≼ A ∧ B ⇔ xλ ≼ A and xλ ≼ B ⇔ xλ ⊑≼ A and xλ ⊑≼ B.

Therefore ⊑≼ is an L-topological neighborhood relation.

Theorem 3.6. Let (X,≼X) and (Y,≼Y) be L-topological internal relation spaces. If f : X→ Y is an L-topological in-
ternal relation preserving mapping, then f : (X,⊑≼X )→ (Y,⊑≼Y ) is an L-topological neighborhood relation preserving
mapping.

Proof. Let xλ ∈ J(LX) and B ∈ LY. If f→L (xλ) ⊑≼Y B, then xλ ≤ f←L ( f→L (xλ)) ≼X f←L (B) which implies that
xλ ≼X f←L (B). Thus xλ ⊑≼X f←L (B). So f is an L-topological neighborhood relation preserving mapping.

Theorem 3.7. We have ⊑≼⊑=⊑ for any L-topological neighborhood relation space (X,≼) and ≼⊑≼=≼ for any L-
topological internal relation space (X,≼).

Proof. Let (X,⊑) be an L-topological neighborhood relation space. By (2) of Lemma 3.2, we have

xλ ⊑ A ⇔ ∀µ ∈ β∗(λ), xµ ⊑ A ⇔ xλ ≼⊑ A ⇔ xλ ⊑≼⊑ A.

In conclusion, for any xλ ∈ J(LX) and any A ∈ LX, we have xλ ⊑≼⊑ A if and only if xλ ⊑ A. That is, ⊑≼⊑=⊑.
Let (X,≼) be an L-topological internal relation space. By (LTIR3) of ≼, we have

A ≼ B ⇔ ∀xλ ∈ β∗(A), xλ ≼ B ⇔ ∀xλ ∈ β∗(A), xλ ⊑≼ B ⇔ A ≼⊑≼ B.

In conclusion, for all A,B ∈ LX, we have A ≼⊑≼ B if and only if A ≼ B. That is, ≼⊑≼=≼.

Based on Theorems 3.3 and 3.4, we obtain a functor F : L-TNRS→ L-TIRS by

F((X,⊑)) = (X,≼⊑), F( f ) = f .

Based on Theorems 3.3–3.7, we find thatF is an isomorphic functor. Thus we have the following conclusion.

Theorem 3.8. The category L-TNRS is isomorphic to the category L-TIRS.

Remark 3.9. Relations between L-topological neighborhood relations and L-topological neighborhood sys-
tems can be checked directly as follows.

(1) Let (X,⊑) be an L-topological neighborhood relation space. For any xλ ∈ J(LX), we define

(N⊑)xλ = {A ∈ LX : xλ ⊑ A}.

ThenN⊑ = {(N⊑)xλ : xλ ∈ J(LX)} is an L-topological neighborhood systems on LX.
(2) Let (X,N) be an L-topological neighborhood space. Define a binary mapping ⊑N by

∀xλ ∈ J(LX),∀A ∈ LX, xλ ⊑N A ⇔ A ∈ Nxλ .

Then ⊑N is an L-topological neighborhood system.
(3) The category L-TNRS is isomorphic to the category L-TNS.
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4. L-topological derived neighborhood relation spaces

In this section, we introduce L-topological derived neighborhood relation space and L-topological
derived neighborhood space by which we characterize L-topological neighborhood relation space.

Definition 4.1. A binary relation ⊑d on J(LX) × LX is called an L-topological derived neighborhood relation
on LX and the pair (X,⊑d) is called an L-topological derived neighborhood relation space, if for all xλ ∈ J(LX)
and A,B ∈ LX,

(LTDNR1) xλ ⊑d
⊤;

(LTDNR2) xλ ⊑d A if and only if any µ ∈ β∗(λ) implies some D ∈ ψ⊑d (LX) such that xµ ≤ D ≤ A ∨ xµ,
where ψ⊑d (LX) = {B ∈ LX : ∀yη ∈ β∗(B), yη ⊑d B}.

(LTDNR3) xλ ⊑d A ∧ B if and only if xλ ⊑d A and xλ ⊑d B.

Let (X,⊑d
X) and (Y,⊑d

Y) be L-topological derived neighborhood relation spaces. A mapping f : X → Y
is called an L-topological derived neighborhood relation preserving mapping, if f→L (xλ) ⊑d

Y B implies
xλ ⊑d

X f←L (B ∨ f→L (xλ)) for all xλ ∈ J(LX) and B ∈ LY.
The category of L-topological derived neighborhood relation spaces and L-topological derived neighbor-

hood relation preserving mappings is denoted by L-TDNRS. Next, we discuss relations between L-TNRS
and L-TDNRS.

Lemma 4.2. Let (X,⊑d) be an L-topological derived neighborhood relation space. For all xλ, xη ∈ J(LX) and A,B ∈ LX,
we have

(1) xλ ≤ xη ⊑d B ≤ A implies xλ ⊑d A;
(2) xλ ⊑d A if and only if xµ ⊑d A for any µ ∈ β∗(λ);
(3) A,B ∈ ψ⊑d (LX) implies A ∧ B ∈ ψ⊑d (LX);
(4) A ∈ ψ⊑d (LX) and xλ ⊑d A implies xλ ∨ A ∈ ψ⊑d (LX).

Proof. (1) Let xλ ≤ xη ⊑d B ≤ A. If µ ∈ β∗(λ), then µ ∈ β∗(η). By xη ⊑d B, we obtain from (LTDNR2) that there
is a set D ∈ ψ⊑d (LX) such that xµ ≤ D ≤ B ∨ xµ ≤ A ∨ xµ. Hence xλ ⊑d A by (LTDNR2).

(2) If xλ ⊑d A, then xµ ⊑d A for any µ ∈ β∗(λ) by (1). Conversely, assume that xµ ⊑d A for any µ ∈ β∗(λ).
For any θ ∈ β∗(λ), there is a µ ∈ β∗(λ) such that θ ∈ β∗(µ). By the assumption, we have xµ ⊑d A. By
(LTDNR2), there is a set B ∈ ψ⊑d (LX) such that xθ ≤ B ≤ A ∨ xθ. Thus xλ ⊑d A by (LTDNR2).

(3) Let A,B ∈ ψ⊑d (LX). For any xλ ∈ β∗(A ∧ B), we have xλ ∈ β∗(A) and xλ ∈ β∗(B). Thus xλ ⊑d A and
xλ ⊑d B. By (LTDNR3), we have xλ ⊑d A ∧ B. Therefore A ∧ B ∈ ψ⊑d (LX).

(4) Let yµ ∈ β∗(A ∨ xλ) = β∗(A) ∪ β∗(xλ). If yµ ∈ β∗(A), then yµ ⊑d A by A ∈ ψ⊑d (LX). If yµ ∈ β∗(xλ), then
yµ = xµ. Since A ∈ ψ⊑d (LX) and xλ ⊑d A, we have xµ ⊑d A by (2). Thus we have yµ ⊑d A ≤ A ∨ xλ in either
case. Hence yµ ⊑d A ∨ xλ by (1). Therefore A ∨ xλ ∈ ψ⊑d (LX).

Theorem 4.3. Let (X,⊑) be an L-topological neighborhood relation space. Define a binary relation ⊑d
⊑

on J(LX)× LX

by

xλ ⊑d
⊑

A ⇔ ∀µ ∈ β∗(λ), xµ ⊑ A ∨ xµ.

Then ⊑d
⋞ is an L-topological derived neighborhood relation on LX.

Proof. We check that ⊑d
⊑

satisfies (LTDNR1)–(LTDNR3).
(LTDNR1). By (LTNR1), we have xµ ⊑ ⊤ = ⊤ ∨ xµ for any µ ∈ β∗(λ). Thus xλ ⊑d

⊑
⊤.

(LTDNR2). Let xλ ⊑d
⊑

A and let µ ∈ β∗(λ). We need to find some D ∈ ψ
⊑d
⊑

(LX) such that xµ ≤ D ≤ A ∨ xµ.
Since µ ∈ β∗(λ), we have xµ ⊑ A ∨ xµ. By (LTNR2), there is a set B ∈ ψ⊑(LX) such that xµ ≤ B ≤ A ∨ xµ.

To prove that B ∈ ψ
⊑d
⊑

(LX), we prove that yη ⊑d
⊑

B for any yη ∈ β∗(B). Indeed, for any θ ∈ β∗(η), we have
yθ ∈ β∗(B) followed by yθ ⊑ B = B ∨ yθ. Thus yη ⊑d

⊑
B. Hence B ∈ ψ

⊑d
⊑

(LX). Therefore B is what as desired.
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Conversely, assume that any µ ∈ β∗(λ) implies some B ∈ ψ
⊑d
⊑

(LX) such that xµ ≤ B ≤ A ∨ xµ. To prove
that xλ ⊑d

⊑
A, we need to prove that xµ ⊑ A ∨ xµ for any µ ∈ β∗(λ).

Let µ ∈ β∗(λ). By the assumption, there is B ∈ ψ
⊑d
⊑

(LX) such that xµ ≤ B ≤ A ∨ xµ. For any η ∈ β∗(µ),
we have xη ⊑d

⊑
B. Thus xθ ⊑ B ∨ xθ = B for any θ ∈ β∗(η). Hence xη ⊑ B by (2) of Lemma 3.2. Again, by

arbitrariness of η ∈ β∗(µ) and (2) of Lemma 3.2, we have xµ ⊑ B. Since B ≤ A ∨ xµ, we have xµ ⊑ A ∨ xµ by
(1) of Lemma 3.2. Therefore xλ ⊑d

⊑
A.

(LTDNR3). Let A,B ∈ LX. By (LTNR3), we have

xλ ⊑d
⊑

A ∧ B ⇔ ∀µ ∈ β∗(λ), xµ ⊑ (A ∧ B) ∨ xµ = (A ∨ xµ) ∧ (B ∨ xµ)
⇔ ∀µ ∈ β∗(λ), xµ ⊑ A ∨ xµ and xµ ⊑ B ∨ xµ
⇔ xλ ⊑d

⊑
A and xµ ⊑d

⊑
B.

Therefore ⊑d
⊑

is an L-topological derived neighborhood relation.

Theorem 4.4. Let (X,⊑X) and (Y,⊑Y) be an L-topological neighborhood relation spaces. If f : X → Y is an L-
topological neighborhood relation preserving mapping, then f : (X,⊑d

⊑X
) → (Y,⊑d

⊑Y
) is an L-topological derived

neighborhood relation preserving mapping.

Proof. Let xλ ∈ J(LX) and B ∈ LY with f→L (xλ) ⊑d
⊑Y

B. For any µ ∈ β∗(λ), we have f→L (xµ) ∈ β∗( f→L (xλ)) Thus
f→L (xµ) ⊑d

⊑X
B. So f→L (xη) ⊑Y B ∨ f→L (xη) ≤ B ∨ f→L (xµ) for any η ∈ β∗(µ). By (2) of Lemma 3.2, we have

f→L (xµ) ⊑Y B ∨ f←L (xµ) ≤ B ∨ f←L (xλ).

Hence f→L (xµ) ⊑Y B ∨ f←L (xλ) followed by xµ ⊑X f←L (B ∨ f→L (xλ)). By the arbitrariness if µ ∈ β∗(λ), we have
xλ ⊑d

⊑X
f→L (B ∨ f→L (xλ)). So f is an L-topological derived neighborhood relation preserving mapping.

Theorem 4.5. Let (X,⊑d) be an L-topological derived neighborhood relation space. Define a binary relation ⊑⊑d on
LX by

∀xλ ∈ J(LX),∀A ∈ LX, xλ ⊑⊑d A ⇔ ∃B ∈ ψ⊑d (LX), xλ ⊑d B, xλ ∨ B ≤ A.

Then ⊑⊑d is an L-topological neighborhood relation.

Proof. We check that ⊑⊑d satisfies (LTNR1)–(LTNR3).
(LTNR1). We have ⊤ ∈ ψ⊑d (LX) with xλ ⊑d

⊤ and xλ ∨ ⊤ = ⊤. Thus xλ ⊑⊑d ⊤.
(LTNR2). If xλ ⊑⊑d A, then there is a set B ∈ ψ⊑d (LX) such that xλ ⊑d B and xλ ∨ B ≤ A. Let D = B ∨ xλ.

We have xλ ≤ D ≤ A. Next, we prove that D ∈ ψ⊑
⊑d (LX).

Let yµ ∈ β∗(D) = β∗(B) ∪ β∗(xλ). If yµ ∈ β∗(B), then yµ ⊑d B by B ∈ ψ⊑d (LX). In addition, yµ ∨ B = B ≤ D.
Thus yµ ⊑⊑d D. If yµ ∈ β∗(xλ), then yµ = xµ ∈ β∗(xλ). Since xλ ⊑d B, we have xµ ⊑d B by (2) of Lemma 4.2. By
this result, B ∈ ψ⊑d (LX) and B ∨ xµ ≤ D, we have xµ ⊑⊑d D. Therefore D ∈ ψ⊑

⊑d (LX).
Conversely, assume that there is a D ∈ ψ⊑

⊑d (LX) such that xλ ≤ D ≤ A. Next, we prove that D ∈ ψ⊑d (LX).
Let yµ ∈ β∗(D). Since D ∈ ψ⊑

⊑d (LX), we have yµ ⊑⊑d D. Thus there is a set B ∈ ψ⊑d (LX) such that yµ ⊑d B
and yµ ∨ B ≤ D. Since yµ ⊑d B ≤ D, we have yµ ⊑d D by (1) of Lemma 4.2. Therefore D ∈ ψ⊑d (LX).

Notice that xλ ≤ D and D ∈ ψ⊑d (LX). For any µ ∈ β∗(λ), we have xµ ⊑d D. Thus xλ ⊑d D by (2) of Lemma
4.2. Further, since D ∨ xλ = D ≤ A, we have xλ ⊑⊑d A.

(LTNR3). For all A,B ∈ LX, we have

xλ ⊑⊑d A ∧ B ⇔ ∃D ∈ ψ⊑d (LX), xλ ⊑d D, xλ ∨D ≤ A ∧ B

⇔ ∃D ∈ ψ⊑d (LX), xλ ⊑d D, xλ ∨D ≤ A and xλ ∨D ≤ B
⇒ xλ ⊑⊑d A and xλ ⊑⊑d B.
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Conversely, from (LTDNR3) and (3) of Lemma 4.2, we have

xλ ⊑⊑d A and xλ ⊑⊑d B ⇔ ∃U,V ∈ ψ⊑d (LX), xλ ⊑d U, xλ ⊑d V, xλ ∨U ≤ A and xλ ∨ V ≤ B

⇔ ∃U,V ∈ ψ⊑d (LX), xλ ⊑d U ∧ V, xλ ∨ (U ∧ V) ≤ A ∧ B

⇒ ∃D ∈ ψ⊑d (LX), xλ ⊑d D, xλ ∨D ≤ A ∧ B
⇔ xλ ⊑⊑d A ∧ B.

Therefore ⊑⊑d is an L-topological neighborhood relation.

Theorem 4.6. Let (X,⊑d
X) and (Y,⊑d

Y) be L-topological derived neighborhood relation spaces. If f : X → Y is an
L-topological derived neighborhood relation preserving mapping, then f : (X,⊑

⊑d
X
) → (Y,⊑

⊑d
Y
) is an L-topological

neighborhood relation preserving mapping.

Proof. Let xλ ∈ J(LX) and B ∈ LY. If f→L (xλ) ⊑
⊑d

Y
B, then there is a set D ∈ ψ

⊑d
Y
(LY) such that f→L (xλ) ⊑d

Y D and
D ∨ f→L (xλ) ≤ B. Thus xλ ⊑d

X f←L (D ∨ f→L (xλ)) ≤ f←L (B). Next, we prove that f←L (D ∨ f→L (xλ)) ∈ ψ
⊑d

X
(LX).

If yη ∈ β∗( f←L (D∨ f→L (xλ)), then yη ∈ β∗( f←L (D)) or yη ∈ β∗( f←L ( f→L (xλ))). Since D ∈ ψ
⊑d

Y
(LY) and f→L (xλ) ⊑d

Y D,
we have f→L (yη) ⊑d

Y D in either case. Thus

yη ⊑d
X f←L (D ∨ f→L (yη)) ≤ f←L (D ∨ f→L (xλ)).

Hence yη ⊑d
X f←L (D ∨ f→L (xλ)). Therefore f←L (D ∨ f→L (xλ)) ∈ ψ

⊑d
X
(LX).

By the above result, xλ ⊑d
X f←L (D ∨ f→L (xλ)) and f←L (D ∨ f→L (xλ)) ∨ xλ ≤ f←L (B). We have xλ ⊑⊑d

X
f←L (B).

Therefore f is an L-topological neighborhood relation preserving mapping.

Lemma 4.7. Let (X,⊑) be an L-topological neighborhood relation space. For all xλ ∈ J(LX) and A ∈ LX, we have
A ∈ ψ

⊑d
⊑

(LX) if and only if A ∈ ψ⊑(LX).

Proof. Let A ∈ ψ
⊑d
⊑

(LX). For any yµ ∈ β∗(A), we have yµ ⊑d
⊑

A. Thus yη ⊑ A ∨ yη = A for any yη ∈ β∗(µ).
Hence yµ ⊑ A by (2) of Lemma 3.2. Therefore A ∈ ψ⊑(LX).

Conversely, let A ∈ ψ⊑(LX). For any yµ ∈ β∗(A), we have yµ ⊑ A. Thus yη ⊑ A = A ∨ yη for any η ∈ β∗(µ)
by (2) of Lemma 3.2. Hence yµ ⊑d

⊑
A. Therefore A ∈ ψ

⊑d
⊑

(LX).

Theorem 4.8. We have ⊑
⊑d
⊑

=⊑ for any L-topological neighborhood relation space (X,⊑) and ⊑d
⊑
⊑d
=⊑d for any L-

topological derived neighborhood relation space (X,⊑d).

Proof. Let (X,⊑) be an L-topological neighborhood relation space. Let xλ ∈ J(LX) and A ∈ LX.
If xλ ⊑⊑d

⊑

A, then there is a set B ∈ ψ
⊑d
⊑

(LX) such that xλ ⊑d
⊑

B and B ∨ xλ ≤ A. By (4) of Lemma 4.2, we
have B ∨ xλ ∈ ψ⊑d

⊑

(LX). Thus B ∨ xλ ∈ ψ⊑(LX) by Lemma 4.7. Hence xµ ⊑ B ∨ xλ ≤ A for any µ ∈ β∗(λ). So
xµ ⊑ A by (1) of Lemma 3.2. Therefore xλ ⊑ A by (2) of Lemma 3.2.

Conversely, assume that xλ ⊑ A. By (LTNR2), there is a set B ∈ ψ⊑(LX) such that xλ ≤ B ≤ A. Thus
B ∈ ψ

⊑d
⊑

(LX) by Lemma 4.7. For any µ ∈ β∗(λ), we have xµ ⊑ B and so xµ ⊑ B ≤ A. Hence xµ ⊑ A = A ∨ xµ.
By arbitrariness of µ ∈ β∗(λ), we have xλ ⊑d

⊑
A. For any µ ∈ β∗(λ), we have xµ ⊑d

⊑
A by (2) of Lemma 4.2.

That is, xµ ⊑d
⊑

A = A ∨ xµ for any µ ∈ β∗(λ). Therefore xλ ⊑⊑d
⊑

A.
In conclusion, we have xλ ⊑⊑d

⊑

A if and only if xλ ⊑ A for any xλ ∈ J(LX) and any A ∈ LX. That is, ⊑
⊑d
⊑

=⊑.
Let (X,⊑d) be an L-topological derived neighborhood relation space. Let xλ ∈ J(LX) and A ∈ LX.
If xλ ⊑d

⊑
⊑d

A, then xµ ⊑⊑d A ∨ xµ for any µ ∈ β∗(λ). Thus there is a set B ∈ ψ⊑d (LX) such that xµ ⊑d B and

B∨xµ ≤ A∨xµ. Further, by (4) of Lemma 4.2, we have B∨xµ ∈ ψ⊑d (LX). Hence xµ ⊑d B∨xµ by (2) of Lemma
4.2. So xµ ⊑d A ∨ xµ by (1) of Lemma 4.2. Therefore xλ ⊑d A by (LTDNR2).

Conversely, let xλ ⊑d A. By (2) of Lemma 4.2, we have xµ ⊑d A for any µ ∈ β∗(λ). By (LTDNR2), there
is a set B ∈ ψ⊑d (LX) such that xµ ≤ B ≤ A ∨ xµ. For any η ∈ β∗(µ), we have xη ∈ β∗(B). Thus xη ⊑d B. Hence



X.Y. Wu et al. / Filomat 36:5 (2022), 1433–1450 1442

xµ ⊑d B by (2) of Lemma 4.2. By this result and B ∨ xµ ≤ A ∨ xµ, we have xµ ≼⊑d A ∨ xµ. Further, by the
arbitrariness of µ ∈ β∗(λ), we have xλ ⊑d

⊑
⊑d

A.

In conclusion, for any A ∈ LX and any xλ ∈ J(LX), we have xλ ⊑d
⊑
⊑d

A if and only if xλ ⊑d A. That is,

⊑
d
⊑
⊑d
=⊑d.

Based on Theorems 4.5 and 4.6, we obtain a functor G :L-TDNRS→ L-TNRS by

G((X,⊑d)) = (X,⊑⊑d ), G( f ) = f .

Based on Theorems 4.3–4.8, we find thatG is an isomorphic functor. Thus we have the following conclusion.

Theorem 4.9. The category L-TDNRS is isomorphic to the category L-TNRS.

In Section 3, we find that there is a one-to-one correspondence between L-topological neighborhood
spaces and L-topological neighborhood relation spaces. Actually, we have a similar result with L-topological
derived neighborhood relations spaces. To show this, we present the following notion.

Definition 4.10. A setNd = {Nd
xλ ⊆ LX : xλ ∈ J(LX)} is called an L-topological derived neighborhood system

on LX and the pair (X,Nd) is called an L-topological derived neighborhood space, if for all A,B ∈ LX and
xλ ∈ J(LX),

(LTDN1) ⊤ ∈ Nd
xλ ;

(LTDN2) A ∈ Nd
xλ if and only if any µ ∈ β∗(λ) implies some D ∈ Nd

xλ such that xµ ≤ D ≤ A ∨ xµ and
D ∈ Nd

yη for any yη ∈ β∗(D);
(LTDN3) A ∧ B ∈ Nd

xλ if and only if A,B ∈ Nd
xλ .

Let (X,Nd
X) and (Y,Nd

Y) be L-topological derived neighborhood spaces. A mapping f : X → Y is called
an L-topological derived neighborhood preserving mapping, if B ∈ Nd

f→L (xλ) implies f←L (B ∨ f→L (xλ)) ∈ Nd
xλ

for any xλ ∈ J(LX) and B ∈ LY.
The category of L-topological derived neighborhood spaces and L-topological derived neighborhood

preserving mappings is denoted by L-TDNS. Similar to Remark 3.9, we have the following result.

Remark 4.11. (1) Let (X,⊑d) be an L-topological derived neighborhood relation space. For any xλ ∈ J(LX),
we define

(Nd
⊑d )xλ = {A ∈ LX : xλ ⊑d A}.

ThenNd
⊑d = {(Nd

⊑d )xλ : xλ ∈ J(LX)} is an L-topological derived neighborhood system on LX.
(2) Let (X,Nd) be an L-topological derived neighborhood space. Define a binary relation⊑d

Nd on J(LX)×LX

by

∀xλ ∈ J(LX),∀A ∈ LX, xλ ⊑d
Nd A ⇔ A ∈ Nd

xλ .

Then ⊑d
Nd is an L-topological derived neighborhood relation on LX.

(3) The category L-TDNRS is isomorphic to the category L-TDNS.

Isomorphisms among the categories mentioned in Sections 3 and 4 are presented by as follows.

L-TNSOO
[20]
��

oo Re.3.9 // L-TNRS oo Th.4.9 // L-TDNRSOO

Re.4.11
��

L-TOP oo
[23]
// L-TIRS
��

Th.3.8

OO

L-TDNS
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5. L-topological remotehood relation spaces

In this section, we introduce L-topological remotehood relation space by which we characterize L-
topological enclosed relation space and L-topological remotehood space.

Definition 5.1. A binary relation ⊏ on J(LX) × LX is called an L-topological remotehood relation on LX and
the pair (X,⊏) is called an L-topological remotehood relation space, if for all xλ ∈ J(LX) and A,B ∈ LX,

(LTRNR1) xλ⊏⊥;
(LTRNR2) xλ⊏A if and only if xλ ≰ B ≥ A for some B ∈ ψ⊏(LX), whereψ⊏(LX) = {D ∈ LX : ∀yµ ≰ D, yµ⊏D};
(LTRNR3) xλ⊏A ∨ B if and only if xλ⊏A and xλ⊏B.

Let (X,⊏X) and (Y,⊏Y) be L-topological remotehood relation spaces. A mapping f : X → Y is called an
L-topological remotehood relation preserving mapping, if f→L (xλ)⊏YA implies xλ⊏X f←L (A) for all xλ ∈ J(LX)
and A ∈ LY.

The category of L-topological remotehood relation spaces and L-topological remotehood relation pre-
serving mappings is denoted by L-TRNRS. Next, we discuss relations between L-TRNRS and L-TERS.

Theorem 5.2. Let (X,⊏) be an L-topological remotehood relation space. Define a binary relation ⋞⊏ on LX by

∀A,B ∈ LX, A ⋞⊏ B ⇔ ∀xλ ≰ B, xλ⊏A.

Then ⋞⊏ is an L-topological enclosed relation.

Proof. It is sufficient to check that ⋞⊏ satisfies (LTER1)–(LTER5).
(LTER1) For any xλ ∈ J(LX), we have xλ⊏⊥ by (LTRNR1). Thus ⊥ ⋞⊏ ⊥.
(LTER2) Let A ⋞⊏ B. For any xλ ≰ B, we have xλ⊏A. Thus xλ ≰ A by (LTRNR2). Hence A ≤ B.
(LTER3) Let {Bi}i∈I ⊆ LX. Assume that A ⋞⊏

∧
i∈I Bi. For any i ∈ I and any xλ ≰ Bi, we have xλ ≰

∧
i∈I Bi.

Thus xλ⊏A. Hence A ⋞⊏ Bi for any i ∈ I.
Conversely, assume that A ⋞⊏ Bi for any i ∈ I. For any xλ ≰

∧
i∈I Bi, there is an index i ∈ I such that

xλ ≰ Bi. Thus xλ⊏A by A ⋞⊏ Bi. By the arbitrariness of xλ ≰
∧

i∈I Bi, we have A ⋞⊏
∧

i∈I Bi.
(LTER4) Let A ⋞⊏ B. We need to find some C ∈ LX such that A ⋞⊏ C ⋞⊏ B.
For any xλ ≰ B, we have xλ⊏A by A ⋞⊏ B. Further, by (LTRNR2), there is a set Cxλ ∈ ψ⊏(LX) such that

xλ ≰ Cxλ ≥ A. Let C =
∧

yµ≰B Cyµ . We have xλ ≰ C ≥ A for any xλ ≰ B. Next, we prove that A ⋞⊏ C ⋞⊏ B.
For any zη ≰ C, there is a point yµ ≰ B such that zη ≰ Cyµ . Thus zη ≰ Cyµ ≥ A. Hence zη⊏A by (LTRNR2).

Therefore A ⋞⊏ C. Also, for any uθ ≰ B, we have uθ ≰ C. Thus there is a point vσ ≰ B such that uθ ≰ Cvσ .
Since Cvσ ∈ ψ⊏(LX), we have uθ⊏Cvσ . Hence uθ ≰ Cvσ ≥ C. By (LTRNR2), we have uθ⊏C. Therefore C ⋞⊏ B.
In conclusion, we have A ⋞⊏ C ⋞⊏ B as desired.

(LTER5) Let A,B,C ∈ LX. By (LTRNR3), we have

A ∨ B ⋞⊏ C ⇔ ∀xλ ≰ C, xλ⊏A ∨ B
⇔ ∀xλ ≰ C, xλ⊏A and xλ⊏B
⇔ A ⋞⊏ C and B ⋞⊏ C.

Therefore ⋞⊏ is an L-topological enclosed relation.

Theorem 5.3. Let (X,⊏X) and (Y,⊏X) be an L-topological remotehood relation spaces. If f : X→ Y is an L-topological
remotehood relation preserving mapping, then f : (X,⋞⊏X

)→ (Y,⋞⊏Y
) is an L-topological enclosed relation preserving

mapping.

Proof. Let A,B ∈ LY with A ⋞⊏Y
B. To prove f←L (A) ⋞⊏X

f←L (B), let xλ ≰ f←L (B). We prove that xλ⊏X f←L (A).
By xλ ≰ f←L (B), we have f→L (xλ) ≰ B. By A ⋞⊏Y

B, we have f→L (xλ)⊏YA. Thus xλ⊏X f←L (A). Hence
f←L (A) ⋞⊏X

f←L (B). Therefore f is an L-topological enclosed relation preserving mapping.
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Theorem 5.4. Let (X,⋞) be an L-topological enclosed relation space. Define a binary relation ⊏⋞ on J(LX) × LX by

∀xλ ∈ J(LX),∀A ∈ LX, xλ⊏⋞A ⇔ ∃B ∈ LX, A ⋞ B ≱ xλ.

Then ⊏⋞ is an L-topological remotehood relation.

Proof. It is sufficient to check that (LTRNR1)–(LTRNR3) holds for ⊏⋞.
(LTRNR1) For any xλ ∈ J(LX), we obtain from (LTER1) that ⊥ ⋞ ⊥ ≱ xλ. Thus xλ⊏⋞⊥.
(LTRNR2). Assume that xλ⊏⋞A. We need to find some E ∈ ψ⊏⋞ (L

X) such that xλ ≰ E ≥ A.
By xλ⊏⋞A, there is a set B ∈ LX such that A ⋞ B ≱ xλ. By A ⋞ B and (LTER4), there is a set D ∈ LX such

that A ⋞ D ⋞ B. Let E =
∧
{D ∈ LX : A ⋞ D ⋞ B}. We have A ⋞ E ≤ B by (LTER3) and (LTER2). Thus

xλ ≰ E ≥ A.
To prove that E ∈ ψ⊏⋞ (L

X), let yµ ≰ E. We need to prove that yµ⊏⋞E. By yµ ≰ E, there is a set D ∈ LX such
that A ⋞ D ⋞ B and yµ ≰ D. Further, by A ⋞ E and (LTER4), there is a set G ∈ LX such that A ⋞ G ⋞ E. Thus
G ≤ E by (LTER2). Further, since A ⋞ G ⋞ E ≤ B, we have A ⋞ G ⋞ B. Thus E ≤ G. So G = E followed by
E ⋞ E ≱ yµ. Hence yµ⊏⋞E. Therefore E ∈ ψ⊏⋞ (L

X) as desired.
Conversely, assume that there is a set D ∈ ψ⊏⋞ (L

X) such that xλ ≰ D ≥ A. We aim to prove that xλ⊏⋞A.
Since D ∈ ψ⊏⋞ (L

X), we have yµ⊏⋞D for any yµ ≰ D. Thus there is a set Byµ ∈ LX such that D ⋞ Byµ ≱ yµ.
Let H =

∧
yµ≰D Byµ . By (LTER3), we have D ⋞ H. Hence A ≤ D ⋞ H ≱ xλ which implies that A ⋞ H ≱ xλ.

Therefore xλ⊏⋞A.
(LTRNR3) Let A,B ∈ LX. On one have, by (LTER5), it is clear that xλ⊏⋞A ∨ B implies xλ⊏⋞A and xλ⊏⋞B.
On the other hand, we have

xλ⊏⋞A and xλ⊏⋞B ⇔ ∃C,D ∈ LX, A ⋞ C ≱ xλ and B ⋞ D ≱ xλ
⇒ ∃C,D ∈ LX, A ⋞ C ∨D ≱ xλ and B ⋞ C ∨D ≱ xλ
⇒ ∃C,D ∈ LX, A ∨ B ⋞ C ∨D ≱ xλ
⇒ ∃H ∈ LX, A ∨ B ⋞ H ≱ xλ
⇔ xλ⊏⋞A ∨ B.

Therefore ⊏⋞ is an L-topological remotehood relation.

Theorem 5.5. Let (X,⋞X) and (Y,⋞Y) be L-topological enclosed relation spaces. If f : X → Y is an L-topological
enclosed relation preserving mapping, then f : (X,⊏⋞X )→ (Y,⊏⋞Y ) is an L-topological remotehood relation preserving
mapping.

Proof. Let xλ ∈ J(LX) and A ∈ LY with f→L (xλ)⊏⋞Y A. Then there is a set B ∈ LY such that A ⋞Y B ≱ f→L (xλ).
Thus f←L (A) ⋞X f←L (B) ≱ xλ. Hence xλ⊏⋞X f←L (A). Therefore f is an L-topological remotehood relation
preserving mapping.

Theorem 5.6. We have ⊏⋞⊏ = ⊏ for any L-topological remotehood relation space (X,⊏) and ⋞⊏⋞=⋞ for any L-
topological enclosed relation space (X,⋞).

Proof. Let (X,⊏) be an L-topological remotehood relation space. Let xλ ∈ J(LX) and A ∈ LX.
If xλ⊏⋞⊏A, then there is a set B ∈ LX such that A ⋞⊏ B ≱ xλ. This implies that xλ⊏A. Conversely, assume

that xλ⊏A. By (LTRNR2), there is a set D ∈ ψ⊏(LX) such that xλ ≰ D ≥ A. To prove that A ⋞⊏ D, let yµ ≰ D.
Since D ∈ ψ⊏(LX), we have yµ⊏D. Further, by D ∈ ψ⊏(LX) and yµ ≰ D ≥ A, we obtain from (LTRNR2) that
yµ⊏A. Thus A ⋞⊏ D ≱ xλ which implies that xλ⊏⋞⊏A.

In conclusion, for any xλ ∈ J(LX) and any A ∈ LX, we have xλ⊏A if and only if xλ⊏⋞⊏A. That is, ⊏⋞⊏ = ⊏.
Let (X,⋞) be an L-topological enclosed relation space. Let A,B ∈ LX.
If A ⋞⊏⋞ B, then xλ⊏⋞A for any xλ ≰ B. By xλ⊏⋞A, there is a set Dxλ ∈ LX such that A ⋞ Dxλ ≱ xλ. Let

D =
∧

xλ≰B Dxλ . Then D ≤ B. In addition, we have A ⋞ D by (LTER3). Thus A ⋞ B.
Conversely, assume that A ⋞ B. By (LTER4), there is a set D ∈ LX such that A ⋞ D ⋞ B. Let

E =
∧
{C ∈ LX : A ⋞ C ⋞ B}. We have A ⋞ E ≤ B by (LTER3) and (LTER2). This implies that A ⋞ E ≱ xλ for

any xλ ≰ B. Thus xλ⊏⋞A for any xλ ≰ B. Therefore A ⋞⊏⋞ B.
In conclusion, for all A,B ∈ LX, we have A ⋞⊏⋞ B if and only if A ⋞ B. That is, ⋞⊏⋞=⋞.
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Based on Theorems 5.2 and 5.3, we obtain a functorH :L-TRNRS→ L-TERS by

H((X,⊏)) = (X,⋞⊏), H( f ) = f .

Based on Theorems 5.2–5.6, we find thatH is an isomorphic functor. Thus we have the following conclusion.

Theorem 5.7. The category L-TRNRS is isomorphic to the category L-TERS.

Remark 5.8. Relations between L-topological remotehood relation spaces and L-topological remotehood
spaces can be checked directly as follows.

(1) Let (X,⊏) be an L-topological remotehood relation space. For any xλ ∈ J(LX), we define

(R⊏)xλ = {A ∈ LX : xλ⊏A}.

Then R⊏ = {(R⊏)xλ : xλ ∈ J(LX)} is an L-topological remotehood system on X.
(2) Let (X,R) be an L-topological remotehood space. Define a binary relation ⊏R by

∀xλ ∈ J(LX),∀A ∈ LX, xλ⊏RA ⇔ A ∈ Rxλ .

Then ⊏R is an L-topological remotehood relation.
(3) The category L-TRNRS is isomorphic to the category L-TRNS.

6. L-topological derived remotehood relation spaces

In this section, we introduce L-topological derived remotehood relation space by which we characterize
L-topological remote neighborhood relation space. For this, we recall the following denotations.

For A ∈ LX and xλ ∈ β∗(⊤), we denote Axλ =
∨
{yµ ∈ β∗(A) : xλ ≰ yµ} and β∗λ(L) = {µ ∈ β∗(⊤) : λ ∈ β∗(µ)}

[30]. We have the following results.

Proposition 6.1. ([30]) For all xλ, yη ∈ β∗(⊤), A ∈ LX and {Ai}i∈I ⊆ LX, we have
(1) xλ ≰ A implies Axλ = A;
(2) A ≤ B implies Axλ ≤ Bxλ ;
(3) (Axλ )xλ = Axλ ;
(4) µ ∈ β∗λ(L) implies Axλ ≤ Axµ and (Axµ )xλ = (Axλ )xµ = Axλ ;
(5) (
∨

i∈I Ai)xλ =
∨

i∈I(Ai)xλ .

Definition 6.2. A binary relation ⊏d on J(LX) × LX is called an L-topological derived remotehood relation
on LX and the pair (X,⊏d) is called an L-topological derived remotehood relation space, if for all xλ ∈ J(LX)
and A,B ∈ LX,

(LTDRNR1) xλ⊏
d
⊥;

(LTDRNR2) xλ⊏
dA if and only if any µ ∈ β∗(λ) implies some B ∈ ψ

⊏
d (LX) such that xλ ≰ B ≥ Axµ , where

ψ
⊏

d (LX) = {D ∈ LX : ∀yµ ≰ D, yµ⊏
dD};

(LTDRNR3) xλ⊏
dA ∨ B if and only if xλ⊏

dA and xλ⊏
dB.

Let (X,⊏d
X) and (Y,⊏d

Y) be L-topological derived remotehood relation spaces. A mapping f : X → Y
is called an L-topological derived remotehood relation preserving mapping if f→L (xλ)⊏d

YB and f→L (xλ) ≰ B
imply xλ⊏

d
X f←L (B) for all xλ ∈ J(LX) and B ∈ LY.

The category of L-topological derived remotehood relation spaces and L-topological derived remote
neighborhood relation preserving mappings is denoted by L-TDRNRS.

Lemma 6.3. Let (X,⊏d) be an L-topological derived remotehood relation space. For xλ ∈ J(LX) and A,B ∈ LX,
(1) xλ⊏

dB ≥ A implies xλ⊏
dA;

(2) A,B ∈ ψ
⊏

d (LX) implies A ∨ B ∈ ψ
⊏

d (LX);

(3) xλ⊏
dA if and only if xλ⊏

dAxµ for any µ ∈ β∗(λ).
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Proof. From (LTDRNR2), (LTDRNR3) and (2) of Proposition 6.1, (1) and (2) are clear.
(3) Let xλ⊏

dA. For any η ∈ β∗(λ), we have Axη ≤ A. Thus xλ⊏
dAxη by (1). Conversely, assume that

xλ⊏
dAxη for any η ∈ β∗(λ). For any µ ∈ β∗(λ), there is an element η ∈ β∗(λ) such that µ ∈ β∗(η). By xλ⊏

dAxη
and (LTDRNR2), for any θ ∈ β∗(λ) there is a set B ∈ ψ

⊏
d (LX) such that xλ ≰ B ≥ (Axη )xθ . In particular, we

have xλ ≰ B ≥ (Axη )xµ = Axµ . By the arbitrariness of µ ∈ β∗(λ), we have xλ⊏
dA.

Theorem 6.4. Let (X,⊏d) be an L-topological derived remotehood relation space. Define a binary relation ⊏
⊏

d by

∀xλ ∈ J(LX),∀B ∈ LX, xλ⊏⊏d B ⇔ ∃D ∈ ψ
⊏

d (LX), xλ⊏
dD and xλ ≰ D ≥ B,

where ψ
⊏

d (LX) = {D ∈ LX : ∀yµ ≰ D, yµ⊏
dD}. Then ⊏

⊏
d is an L-topological remotehood relation on LX.

Proof. (LTRNR1) We have ⊥ ∈ ψ
⊏

d (LX), xλ ≰ ⊥ and xλ⊏
d
⊥ by (LTDRNR1). Thus xλ⊏⊏d⊥.

(LTRNR2) If xλ⊏⊏d A, then there is a set D ∈ ψ
⊏

d (LX) such that xλ⊏
dD and xλ ≰ D ≥ A. Further, for any

yµ ≰ D, we have yµ⊏
dD by D ∈ ψ

⊏
d (LX). Hence D ∈ ψ⊏

⊏d
(LX). So the necessity of (LTRNR2) holds.

Conversely, assume that xλ ≰ D ≥ A for some D ∈ ψ⊏
⊏d

(LX). We need to prove that xλ⊏⊏d A.

For any yµ ≰ D, we have yµ⊏⊏d D by D ∈ ψ⊏
⊏d

(LX). Then there is a set E ∈ ψ
⊏

d (LX) such that yµ⊏
dE and

yµ ≰ E ≥ D. Thus yµ⊏
dD by (1) of Lemma 6.3. Hence D ∈ ψ

⊏
d (LX). From this result and xλ ≰ D ≥ A, we

have xλ⊏
dD ≥ A. Therefore xλ⊏⊏d A as desired.

(LTRNR3) We have

xλ⊏⊏d A ∨ B ⇔ ∃D ∈ ψ
⊏

d (LX), xλ⊏
dD and xλ ≰ D ≥ A ∨ B

⇒ ∃D ∈ ψ
⊏

d (LX), xλ⊏
dD, xλ ≰ D ≥ A and xλ ≰ D ≥ B

⇒ xλ⊏⊏d A and xλ⊏⊏d B.

Conversely, by (LTDRNR3) and (2) of Lemma 6.3, we have

xλ⊏⊏d A and xλ⊏⊏d B ⇔ ∃D,E ∈ ψ
⊏

d (LX), xλ⊏
dD, xλ⊏

dE and xλ ≰ D ∨ E ≥ A ∨ B

⇒ ∃D ∨ E ∈ ψ
⊏

d (LX), xλ⊏
dD ∨ E and xλ ≰ D ∨ E ≥ A ∨ B

⇒ xλ⊏⊏d A ∨ B.

Therefore ⊏
⊏

d is an L-topological remotehood relation.

Theorem 6.5. Let (X,⊏d
X) and (Y,⊏d

Y) be L-topological derived remotehood relation spaces. If f : X → Y is an
L-topological derived remotehood relation preserving mapping, then f : (X,⊏

⊏
d
X
) → (Y,⊏

⊏
d
Y
) is an L-topological

remotehood relation preserving mapping.

Proof. Let xλ ∈ J(LX) and B ∈ LY. Let f→L (xλ)⊏
⊏

d
Y
B. Then there is a set D ∈ ψ

⊏
d
Y
(LX) such that f→L (xλ)⊏d

YD

and f→L (xλ) ≰ D ≥ B. Thus xλ⊏
d
X f←L (D) ≥ f←L (B). Further, for any yη ≰ f←L (D), we have f→L (yη) ≰ D and

f→L (yη)⊏
d
YD by D ∈ ψ

⊏
d
Y
(LX). Thus yη⊏

d
X f←L (D) which implies that f←L (D) ∈ ψ

⊏
d
X
(LX). Hence xλ⊏⊏d

X
f←L (B).

Therefore f is an L-topological remotehood relation preserving mapping.

Theorem 6.6. Let (X,⊏) be an L-topological derived remotehood relation space. Define a binary relation ⊏d
⊏ on

J(LX) × LX by

∀xλ ∈ J(LX),∀A ∈ LX, xλ⊏
d
⊏A ⇔ ∀µ ∈ β∗(λ), xλ⊏Axµ .

Then ⊏d
⊏ is an L-topological derived remotehood relation on LX.
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Proof. (LTDRNR1) For any µ ∈ β∗(λ), we have xλ⊏⊥ = ⊥xµ by (LTRNR1). Thus xλ⊏
d
⊏⊥.

(LTDRNR2) For any B ∈ LX, we check that B ∈ ψ
⊏

d
⊏
(LX) if and only if B ∈ ψ⊏(LX).

Let B ∈ ψ
⊏

d
⊏
(LX). For any zη ≰ B, we have zη⊏

d
⊏B by B ∈ ψ

⊏
d
⊏
(LX). By zη ≰ B, there is an element θ ∈ β∗(η)

such that zθ ≰ B. Further, by zη⊏
d
⊏B, we have zη⊏Bzθ = B. Hence B ∈ ψ⊏(LX). Conversely, let B ∈ ψ⊏(LX).

For any yη ≰ B, we have yθ ≰ B for some θ ∈ β∗(η). Thus yθ⊏B by B ∈ ψ⊏(LX). Further, since yθ ≤ yη and
B ≥ Byδ for any δ ∈ β∗(η), we obtain from (LTRNR2) that yη⊏Byδ . Thus yη⊏

d
⊏B. Therefore B ∈ ψ

⊏
d
⊏
(LX).

Now, by the above fact and (LTRNR2), we have

xλ⊏
d
⊏A ⇔ ∀µ ∈ β∗(λ), xλ⊏Axµ

⇔ ∀µ ∈ β∗(λ), ∃B ∈ ψ⊏(LX), xλ ≰ B ≥ Axµ

⇔ ∀µ ∈ β∗(λ), ∃B ∈ ψ
⊏

d
⊏
(LX), xλ ≰ B ≥ Axµ .

So (LTDRNR2) holds for ⊏d
⊏.

(LTDRNR3) By (LTRNR3), we have

xλ⊏
d
⊏A ∨ B ⇔ ∀µ ∈ β∗(λ), xλ⊏(A ∨ B)xµ

⇔ ∀µ ∈ β∗(λ), xλ⊏Axµ ∨ Bxµ

⇔ ∀µ ∈ β∗(λ), xλ⊏Axµ and xλ⊏Bxµ

⇔ xλ⊏
d
⊏A and xλ⊏

d
⊏B.

Therefore ⊏d
⊏ is an L-topological derived remotehood relation.

Theorem 6.7. Let (X,⊏X) and (Y,⊏Y) be L-topological remotehood relation spaces. If f : X→ Y is an L-topological
remotehood relation preserving mapping, then f : (X,⊏d

⊏X
)→ (Y,⊏d

⊏Y
) is an L-topological derived remotehood relation

preserving mapping.

Proof. Let xλ ∈ J(LX) and B ∈ LY. Let f→L (xλ)⊏d
⊏Y

B and xλ ≰ f←L (B). Then there is a µ ∈ β∗(λ) such that

xµ ≰ f←L (B). Thus f→L (xµ) ≰ B. By f→L (xλ)⊏d
⊏Y

B, we have f→L (xλ)⊏YB f→L (xµ) = B. Thus xλ⊏X f←L (B). Hence

xλ⊏
d
⊏X

f←L (B) ≥ f←L (B)xη for any η ∈ β∗(λ). This implies that xλ⊏
d
⊏X

f←L (B)xη for any η ∈ β∗(λ). Therefore f is an
L-topological derived remotehood relation preserving mapping.

Theorem 6.8. We have ⊏d
⊏
⊏d
= ⊏

d for any L-topological derived remotehood relation space (X,⊏d) and ⊏
⊏

d
⊏
= ⊏ for

any L-topological remotehood relation space (X,⊏).

Proof. Let (X,⊏) be an L-topological remotehood relation space.
Let xλ⊏⊏d

⊏
A. Then xλ ≰ A by (LTRNR2). Thus there is a µ ∈ β∗(λ) such that xµ ≰ A. So Axµ = A. Since

xλ⊏⊏d
⊏
A, there is a set B ∈ ψ

⊏
d
⊏
(LX) such that xλ ≰ B ≥ A. This implies that xλ⊏

d
⊏B ≥ A. Hence xλ⊏

d
⊏A by (1)

of Lemma 6.3. Therefore xλ⊏Axµ = A.
Conversely, assume that xλ⊏A. By (LTRNR2), there is a set D ∈ ψ⊏(LX) such that xλ ≰ D ≥ A. Since

D ∈ ψ⊏(LX), we have xλ⊏D. In addition, for any µ ∈ β∗(λ), we have xλ⊏D ≥ Dxµ ≥ Axµ . Thus xλ⊏Axµ by

(LTRNR2). Hence xλ⊏
d
⊏A. Further, by the proof of Theorem 6.6, we have D ∈ ψ

⊏
d
⊏
(LX). Therefore xλ⊏⊏d

⊏
A.

In conclusion, for any xλ ∈ J(LX) any A ∈ LX, we have xλ⊏A if and only if xλ⊏⊏d
⊏
A. That is, ⊏ = ⊏

⊏
d
⊏
.

Let (X,⊏d) be an L-topological derived remotehood relation space.
Let xλ⊏

d
⊏
⊏d

A. For any µ ∈ β∗(λ), we have xλ⊏⊏d Axµ . Then there is a set D ∈ ψ
⊏

d (LX) such that xλ ≰ D ≥ Axµ .

Since D ∈ ψ
⊏

d (LX), we have xλ⊏
dD ≥ Axµ . Thus xλ⊏

dAxµ . Hence xλ⊏
dA by (3) of Lemma 6.3.
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Conversely, let xλ⊏
dA. By (LTDRNR2), for any µ ∈ β∗(λ) there is a set D ∈ ψ

⊏
d (LX) such that xλ⊏

dD ≥ Axµ .

That is, xλ⊏⊏d Axµ for any µ ∈ β∗(λ). Hence xλ⊏
d
⊏
⊏d

A.

In conclusion, for any xλ ∈ J(LX) any A ∈ LX, we have xλ⊏
dA if and only if xλ⊏

d
⊏
⊏d

A. That is,⊏d
= ⊏

d
⊏
⊏d

.

Based on Theorems 6.4 and 6.5, we obtain a functorU :L-CRNRS→ L-CERS by

U((X,⊏d)) = (X,⊏
⊏

d ), U( f ) = f .

Based on Theorems 6.4–6.8, we find thatU is an isomorphic functor. Thus we have the following conclusion.

Theorem 6.9. The category L-TDRNRS is isomorphic to the category L-TRNRS.

In Remark 4.11, we established connections between L-topological derived neighborhood relation space
and L-topological derived neighborhood space. Actually, we can introduce L-topological derived remote-
hood space and discuss its connections with L-topological derived remotehood relation space.

Definition 6.10. A set Rd = {Rd
xλ ⊆ LX : xλ ∈ J(LX)} is called an L-topological derived remotehood system

on LX and the pair (X,Rd) is called an L-topological derived remotehood space, if for all A,B ∈ LX and
xλ ∈ J(LX),

(LTDRN1) ⊥ ∈ Rd
xλ ;

(LTDRN2) A ∈ Rd
xλ if and only if any µ ∈ β∗(λ) implies some D ∈ Rd

xλ such that xλ ≰ D ≥ Axµ and D ∈ Rd
yη

for any yη ≰ D;
(LTDRN3) A ∨ B ∈ Rd

xλ if and only if A,B ∈ Rd
xλ .

Let (X,Rd
X) and (Y,Rd

Y) be L-topological derived remotehood spaces. A mapping f : X → Y is called an
L-topological derived remotehood preserving mapping, if B ∈ Rd

f→L (xλ) and f→L (xλ) ≰ B imply f←L (B) ∈ Rd
xλ

for all xλ ∈ J(LX) and B ∈ LY.
The category of L-topological derived remotehood spaces and L-topological derived remotehood pre-

serving mappings is denoted by L-TDRNS. We have the following result.

Remark 6.11. (1) Let (X,⊏d) be an L-topological derived remotehood relation space. We define

∀xλ ∈ J(LX), (Rd
⊏

d )xλ = {A ∈ LX : xλ⊏
dA}.

Then Rd
⊏

d = {(Rd
⊏

d )xλ : xλ ∈ J(LX)} is an L-topological derived remotehood systems on LX.

(2) Let (X,Rd) be an L-topological derived remotehood space. Define a binary relation ⊏d
Rd by

∀xλ ∈ J(LX),∀A ∈ LX, xλ⊏
d
Rd A ⇔ A ∈ Rd

xλ .

Then ⊏d
Rd is an L-topological derived remotehood relation on LX.

(3) The category L-TDRNRS is isomorphic to the category L-TDRNS.

Isomorphisms among the categories mentioned in Sections 5 and 6 are presented by as follows.

L-TRNSOO
[20]
��

oo Re.5.8 // L-TRNRS oo Th.6.9 // L-TDRNRSOO

Re.6.11
��

L-TOP oo
[23]

// L-TERS
��

Th.5.7

OO

L-TDRNS
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7. Conclusions

(1) In this paper, we introduce notions of L-topological neighborhood relation space, L-topological
derived neighborhood relation space, L-topological remotehood relation space and L-topological derived
remotehood space. We find that all of these spaces are either isomorphic to L-topological internal relation
space or L-topological enclosed relation space. Thus they are all categorically isomorphic to L-topological
space. Specifically, these isomorphisms are presented by the diagrams in Sections 4 and 6.

(2) In the introduction section, we are looking for some fuzzy relations that can be used to character-
ize L-topological neighborhood space and L-topological remotehood space. Actually, in Remark 3.9, we
established a direct connection between L-topological neighborhood space and L-topological neighbor-
hood relation space. Similarly, in Remark 5.8, we established a direct connection between L-topological
remotehood space and L-topological remotehood relation space.

Also, we are seeking some L-topological derived neighborhood space and L-topological derived remote-
hood space that can be used to characterize L-topological neighborhood space and L-topological remote
neighborhood space. Indeed, in Sections 4 and 6, we respectively introduced them and obtain the desired
characterizations in Remarks 4.11 and 6.11.

(3) We present the following example to show the fuzzy relations mentioned in this paper.
Let X = {x} and L = {⊥, a, b,⊤} be a diamond lattice, where a and b are incomparable.

x⊥ xa xb x⊤
x⊥ ≼ ≼ ≼ ≼
xa ≼
xb ≼ ≼
x⊤ ≼

Table 1: An L-topological internal relation.

x⊥ xa xb x⊤
x⊥ ⋞ ⋞ ⋞ ⋞
xa ⋞ ⋞
xb ⋞
x⊤ ⋞

Table 2: An L-topological enclosed relation.

x⊥ xa xb x⊤
xa ⊑

xb ⊑ ⊑

Table 3: An L-topological neighborhood relation.

x⊥ xa xb x⊤
xa ⊏
xb ⊏ ⊏

Table 4: An L-topological remotehood relation.

x⊥ xa xb x⊤

xa ⊑
d
⊑

d

xb ⊑
d
⊑

d
⊑

d

Table 5: An L-topological derived neighborhood relation.

x⊥ xa xb x⊤

xa ⊏
d
⊏

d

xb ⊏
d

⊏
d
⊏

d

Table 6: An L-topological derived remotehood relation.

Notions defined in the tables from (1) to (6) are mutually induced. In addition, they are all isomorphic
to the L-topology T = {x⊥, xb, x⊤}.

(4) Relations among L-topological space, L-topological neighborhood space, L-topological remotehood
space, L-topological neighborhood relation space, L-topological derived neighborhood relation space, L-
topological remotehood relation space and L-topological derived remotehood relation space may provide
some alternative ways in discussing relations among L-topological space, L-matroid, L-convex space and
L-convergence space.
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