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Abstract. New inequalities for the A-numerical radius of the products and sums of operators acting on
a semi-Hilbert space, i.e. a space generated by a positive semidefinite operator A, are established. In
particular, for every operators T and S which admit A-adjoints, it is proved that

ωA(TS) ≤
1
2
ωA(ST) +

1
4

(
∥T∥A∥S∥A + ∥TS∥A

)
,

where ωA(T) and ∥T∥A denote the A-numerical radius and the A-operator seminorm of an operator T
respectively.

1. Introduction and Preliminaries

Let B(H) stand for the C∗-algebra of all bounded linear operators on a complex Hilbert spaceH with inner
product ⟨·, ·⟩ and the corresponding norm ∥ · ∥. Let I be the identity operator. For T ∈ B(H), we denote by
R(T),N(T) and T∗ the range, the kernel and the adjoint of T, respectively. For a given linear subspaceM of
H , its closure in the norm topology of H will be denoted byM. Further, let PS stand for the orthogonal
projection onto a closed subspace S of H . An operator T ∈ B(H) is called positive if ⟨Tx, x⟩ ≥ 0 for all
x ∈ H , and we will write T ≥ 0. Furthermore, if T ≥ 0, then the square root of T is denoted by T1/2. For
T ∈ B(H), the absolute value of T, denoted by |T|, is defined as |T| = (T∗T)1/2. Throughout this article,
A denotes a non-zero positive operator on H . The positive operator A induces the following semi-inner
product

⟨·, ·⟩A : H ×H −→ C, (x, y) 7−→ ⟨x, y⟩A := ⟨Ax, y⟩ = ⟨A1/2x,A1/2y⟩.

The seminorm induced by ⟨·, ·⟩A is given by ∥x∥A = ∥A1/2x∥ for all x ∈ H . It is easy to check that ∥ · ∥A is
a norm if and only if A is injective and that the semi-Hilbertian space (H , ∥ · ∥A) is complete if and only if
R(A) = R(A). It is well-known that the semi-inner product ⟨·, ·⟩A induces an inner product on the quotient
space H/N(A) which is not complete unless R(A) is closed. However, a canonical construction due to de
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Branges and Rovnyak [12] (see also [19]) shows that the completion ofH/N(A) is isometrically isomorphic
to the Hilbert space R(A1/2) with the inner product

⟨A1/2x,A1/2y⟩R(A1/2) := ⟨P
R(A)x,PR(A)y⟩, ∀ x, y ∈ H .

For the sequel, the Hilbert space
(
R(A1/2), ⟨·, ·⟩R(A1/2)

)
will be simply denoted by R(A1/2). For an account of

results related to R(A1/2), we refer the readers to [6] and the references therein.
Let T ∈ B(H). We recall that an operator S ∈ B(H) is called an A-adjoint of T if ⟨Tx, y⟩A = ⟨x,Sy⟩A for all

x, y ∈ H . One can observe that the existence of an A-adjoint of T is equivalent to the existence of a solution
in B(H) of the equation AX = T∗A. Clearly, the existence of an A-adjoint operator is not guaranteed. If the
set of all operators admitting A-adjoints is denoted by BA(H), then by Douglas theorem [15], we have

BA(H) =
{
T ∈ B(H) ; R(T∗A) ⊆ R(A)

}
.

If T ∈ BA(H), then the reduced solution of the equation AX = T∗A is a distinguished A-adjoint operator of
T, which will be denoted by T♯A and satisfies R(T♯A ) ⊆ R(A). Note that T♯A = A†T∗A, where A† is the Moore-
Penrose inverse of A (see [5]). If T ∈ BA(H), then T♯A ∈ BA(H), (T♯A )♯A = P

R(A)TP
R(A) and ((T♯A )♯A )♯A = T♯A .

Moreover, if S ∈ BA(H) then TS ∈ BA(H) and (TS)♯A = S♯A T♯A . For more results concerning T♯A , we invite
the readers to see [4, 5]. An operator T is called A-bounded if there exists λ > 0 such that ∥Tx∥A ≤ λ∥x∥A, for
every x ∈ H . In virtue of Douglas theorem, one can see that the set of all operators admitting A1/2-adjoints,
denoted by BA1/2 (H), is same as the collection of all A-bounded operators, i.e.,

BA1/2 (H) =
{
T ∈ B(H) ; ∃λ > 0 ; ∥Tx∥A ≤ λ∥x∥A, ∀ x ∈ H

}
.

It is well-known thatBA(H) andBA1/2 (H) are two subalgebras ofB(H) which are, in general, neither closed
nor dense in B(H). Further, we have BA(H) ⊆ BA1/2 (H) (see [4, 17]). If T ∈ BA1/2 (H), then the seminorm of
T induced by ⟨·, ·⟩A is given by

∥T∥A := sup
x∈R(A),

x,0

∥Tx∥A
∥x∥A

= sup
{
∥Tx∥A ; x ∈ H , ∥x∥A = 1

}
< ∞.

It was shown in [5, Proposition 2.3] that, for every T ∈ BA(H), we have

∥T♯A T∥A = ∥TT♯A∥A = ∥T∥2A = ∥T
♯A∥

2
A.

Several generalizations for the notion of numerical radius of Hilbert space operators have recently been
defined (see for example [8] and the reference therein). One of these generalizations is the A-numerical
radius of an operator T ∈ B(H). This new concept was firstly introduced by Saddi in [28] as

ωA(T) := sup
{
|⟨Tx, x⟩A| ; x ∈ H , ∥x∥A = 1

}
.

We mention here that it may happen that ∥T∥A and ωA(T) are equal to +∞ for some T ∈ B(H) \ BA1/2 (H)
(see [17]). However, it was shown in [7] that ∥ · ∥A and ωA(·) are equivalent seminorms on BA1/2 (H). More
precisely, for every T ∈ BA1/2 (H), the following inequalities hold

1
2
∥T∥A ≤ ωA(T) ≤ ∥T∥A.

Let T ∈ BA1/2 (H). Then ∥T∥A = 0 if and only if AT = 0. Furthermore, ∥Tx∥A ≤ ∥T∥A∥x∥A, for every x ∈ H .
This implies that ∥TS∥A ≤ ∥T∥A∥S∥A for all T,S ∈ BA1/2 (H). An operator T ∈ B(H) is called A-selfadjoint if
AT is selfadjoint and it is called A-positive if AT is a positive operator. For the sequel, if A = I then ∥T∥, r(T)
and ω(T) denote respectively the classical operator norm, the spectral radius and the numerical radius of
an operator T.
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For any operator T ∈ BA(H), we write ℜA(T) := T+T♯A
2 . We keep into account from [31, Theorem 2.5]

that for every T ∈ BA(H), we have

ωA(T) = sup
θ∈R

∥∥∥ℜA(eiθT)
∥∥∥

A. (1)

The A-spectral radius of an operator T ∈ BA1/2 (H) was defined by the second author in [17] as

rA(T) := inf
n≥1
∥Tn
∥

1
n
A = lim

n→∞
∥Tn
∥

1
n
A. (2)

The second equality in (2) is also proved in [17, Theorem 1]. In addition, it was shown in [17] that rA(·)
satisfies the commutativity property, i.e.,

rA(TS) = rA(ST), ∀ T,S ∈ BA1/2 (H). (3)

Also, the following relation between the A-spectral radius and the A-numerical radius of A-bounded
operators is also proved in [17]:

rA(T) ≤ ωA(T), ∀ T ∈ BA1/2 (H). (4)

Recently, many mathematicians have obtained different A-numerical radius inequalities of semi-Hilbertian
space operators, the interested readers are invited to see [9–11, 14, 18, 21, 26, 27, 31] and the references
therein. Here, we obtain several new inequalities for the A-numerical radius of the products and the sums
of semi-Hilbertian space operators. The bounds obtained here improve on the existing bounds.

2. On A-Numerical radius inequalities for products of operators

We begin this section with the following known lemma which can be found in [17].

Lemma 2.1. Let T ∈ B(H) be an A-selfadjoint operator. Then,

∥T∥A = ωA(T) = rA(T).

Our first result reads as:

Theorem 2.2. Let T,S ∈ BA(H). Then,

ωA(TS) ≤ ∥T∥A ωA(S) +
1
2

min
{
ωA

(
TS + ST♯A

)
, ωA

(
TS − ST♯A

)}
.

Proof. Let θ ∈ R. Clearly,ℜA(eiθTS) is an A-selfadjoint operator. Therefore, from Lemma 2.1, we get∥∥∥ℜA(eiθTS)
∥∥∥

A = ωA

(
ℜA(eiθTS)

)
= ωA

(1
2

(eiθTS + e−iθS♯A T♯A )
)

= ωA

(1
2

(eiθTS + e−iθTS♯A + e−iθS♯A T♯A − e−iθTS♯A )
)

= ωA

(
TℜA(eiθS) +

1
2

e−iθ(S♯A T♯A − TS♯A )
)

≤ ωA

(
TℜA(eiθS)

)
+ ωA

(1
2

e−iθ(S♯A T♯A − TS♯A )
)

≤

∥∥∥TℜA(eiθS)
∥∥∥

A +
1
2
ωA

(
S♯A T♯A − TS♯A

)
≤ ∥T∥A

∥∥∥ℜA(eiθS)
∥∥∥

A +
1
2
ωA

(
S♯A T♯A − TS♯A

)
≤ ∥T∥AωA(S) +

1
2
ωA

(
S♯A T♯A − TS♯A

)
.
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So, by taking the supremum over all θ ∈ R, we get

ωA(TS) ≤ ∥T∥AωA(S) +
1
2
ωA

(
S♯A T♯A − TS♯A

)
. (5)

On the other hand, for every x ∈ H we see that∣∣∣⟨(S♯A T♯A − TS♯A )x, x⟩A
∣∣∣ = ∣∣∣⟨S♯A T♯A x, x⟩A − ⟨TS♯A x, x⟩A

∣∣∣
=

∣∣∣⟨S♯A T♯A x, x⟩A − ⟨PR(A)TP
R(A)S

♯A x, x⟩A
∣∣∣,

where the last equality follows from the fact that AP
R(A) = A. So, we get∣∣∣⟨(S♯A T♯A − TS♯A )x, x⟩A

∣∣∣ = ∣∣∣⟨(S♯A T♯A − (T♯A )♯A S♯A )x, x⟩A
∣∣∣

=
∣∣∣⟨(TS − ST♯A

)♯A
x, x⟩A

∣∣∣
=

∣∣∣⟨(TS − ST♯A
)

x, x⟩A
∣∣∣.

This implies that ωA

(
S♯A T♯A − TS♯A

)
= ωA

(
TS − ST♯A

)
. Thus, it follows from (5) that

ωA(TS) ≤ ∥T∥AωA(S) +
1
2
ωA

(
TS − ST♯A

)
. (6)

Also, by replacing T by iT in (6), we get

ωA(TS) ≤ ∥T∥AωA(S) +
1
2
ωA

(
TS + ST♯A

)
. (7)

Thus, the proof is finished by combining (6) together with (7).

Remark 2.3. It has been proved in [23, Theorem 2.13.] that

ωA

(
TS ± ST♯A

)
≤ 2∥T∥AωA(S), ∀T,S ∈ BA(H).

Therefore, ∥T∥AωA(S) + 1
2ωA

(
TS ± ST♯A

)
≤ 2∥T∥AωA(S). Thus, the inequality obtained in Theorem 2.2 is stronger

than the well-know inequality
ωA(TS) ≤ 2∥T∥AωA(S).

In order to obtain our next inequality that gives an upper bound for the A-numerical radius of product
of two operators, we need the following lemmas. First we consider the 2 × 2 operator diagonal matrix

A =

(
A 0
0 A

)
. Clearly, A is a positive operator onH ⊕H . So, A induces the following semi-inner product

onH ⊕H defined as
⟨x, y⟩A = ⟨Ax, y⟩ = ⟨x1, y1⟩A + ⟨x2, y2⟩A,

for all x = (x1, x2), y = (y1, y2) ∈ H ⊕H .

Lemma 2.4. ([21]) Let T,S ∈ B(H) be A-positive operators. Then,

ωA

[(
0 T
S 0

)]
=

1
2
∥T + S∥A .

Lemma 2.5. ([20]) Let T,S ∈ BA1/2 (H). Then,
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(a) ωA

[(
T 0
0 S

)]
= max{ωA(T), ωA(S)}. In particular,

ωA

[(
T 0
0 T

)]
= ωA

[(
T 0
0 T♯A

)]
= ωA(T). (8)

(b)

∥∥∥∥∥∥
(
0 T
S 0

)∥∥∥∥∥∥
A

=

∥∥∥∥∥∥
(
T 0
0 S

)∥∥∥∥∥∥
A

= max {∥T∥A, ∥S∥A} .

Now we are in a position to obtain the following inequality.

Theorem 2.6. Let T,S ∈ BA(H). Then,

ωA(TS) ≤
1
2
ωA(ST) +

1
4

(
∥T∥A∥S∥A + ∥TS∥A

)
. (9)

Proof. Let θ ∈ R. SinceℜA(eiθTS) is an A-selfadjoint operator, so by Lemma 2.1, we have

∥ℜA(eiθTS)∥A = rA[ℜA(eiθTS)]

=
1
2

rA(eiθTS + e−iθS♯A T♯A ). (10)

On the other hand, we have

rA(eiθTS + e−iθS♯A T♯A ) = rA

[(
eiθTS + e−iθS♯A T♯A 0

0 0

)]
= rA

[(
eiθT S♯A

0 0

) (
S 0

e−iθT♯A 0

)]
= rA

[(
S 0

e−iθT♯A 0

) (
eiθT S♯A

0 0

)]
(by (3))

= rA

[(
eiθST SS♯A
T♯A T e−iθT♯A S♯A

)]
.

By applying (4), we get

rA(eiθTS + e−iθS♯A T♯A ) ≤ ωA

[(
eiθST SS♯A
T♯A T e−iθT♯A S♯A

)]
≤ ωA

[(
eiθST 0

0 e−iθT♯A S♯A

)]
+ ωA

[(
0 SS♯A

T♯A T 0

)]
= ωA(ST) +

1
2
∥SS♯A + T♯A T∥A,

where the last equality follows from Lemma 2.4 together with (8). Therefore, from (10), we get

∥ℜA(eiθTS)∥A ≤
1
2
ωA(ST) +

1
4
∥SS♯A + T♯A T∥A.

Hence, by taking the supremum over all θ ∈ R and then using (1), we get

ωA(TS) ≤
1
2
ωA(ST) +

1
4
∥SS♯A + T♯A T∥A. (11)
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If AT = 0 or AS = 0, then the inequality (9) holds trivially. Assume that AT , 0 and AS , 0. By Replacing T

and S by
√
∥S∥A
∥T∥A

T and
√
∥T∥A
∥S∥A

S, respectively in (11), we obtain

ωA(TS) ≤
1
2
ωA(ST) +

1
4

∥∥∥∥∥ ∥S∥A∥T∥A
T♯A T +

∥T∥A
∥S∥A

SS♯A
∥∥∥∥∥

A
. (12)

It is easy to see that the operator ∥S∥A
∥T∥A

T♯A T + ∥T∥A
∥S∥A

SS♯A is A-positive. So, an application of Lemma 2.1 gives∥∥∥∥∥ ∥S∥A∥T∥A
T♯A T +

∥T∥A
∥S∥A

SS♯A
∥∥∥∥∥

A
= rA

(
∥S∥A
∥T∥A

T♯A T +
∥T∥A
∥S∥A

SS♯A
)
. (13)

Next, ones observes that

rA

(
∥S∥A
∥T∥A

T♯A T +
∥T∥A
∥S∥A

SS♯A
)
= rA

[(
∥S∥A
∥T∥A

T♯A T + ∥T∥A
∥S∥A

SS♯A 0
0 0

)]

= rA



√
∥S∥A
∥T∥A

T♯A
√
∥T∥A
∥S∥A

S
0 0




√
∥S∥A
∥T∥A

T 0√
∥T∥A
∥S∥A

S♯A 0


 .

Further, by applying (3), we get

rA

(
∥S∥A
∥T∥A

T♯A T +
∥T∥A
∥S∥A

SS♯A
)
= rA




√
∥S∥A
∥T∥A

T 0√
∥T∥A
∥S∥A

S♯A 0



√
∥S∥A
∥T∥A

T♯A
√
∥T∥A
∥S∥A

S
0 0




= rA

 ∥S∥A∥T∥A
TT♯A TS

S♯A T♯A ∥T∥A
∥S∥A

S♯A S

 . (14)

In addition, one can see that

 ∥S∥A∥T∥A
TT♯A TS

S♯A T♯A ∥T∥A
∥S∥A

S♯A S

 is an A-selfadjoint operator. Hence, in view of Lemma

2.1, we have∥∥∥∥∥∥
 ∥S∥A∥T∥A

TT♯A TS
S♯A T♯A ∥T∥A

∥S∥A
S♯A S

∥∥∥∥∥∥
A

= rA

 ∥S∥A∥T∥A
TT♯A TS

S♯A T♯A ∥T∥A
∥S∥A

S♯A S

 . (15)

So, it follows from (13), (14) and (15) that∥∥∥∥∥ ∥S∥A∥T∥A
T♯A T +

∥T∥A
∥S∥A

SS♯A
∥∥∥∥∥

A
=

∥∥∥∥∥∥
 ∥S∥A∥T∥A

TT♯A TS
S♯A T♯A ∥T∥A

∥S∥A
S♯A S

∥∥∥∥∥∥
A

.

Finally, by applying the triangle inequality and then using Lemma 2.5, we get∥∥∥∥∥ ∥S∥A∥T∥A
T♯A T +

∥T∥A
∥S∥A

SS♯A
∥∥∥∥∥

A
≤

∥∥∥∥∥∥
 ∥S∥A∥T∥A

TT♯A 0
0 ∥T∥A

∥S∥A
S♯A S

∥∥∥∥∥∥
A

+

∥∥∥∥∥∥
(

0 TS
S♯A T♯A 0

)∥∥∥∥∥∥
A

= max
{
∥S∥A
∥T∥A

∥TT♯A∥A,
∥T∥A
∥S∥A

∥S♯A S∥A
}
+ ∥TS∥A

= ∥S∥A∥T∥A + ∥TS∥A.

Therefore, we get (9) as desired by taking (12) into account.
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Remark 2.7. (i) By taking A = I in Theorem 2.6 we get a recent result proved by Kittaneh et al. in [2].
(ii) If we consider T = I, then it is easy to see that the inequality in Theorem 2.2 is stronger than that in Theorem
2.6. On the other hand, if we consider S = I, then the inequality in Theorem 2.6 is stronger than that in Theorem 2.2.
Thus, we conclude that the inequalities in Theorems 2.2 and 2.6 are, in general, not comparable.

The following corollary is an immediate consequence of Theorem 2.6.

Corollary 2.8. Let T,S ∈ BA(H). Then

ωA(TS) ≤
1
2

(ωA(ST) + ∥T∥A∥S∥A) .

Next, we obtain the following inequalities when T is assuming to be A-positive.

Theorem 2.9. Let T,S ∈ BA1/2 (H). If T is A-positive, then

ωA(TS) ≤ ∥T∥AωA(S) and ωA(ST) ≤ ∥T∥AωA(S).

Proof. For all α ∈ [0, 1], we have

ωA(TS) = ωA ((T − α∥T∥AI)S + α∥T∥AS)
≤ ωA ((T − α∥T∥AI)S) + α∥T∥AωA(S)
≤ ∥(T − α∥T∥AI)S∥A + α∥T∥AωA(S)
≤ ∥T − α∥T∥AI∥A ∥S∥A + α∥T∥AωA(S).

Since T is A-positive, so we observe that ∥T − α∥T∥AI∥A = (1 − α)∥T∥A for all α ∈ [0, 1]. Therefore,

ωA(TS) ≤ ∥T∥A
(
(1 − α)∥S∥A + αωA(S)

)
. (16)

So, by considering α = 1 in (16), we get

ωA(TS) ≤ ∥T∥AωA(S).

Similarly, we can prove that
ωA(ST) ≤ ∥T∥AωA(S).

Thus, we complete the proof.

Considering A = I in Theorem 2.9, we get the following numerical radius inequalities for the product of
Hilbert space operators.

Corollary 2.10. Let T,S ∈ B(H) with T positive. Then,

ω(TS) ≤ ∥T∥ω(S) and ω(ST) ≤ ∥T∥ω(S).

Remark 2.11. (1) We would like to note that the numerical radius ω(.) satisfies ω(TS) ≤ ω(T)ω(S) if either T or
S is positive.

(2) Abu-Omar and Kittaneh proved in [3, Cor. 2.6] the following result: if T,S ∈ B(H) with T positive, then
ω(TS) ≤ 3

2∥T∥ω(S). Thus, Corollary 2.10 is stronger than this result.
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3. On A-Numerical radius inequalities for sums of operators

Our starting point in this section is the following lemma.

Lemma 3.1. For any x, y, z ∈ H , we have

|⟨x, y⟩A|2 + |⟨x, z⟩A|2 ≤ ∥x∥2A
(

max{∥y∥2A, ∥z∥
2
A} + |⟨y, z⟩A|

)
. (17)

Proof. First note that, by the proof of [16, Th. 3] we have,

|⟨x, y⟩|2 + |⟨x, z⟩|2 ≤ ∥x∥2
(

max{∥y∥2, ∥z∥2} + |⟨y, z⟩|
)
, (18)

for every x, y, z ∈ H . Now,

|⟨x, y⟩A|2 + |⟨x, z⟩A|2 = |⟨A1/2x,A1/2y⟩|2 + |⟨A1/2x,A1/2z⟩|2.

So, by applying (18), we obtain

|⟨x, y⟩A|2 + |⟨x, z⟩A|2 ≤ ∥A1/2x∥2
(

max{∥A1/2y∥2, ∥A1/2z∥2} + |⟨A1/2y,A1/2z⟩|
)
.

Hence, we get (17) as required.

Now, we are in a position to prove the following theorem.

Theorem 3.2. Let T,S ∈ BA(H). Then

ωA(T + S) ≤

√
1
2

( ∥∥∥TT♯A + SS♯A
∥∥∥

A +
∥∥∥TT♯A − SS♯A

∥∥∥
A

)
+ ωA

(
ST♯A

)
+ 2ωA (T)ωA (S).

Proof. Recall first that for every t, s ∈ R it holds

max{t, s} =
1
2

(
t + s + |t − s|

)
. (19)

Now, let x ∈ H with ∥x∥A = 1. By using Lemma 3.1, we get

|⟨(T + S)x, x⟩A|2

≤ |⟨x,T♯A x⟩A|2 + |⟨x,S♯A x⟩A|2 + 2|⟨Tx, x⟩A| |⟨Sx, x⟩A|

≤ max
{
∥T♯A x∥2A, ∥S

♯A x∥2A
}
+ |⟨ST♯A x, x⟩A| + 2|⟨Tx, x⟩A| |⟨Sx, x⟩A|

=
1
2

(
∥T♯A x∥2A + ∥S

♯A x∥2A +
∣∣∣∥T♯A x∥2A − ∥S

♯A x∥2A
∣∣∣ ) + |⟨ST♯A x, x⟩A| + 2|⟨Tx, x⟩A| |⟨Sx, x⟩A| (by (19))

=
1
2

(
⟨(TT♯A + SS♯A )x, x⟩A +

∣∣∣⟨(TT♯A − SS♯A )x, x⟩A
∣∣∣ ) + |⟨ST♯A x, x⟩A| + 2|⟨Tx, x⟩A| |⟨Sx, x⟩A|

≤
1
2

(
ωA(TT♯A + SS♯A ) + ωA(TT♯A − SS♯A )

)
+ ωA(ST♯A ) + 2ωA (T)ωA (S)

=
1
2

(
∥TT♯A + SS♯A∥A + ∥TT♯A − SS♯A∥A

)
+ ωA(ST♯A ) + 2ωA (T)ωA (S) ,

where the last equality follows from Lemma 2.1 since the operators TT♯A ± SS♯A are A-selfadjoint. So, we
infer that

|⟨(T + S)x, x⟩A|2 ≤
1
2

(
∥TT♯A + SS♯A∥A + ∥TT♯A − SS♯A∥A

)
+ ωA(ST♯A ) + 2ωA (T)ωA (S) .

Therefore, the desired result follows by taking supremum over all x ∈ H with ∥x∥A = 1 in the last inequal-
ity.
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Our next objective is to refine the triangle inequality related to ωA(·). To do this, we need to recall from
[22] the following lemma.

Lemma 3.3. Let T1,T2,S1,S2 ∈ BA1/2 (H). Then,

rA (T1S1 + T2S2) ≤

∥∥∥∥∥∥
(

∥S1T1∥A
√
∥S1T2∥A ∥S2T1∥A√

∥S1T2∥A ∥S2T1∥A ∥S2T2∥A

)∥∥∥∥∥∥ .
Now, we are ready to prove the following theorem which covers and generalizes a recent result proved

by Abu-Omar and Kittaneh in [1].

Theorem 3.4. Let T,S ∈ BA(H). Then,

ωA (T + S) ≤
1
2

ωA (T) + ωA (S) +
√

(ωA (T) − ωA (S))2 + 4 sup
θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A


≤ ωA (T) + ωA (S) .

Proof. Let θ ∈ R. It can be seen thatℜA[eiθ(T + S)] is an A-selfadjoint operator. So, by Lemma 2.1, we get∥∥∥ℜA[eiθ(T + S)]
∥∥∥

A = rA

(
ℜA[eiθ(T + S)]

)
.

By letting T1 = I, S1 = ℜA(eiθT), T2 = ℜA(eiθS) and S2 = I in Lemma 3.3 and then using the norm
monotonicity of matrices with nonnegative entries, we get∥∥∥ℜA[eiθ(T + S)]

∥∥∥
A = rA

(
ℜA(eiθT) +ℜA(eiθS)

)
≤

∥∥∥∥∥∥∥∥
 ∥ℜA(eiθT)∥A

√∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A√∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A ∥ℜA(eiθS)∥A


∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥


ωA(T)
√

sup
θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A√
sup
θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A ωA(S)


∥∥∥∥∥∥∥∥∥∥∥

=
1
2

ωA (T) + ωA (S) +

√(
ωA (T) − ωA (S)

)2
+ 4 sup

θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A

 .
By taking supremum over all θ ∈ R, we get

ωA (T + S) ≤
1
2

ωA (T) + ωA (S) +
√

(ωA (T) − ωA (S))2 + 4 sup
θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A

 . (20)

This proves the first inequality in the theorem. Moreover,√
(ωA (T) − ωA (S))2 + 4 sup

θ∈R

∥∥∥ℜA(eiθT)ℜA(eiθS)
∥∥∥

A ≤

√(
ωA (T) − ωA (S)

)2
+ 4ωA (T)ωA (S)

=

√(
ωA (T) + ωA (S)

)2
= ωA (T) + ωA (S) .

So, by using (20), we easily get the second inequality.

The following lemma is an extension of Buzano’s inequality (see [13]) and plays a crucial role in proving
our next result.
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Lemma 3.5. ([28]) Let x, y, e ∈ H with ∥e∥A = 1. Then,

|⟨x, e⟩A⟨e, y⟩A| ≤
1
2

(
|⟨x, y⟩A| + ∥x∥A∥y∥A

)
.

Now, we prove the following theorem.

Theorem 3.6. Let T,S ∈ BA(H). Then

ωA(T + S) ≤

√
ω2

A(T) + ω2
A(S) +

1
2

∥∥∥T♯A T + SS♯A
∥∥∥

A + ωA(ST).

Proof. Let x ∈ H be such that ∥x∥A = 1. One can verify that

|⟨(T + S)x, x⟩A|2 ≤ |⟨Tx, x⟩A|2 + |⟨Sx, x⟩A|2 + 2|⟨Tx, x⟩A| |⟨Sx, x⟩A|

= |⟨Tx, x⟩A|2 + |⟨Sx, x⟩A|2 + 2|⟨Tx, x⟩A| |⟨x,S♯A x⟩A|.

By using Lemma 3.5, we get

|⟨(T + S)x, x⟩A|2 ≤ |⟨Tx, x⟩A|2 + |⟨Sx, x⟩A|2 + ∥Tx∥A∥S♯A x∥A + |⟨Tx,S♯A x⟩A|

= |⟨Tx, x⟩A|2 + |⟨Sx, x⟩A|2 +
√
⟨T♯A Tx, x⟩A⟨SS♯A x, x⟩A + |⟨STx, x⟩A|.

By using the arithmetic-geometric mean inequality, we get

|⟨(T + S)x, x⟩A|2 ≤ ω2
A(T) + ω2

A(S) +
1
2

(
⟨T♯A Tx, x⟩A + ⟨SS♯A x, x⟩A

)
+ ωA(ST)

= ω2
A(T) + ω2

A(S) +
1
2
⟨(T♯A T + SS♯A )x, x⟩A + ωA(ST)

≤ ω2
A(T) + ω2

A(S) +
1
2
ωA

(
T♯A T + SS♯A

)
+ ωA(ST)

= ω2
A(T) + ω2

A(S) +
1
2

∥∥∥T♯A T + SS♯A
∥∥∥

A + ωA(ST),

where the last equality follows from Lemma 2.1. So, we infer that

|⟨(T + S)x, x⟩A|2 ≤ ω2
A(T) + ω2

A(S) +
1
2

∥∥∥T♯A T + SS♯A
∥∥∥

A + ωA(ST),

for all x ∈ H with ∥x∥A = 1. Thus, by taking the supremum over all x ∈ H with ∥x∥A = 1, we get

ω2
A(T + S) ≤ ω2

A(T) + ω2
A(S) +

1
2

∥∥∥T♯A T + SS♯A
∥∥∥

A + ωA(ST).

This proves the desired result.

As an application of the above theorem, we get the following corollary.

Corollary 3.7. Let T ∈ BA(H). Then

ωA(T) ≤
1
2

√∥∥∥TT♯A + T♯A T
∥∥∥

A + 2ωA(T2) ≤

√
2

2

√
∥T♯A T + TT♯A∥A.
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Proof. Clearly, the first inequality follows by taking S = T in Theorem 3.6. Moreover, it is well-known that
ωA(T2) ≤ ω2

A(T) (see [17]) and ω2
A(T) ≤ 1

2

∥∥∥TT♯A + T♯A T
∥∥∥

A. So, we get that

1
4

∥∥∥TT♯A + T♯A T
∥∥∥

A +
1
2
ωA(T2) ≤

1
4

∥∥∥TT♯A + T♯A T
∥∥∥

A +
1
2
ω2

A(T)

≤
1
4

∥∥∥TT♯A + T♯A T
∥∥∥

A +
1
4

∥∥∥TT♯A + T♯A T
∥∥∥

A

=
1
2

∥∥∥TT♯A + T♯A T
∥∥∥

A.

This proves that the second inequality in Corollary 3.7.

Remark 3.8. Note that Corollary 3.7 has been recently proved in [31].

Our next improvement reads as:

Theorem 3.9. Let T,S ∈ B(H) be A-selfadjoint aperators. Then,

ωA(T + S) ≤
√
ω2

A(T + iS) + ωA(ST) + ∥T∥A∥S∥A ≤ ωA(T) + ωA(S).

Proof. Let x ∈ H be such that ∥x∥A = 1. Then, we have

|⟨(T + S)x, x⟩A|2 ≤ (|⟨Tx, x⟩A| + |⟨Tx, x⟩A|)2

= |⟨Tx, x⟩A|2 + |⟨Sx, x⟩A|2 + 2|⟨Tx, x⟩A||⟨Sx, x⟩A|

= |⟨Tx, x⟩A + i⟨Sx, x⟩A|2 + 2|⟨Tx, x⟩A⟨Sx, x⟩A|

= |⟨(T + iS)x, x⟩A|2 + 2|⟨Tx, x⟩A⟨x,S♯A x⟩A|.

So, an application of Lemma 3.5 gives

|⟨(T + S)x, x⟩A|2 ≤ |⟨(T + iS)x, x⟩A|2 + ∥Tx∥A∥S♯A x∥A + |⟨Tx,S♯A x⟩A|

= |⟨(T + iS)x, x⟩A|2 + ∥Tx∥A∥S♯A x∥A + |⟨STx, x⟩A|

≤ ω2
A(T + iS) + ∥T∥A∥S∥A + ωA(ST).

Taking supremum over all x ∈ H with ∥x∥A = 1 yields that

ω2
A(T + S) ≤ ω2

A(T + iS) + ∥T∥A∥S∥A + ωA(ST).

Thus, we prove the first inequality of the theorem. On the other hand, it is not difficult to show that
ω2

A(T+iS) ≤ ∥T∥2A+∥S∥
2
A.Also we haveωA(ST) ≤ ∥T∥A∥S∥A. So,ω2

A(T+iS)+∥T∥A∥S∥A+ωA(ST) ≤ (∥T∥A+∥S∥A)2.
Finally, since T and S are A-selfadjoint operators, so Lemma 2.1 implies thatωA(T) = ∥T∥A andωA(S) = ∥S∥A.
So, we get the required second inequality of the theorem. This finishes the proof of our result.

Our next objective is to establish some A-numerical radius inequalities for the sum of d operators. To
achieve this goal, we shall need the following three lemmas. Note that the second assertion of the first
lemma is known as McCarthy inequality [29, p. 20]. The second lemma is known as Bohr’s inequality.

Lemma 3.10. ([24, pp. 75-76], [29, p. 20]) Let T ∈ B (H). Then, the following assertions hold:

(i) |⟨Tx, x⟩|2 ≤ ⟨|T|x, x⟩⟨|T∗|x, x⟩ for every x ∈ H .

(ii) If T ≥ 0, then ⟨Tx, x⟩r ≤ ⟨Trx, x⟩ for every x ∈ H with ∥x∥ = 1 and all r ≥ 1.
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Lemma 3.11. ([30]) Let ai be positive real numbers for all i ∈ {1, 2, . . . , d}. Then, for all r ≥ 1 we have

 d∑
i=1

ai


r

≤ dr−1
d∑

i=1

ar
i .

Lemma 3.12. ([6, 17, 25]) Let T ∈ B(H). Then, T ∈ BA1/2 (H) if and only if there exists a unique T̃ ∈ B(R(A1/2))
such that ZAT = T̃ZA. Here, ZA : H → R(A1/2) is defined by ZAx = Ax. Further, the following properties hold

(i) ∥T∥A = ∥T̃∥B(R(A1/2)).

(ii) ωA(T) = ω(T̃).

(iii) If T ∈ BA(H), then T̃♯A = (T̃)∗.

On the basis of the above results we obtain the following theorems.

Theorem 3.13. Let Si ∈ BA(H) for all i ∈ {1, 2, . . . , d}. Then,

ω4n
A

 d∑
i=1

Si

 ≤ d4n−1

4


∥∥∥∥∥∥∥

d∑
i=1

((
S♯Ai Si

)2n
+

(
SiS
♯A
i

)2n
)∥∥∥∥∥∥∥

A

+ 2
d∑

i=1

ωA

((
S♯Ai Si

)n(
SiS
♯A
i

)n) ,
for all n = 1, 2, 3, . . . .

Proof. Let x ∈ H be such that ∥x∥ = 1. Since Si ∈ BA(H), then Si ∈ B(H). So, we see that

∣∣∣∣∣∣∣〈
 d∑

i=1

Si

 x, x
〉∣∣∣∣∣∣∣

4n

≤

 d∑
i=1

∣∣∣⟨Six, x⟩
∣∣∣

4n

≤ d4n−1
d∑

i=1

∣∣∣⟨Six, x⟩
∣∣∣4n
,

(
by Lemma 3.11

)
≤ d4n−1

d∑
i=1

⟨|Si|x, x⟩2n
⟨|S∗i |x, x⟩

2n,
(
by Lemma 3.10 (i)

)
≤ d4n−1

d∑
i=1

⟨|Si|
2nx, x⟩⟨|S∗i |

2nx, x⟩,
(
by Lemma 3.10 (ii)

)
= d4n−1

d∑
i=1

⟨|Si|
2nx, x⟩⟨x, |S∗i |

2nx⟩.
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Moreover, by applying Lemma 3.5 with A = I, we obtain∣∣∣∣∣∣∣〈
 d∑

i=1

Si

 x, x
〉∣∣∣∣∣∣∣

4n

≤
d4n−1

2

d∑
i=1

(∥∥∥|Si|
2nx

∥∥∥ ∥∥∥|S∗i |2nx
∥∥∥ + |⟨|Si|

2nx, |S∗i |
2nx⟩|

)
≤

d4n−1

2

d∑
i=1

(1
2

( ∥∥∥|Si|
2nx

∥∥∥2
+

∥∥∥|S∗i |2nx
∥∥∥2 )
+

∣∣∣⟨|Si|
2n
|S∗i |

2nx, x⟩
∣∣∣)

=
d4n−1

4

d∑
i=1

〈(
|Si|

4n + |S∗i |
4n
)
x, x

〉
+

d4n−1

2

d∑
i=1

∣∣∣⟨|Si|
2n
|S∗i |

2nx, x⟩
∣∣∣

=
d4n−1

4

〈  d∑
i=1

(|Si|
4n + |S∗i |

4n)

 x, x
〉
+

d4n−1

2

d∑
i=1

∣∣∣⟨|Si|
2n
|S∗i |

2nx, x⟩
∣∣∣

≤
d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

(|Si|
4n + |S∗i |

4n)

∥∥∥∥∥∥∥ + d4n−1

2

d∑
i=1

ω
(
|Si|

2n
|S∗i |

2n
)
.

Taking the supremum over all x ∈ H with ∥x∥ = 1 yields that

ω4n

 d∑
i=1

Si

 ≤ d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

(
|Si|

4n + |S∗i |
4n
)∥∥∥∥∥∥∥ + d4n−1

2

d∑
i=1

ω
(
|Si|

2n
|S∗i |

2n
)
. (21)

Now, since BA(H) ⊆ BA1/2 (H), so Si ∈ BA1/2 (H) for each i ∈ {1, 2, . . . , d}. Therefore, there exists unique S̃i in
B(R(A1/2)) such that ZASi = S̃iZA for all i. By taking into consideration the fact that R(A1/2) is a complex
Hilbert space, then (21) implies that

ω4n

 d∑
i=1

S̃i

 ≤ d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

(
|S̃i|

4n + |S̃i
∗

|
4n
)∥∥∥∥∥∥∥
B(R(A1/2))

+
d4n−1

2

d∑
i=1

ω
(
|S̃i|

2n
|S̃i
∗

|
2n
)
.

We keep into account from [19] that for every T,S ∈ BA1/2 (H), we have

T̃S = S̃ T̃ and T̃ + λS = T̃ + λS̃ ∀λ ∈ C. (22)

So, in view of (22), we obtain

ω4n


d̃∑

i=1

Si

 ≤ d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

((
(S̃i)∗S̃i

)2n
+

(
S̃i(S̃i)∗

)2n
)∥∥∥∥∥∥∥
B(R(A1/2))

+
d4n−1

2

d∑
i=1

ω
((

(S̃i)∗S̃i

)n(
S̃i(S̃i)∗

)n)
.

Also, by Lemma 3.12 (iii), we have (S̃i)∗ = S̃♯Ai for all i. So,

ω4n


d̃∑

i=1

Si

 ≤ d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

((
S̃♯Ai S̃i

)2n

+
(
S̃iS̃
♯A
i

)2n)∥∥∥∥∥∥∥
B(R(A1/2))

+
d4n−1

2
ω

((
S̃♯Ai S̃i

)n (
S̃iS̃
♯A
i

)n)

=
d4n−1

4

∥∥∥∥∥∥∥∥
˜d∑

i=1

((
S♯Ai Si

)2n
+

(
SiS
♯A
i

)2n
)∥∥∥∥∥∥∥∥
B(R(A1/2))

+
d4n−1

2

d∑
i=1

ω

(
˜(

S♯Ai Si

)n (
SiS
♯A
i

)n
)
.

Hence, by applying Lemma 3.12 (i) and (ii), we get

ω4n
A

 d∑
i=1

Si

 ≤ d4n−1

4

∥∥∥∥∥∥∥
d∑

i=1

((
S♯Ai Si

)2n
+

(
SiS
♯A
i

)2n
)∥∥∥∥∥∥∥

A

+
d4n−1

2

d∑
i=1

ωA

((
S♯Ai Si

)n (
SiS
♯A
i

)n
)
.

Thus, we complete the proof.
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In particular, by considering d = n = 1 in Theorem 3.13, we get the following result.

Corollary 3.14. Let S ∈ BA(H). Then

ω4
A(S) ≤

1
4

∥∥∥∥(S♯A S
)2
+

(
SS♯A

)2∥∥∥∥
A
+

1
2
ωA

(
S♯A S2S♯A

)
.

Theorem 3.15. Let Si ∈ BA(H) for all i ∈ {1, 2, . . . , d}. Then

ω2n
A

 d∑
i=1

Si

 ≤ d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

((
S♯Ai Si

)n
+

(
SiS
♯A
i

)n)∥∥∥∥∥∥∥
A

,

for all n = 1, 2, 3, . . . .

Proof. Let x ∈ H with ∥x∥ = 1. Si ∈ BA(H) implies Si ∈ B(H). So, we have∣∣∣∣∣∣∣〈
 d∑

i=1

Si

 x, x
〉∣∣∣∣∣∣∣

2n

≤

 d∑
i=1

∣∣∣⟨Six, x⟩
∣∣∣

2n

≤ d2n−1
d∑

i=1

|⟨Six, x⟩|2n ,
(
by Lemma 3.11

)
≤ d2n−1

d∑
i=1

⟨|Si|x, x⟩n⟨|S∗i |x, x⟩
n,

(
by Lemma 3.10 (i)

)
≤ d2n−1

d∑
i=1

⟨|Si|
nx, x⟩⟨|S∗i |

nx, x⟩,
(
by Lemma 3.10 (ii)

)
≤

d2n−1

2

d∑
i=1

(
⟨|Si|

nx, x⟩2 + ⟨|S∗i |
nx, x⟩2

)
≤

d2n−1

2

d∑
i=1

(
⟨|Si|

2nx, x⟩ + ⟨|S∗i |
2nx, x⟩

)
=

d2n−1

2

d∑
i=1

⟨

(
|Si|

2n + |S∗i |
2n
)

x, x⟩

=
d2n−1

2

〈 d∑
i=1

(
|Si|

2n + |S∗i |
2n
)

x, x
〉

≤
d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

(
|Si|

2n + |S∗i |
2n
)∥∥∥∥∥∥∥ .

By taking the supremum over all x ∈ H with ∥x∥ = 1, we get

ω2n

 d∑
i=1

Si

 ≤ d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

(
|Si|

2n + |S∗i |
2n
)∥∥∥∥∥∥∥ . (23)

On the other hand, since Si ∈ BA(H) ⊆ BA1/2 (H) for all i, then by Lemma 3.12, for each i ∈ {1, 2, . . . , d} there
exists a unique S̃i in B(R(A1/2)) such that ZASi = S̃iZA. By taking into account the fact that R(A1/2) is a
complex Hilbert space, then (23) implies that

ω2n

 d∑
i=1

S̃i

 ≤
d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

(
|S̃i|

2n + |S̃i
∗

|
2n
)∥∥∥∥∥∥∥
B(R(A1/2))

.
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Moreover, by using (22) together with Lemma 3.12 (iii), we get

ω2n


d̃∑

i=1

Si

 ≤ d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

( (
(S̃i)∗S̃i

)n
+

(
S̃i(S̃i)∗

)n )∥∥∥∥∥∥∥
B(R(A1/2))

≤
d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

((
S̃♯Ai S̃i

)n

+
(
S̃iS̃
♯A
i

)n)∥∥∥∥∥∥∥
B(R(A1/2))

=
d2n−1

2

∥∥∥∥∥∥∥∥
˜d∑

i=1

((
S♯Ai Si

)n
+

(
SiS
♯A
i

)n
)∥∥∥∥∥∥∥∥
B(R(A1/2))

.

Hence,

ω2n
A

 d∑
i=1

Si

 ≤
d2n−1

2

∥∥∥∥∥∥∥
d∑

i=1

((
S♯Ai Si

)n
+

(
SiS
♯A
i

)n
)∥∥∥∥∥∥∥

A

.

Thus, we complete the proof.

Remark 3.16. The bounds obtained in Theorem 3.13 and Theorem 3.15 are not comparable, in general. Note that if

S♯A S2S = 0, then Theorem 3.13 (d = n = 1) gives, ω4
A(S) ≤ 1

4

∥∥∥∥(S♯A S
)2
+

(
SS♯A

)2∥∥∥∥
A
, whereas Theorem 3.15 (d = 1,

n = 2) gives ω4
A(S) ≤ 1

2

∥∥∥∥(S♯A S
)2
+

(
SS♯A

)2∥∥∥∥
A

. Hence, if S♯A S2S = 0, then the inequality obtained in Theorem 3.13

(d = n = 1) is a refinement of that obtained in Theorem 3.15 (d = 1, n = 2). On the other hand, consider S1 =

(
0 1
0 0

)
and S2 =

(
0 2
0 0

)
. Then Theorem 3.13 (n = 1, d = 2, A = I) gives w2

A(S1 + S2) ≤
√

34, whereas Theorem 3.15 (n = 1,

d = 2, A = I) gives w2
A(S1 + S2) ≤ 5. Thus for this example, the bound obtained in Theorem 3.15 is better than that

obtained in Theorem 3.13.

Finally, we obtain the following result.

Theorem 3.17. Let Si ∈ BA(H) for all i ∈ {1, 2, . . . , d}. Then,

ω2n
A

 d∑
i=1

Si

 ≤ d2n−1

√
2

d∑
i=1

ωA

((
S♯Ai Si

)n
+ i

(
SiS
♯A
i

)n)
,

for all n = 1, 2, 3, . . . .

Proof. Let x ∈ H with ∥x∥ = 1. By using similar arguments to that used in proof of Theorem 3.15, one
observes that∣∣∣∣∣∣∣〈

 d∑
i=1

Si

 x, x
〉∣∣∣∣∣∣∣

2n

≤
d2n−1

2

d∑
i=1

(
⟨|Si|

2nx, x⟩ + ⟨|S∗i |
2nx, x⟩

)
.

Further, we observe that |a + b| ≤
√

2|a + ib| for all a, b ∈ R. By using this inequality, we see that∣∣∣∣∣∣∣〈
 d∑

i=1

Si

 x, x
〉∣∣∣∣∣∣∣

2n

≤
d2n−1

√
2

d∑
i=1

∣∣∣⟨|Si|
2nx, x⟩ + i⟨|S∗i |

2nx, x⟩
∣∣∣

≤
d2n−1

√
2

d∑
i=1

ω
(
|Si|

2n + i|S∗i |
2n
)
.
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Taking the supremum over all x ∈ H with ∥x∥ = 1 gives

ω2n

 d∑
i=1

Si

 ≤ d2n−1

√
2

d∑
i=1

ω
(
|Si|

2n + i|S∗i |
2n
)
. (24)

Now, since Si ∈ BA(H) ⊆ BA1/2 (H) for all i, then by Lemma 3.12, for each i ∈ {1, 2, . . . , d} there exists a unique
S̃i in B(R(A1/2)) such that ZASi = S̃iZA. Due to the fact that R(A1/2) is a complex Hilbert space, then an
application of (24) gives

ω2n

 d∑
i=1

S̃i

 ≤
d2n−1

√
2

d∑
i=1

ω
(
|S̃i|

2n + i|S̃i
∗

|
2n
)
. (25)

So, by using (22) together with Lemma 3.12 (iii), we obtain

ω2n


d̃∑

i=1

S̃i

 ≤
d2n−1

√
2

d∑
i=1

ω
(

˜
(S♯Ai Si)n + i(SiS

♯A
i )n

)
.

Hence, by Lemma 3.12 (ii), we get

ω2n
A

 d∑
i=1

Si

 ≤ d2n−1

√
2

d∑
i=1

ωA

((
S♯Ai Si

)n
+ i

(
SiS
♯A
i

)n
)
,

as required.

The following corollary is an easy consequence of Theorem 3.17.

Corollary 3.18. Let S ∈ BA(H). Then

ω2
A (S) ≤

1
√

2
ωA

(
S♯A S + i SS♯A

)
.

Remark 3.19. Following the proofs of Theorems 3.15 and 3.17, we conclude that, in general, the inequality in Theo-

rem 3.17 is weaker than that in Theorem 3.15. In particular, let n = d = 1, A = I and S =
(
0 1
0 0

)
. Then, Theorem

3.15 gives, ω2
A(S) ≤ 1

2∥S
♯A S + SS♯A∥A = 1

2 , whereas Theorem 3.17 gives ω2
A (S) ≤ 1

√
2
ωA

(
S♯A S + i SS♯A

)
= 1
√

2
. This

example substantiates the fact that the inequality in Theorem 3.15 is better than that in Theorem 3.17.

Acknowledgement. Mr. Pintu Bhunia would like to thank UGC, Govt. of India for the financial support
in the form of Senior Research Fellowship.

References

[1] A. Abu-Omar, F. Kittaneh, Notes on some spectral radius and numerical radius inequalities, Studia Math. 227(2) (2015) 97-109.
[2] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for products and commutators of operators, Houston J. Math. 41(4)

(2015) 1163-1173.
[3] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for products of Hilbert space operators, J. Operator Theory 72:2 (2014)

521-527.
[4] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428(7) (2008) 1460-1475.
[5] M.L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator

Theory 62 (2008) 11-28.
[6] M.L. Arias, G. Corach, M.C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75:3-4 (2009) 635-653.
[7] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl.

555 (2018) 266-284.



P. Bhunia et al. / Filomat 36:4 (2022), 1415–1431 1431

[8] T. Bottazzi, C. Conde, Generalized numerical radius and related inequalities, Oper. Matrices 15 (2021), no. 4, 1289–1308.
[9] P. Bhunia, K. Feki, K. Paul, A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their

applications, Bull. Iranian Math. Soc. 47 (2021) 435-457.
[10] P. Bhunia, K. Paul, R.K. Nayak, On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36 (2020) 143-157.
[11] P. Bhunia, R.K. Nayak, K. Paul, Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (2020)

1498-1511.
[12] L. de Branges, J. Rovnyak, Square Summable Power Series, Holt, Rinehert and Winston, New York, 1966.
[13] M.L. Buzano, Generalizzatione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politech. Torino 31(1971/73)

(1974) 405-409.
[14] C. Conde, K. Feki, On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators, Ricerche mat

(2021). https://doi.org/10.1007/s11587-021-00629-6
[15] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966)

413-416.
[16] S.S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419 (2006)

256-264.
[17] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11 (2020) 929-946.
[18] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (2020) 535-544.
[19] K. Feki, On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603 (2020) 313-328.
[20] K. Feki, Generalized numerical radius inequalities of operators in Hilbert spaces, Adv. Oper. Theory 6, 6 (2021). https://doi.

org/10.1007/s43036-020-00099-x

[21] K. Feki, Some bounds for theA-numerical radius of certain 2 × 2 operator matrices, Hacet. J. Math. Stat. 50(3) (2021) 795-810.
[22] K. Feki, Some A-spectral radius inequalities for A-bounded Hilbert space operators. Banach J. Math. Anal. 16, 31 (2022).

https://doi.org/10.1007/s43037-022-00185-7
[23] K. Feki, Some numerical radius inequalities for semi-Hilbertian space operators, J. Korean Math. Soc., 58 (6) (2021), 1385–1405.
[24] P.R. Halmos, A Hilbert space problems book, Springer Verlag, New York, 1982.
[25] W. Majdak, N.A. Secelean, L. Suciu, Ergodic properties of operators in some semi-Hilbertian spaces, Linear Multilinear Algebra 61:2

(2013) 139-159.
[26] N.C. Rout, S. Sahoo, D. Mishra, Some A-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra

69:5 (2021) 980-996.
[27] N.C. Rout, S. Sahoo, D. Mishra, OnA-numerical radius inequalities for 2×2 operator matrices, Linear Multilinear Algebra (2020).

https://doi.org/10.1080/03081087.2020.1810201

[28] A. Saddi, A-Normal operators in Semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (2012) 1-12.
[29] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, 1979.
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