Recurrence Relations Arising from Confluent Hypergeometric Functions

Abrza Lensari ${ }^{\text {a }}$, Mourad Rahmani ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mathematics, USTHB, PO. Box 32, El Alia, 16111, Algiers, Algeria

Abstract

The aim of this paper is to present some recurrence relations arising from confluent hypergeometric functions. In addition, an explicit closed-form expression for a sequence associated to the hypergeometric series in terms of Bell partition polynomials is proposed. Several examples are given to illustrate our results.

1. Introduction

As usual, $(\lambda)_{n}$ (for $\lambda \in \mathbb{C}$) denotes the Pochhammer symbol defined by

$$
(\lambda)_{n}=\lambda(\lambda+1) \cdots(\lambda+n-1)
$$

with $(\lambda)_{0}=1$. The confluent hypergeometric function $M(a, c, z)$ is defined as [1]

$$
\begin{equation*}
M(a, c, z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \tag{1}
\end{equation*}
$$

which converges for any $z \in \mathbb{C}$, and is defined for any $a \in \mathbb{C}, c \in \mathbb{C}-\{0,-1,-2, \cdots\}$.
It is well-known that $M(a, c, z)$ is the simplest solution of Kummer's differential equation

$$
\begin{equation*}
z y^{\prime \prime}+(c-z) y^{\prime}-a y=0 \tag{2}
\end{equation*}
$$

A second solution of Kummer's differential equation (2) is the Tricomi confluent hypergeometric function $U(a, c, z)$ given by

$$
\begin{equation*}
U(a, c, z)=\frac{\Gamma(1-c)}{\Gamma(a-c+1)} M(a, c, z)+\frac{\Gamma(c-1)}{\Gamma(a)} z^{1-c} M(a-c+1,2-c, z) \tag{3}
\end{equation*}
$$

where $\Gamma(z)$ is the Euler gamma function.
If $\operatorname{Re}(c)>\operatorname{Re}(a)>0$, the confluent hypergeometric function $M(a, c, z)$ can be represented as an integral

$$
\begin{equation*}
M(a, c, z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a))} \int_{0}^{1} e^{z t} t^{a-1}(1-t)^{c-a-1} d t \tag{4}
\end{equation*}
$$

[^0]and, if $\operatorname{Re}(a)>0, U(a, c, z)$ can be obtained by the Laplace integral
\[

$$
\begin{equation*}
U(a, c, z)=\frac{1}{\Gamma(a)} \int_{0}^{+\infty} e^{-z t} t^{a-1}(1+t)^{c-a-1} d t \tag{5}
\end{equation*}
$$

\]

The (exponential) partial Bell partition polynomials $B_{n, k}\left(x_{1}, x_{2}, \ldots\right)$ in an infinite number of variables x_{j}, $(j \geq 1)$, were introduced as a mathematical tool $[2,5,6]$ for representing the n-th derivative of composite function. They are defined by their generating function

$$
\begin{equation*}
\sum_{n=k}^{\infty} B_{n, k}\left(x_{1}, x_{2}, \ldots\right) \frac{z^{n}}{n!}=\frac{1}{k!}\left(\sum_{m=1}^{\infty} x_{m} \frac{z^{m}}{m!}\right)^{k} \tag{6}
\end{equation*}
$$

and are given explicitly by the formula

$$
\begin{equation*}
B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\pi(n, k)} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\frac{x_{1}}{1!}\right)^{k_{1}}\left(\frac{x_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{x_{n}}{n!}\right)^{k_{n}} \tag{7}
\end{equation*}
$$

where

$$
\pi(n, k)=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}: \sum_{i=1}^{n} k_{i}=k, \sum_{i=1}^{n} i k_{i}=n\right\}
$$

An interesting identity is obtained from (6):

$$
\begin{equation*}
B_{n, k}\left(a b x_{1}, a b^{2} x_{2}, \ldots, a b^{n} x_{n}\right)=a^{k} b^{n} B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{8}
\end{equation*}
$$

Now, for appropriate choices of the variables x_{j}, the (exponential) partial Bell partition polynomials can be reduced to some special combinatorial sequences. We will mention the following special cases:

$$
\begin{align*}
& s(n, k)=B_{n, k}(0!,-1!, 2!,-3!, \ldots), \text { (signed) Stirling numbers of the first kind, } \tag{9}\\
& S(n, k)=B_{n, k}(1,1,1, \ldots), \text { Stirling numbers of the second kind. } \tag{10}
\end{align*}
$$

Over the years, generating functions have demonstrated to be a fundamental tool for dealing with mathematical problems, such as in special functions, probability theory and enumerative combinatorics. Recently, many research articles have been devoted to the closed-form expression for the classical sequences (generalized Bernoulli and Euler polynomials [4], Frobenius-Euler polynomials [13, 15], Truncated-exponentialbased Frobenius-Euler polynomials [9], Frobenius-type Eulerian polynomials [14]).

The aim of this paper is to present an explicit closed-form expression for a sequence associated to the hypergeometric series in terms of Bell partition polynomials and to demonstrate that the sequence $\left(A_{n}\right)_{n \geq 0}$ associated to the confluent hypergeometric function

$$
\begin{equation*}
M(a, c, \alpha(z))=\sum_{n=0}^{\infty} A_{n} \frac{z^{n}}{n!}, \tag{11}
\end{equation*}
$$

satisfies the following recurrence relation:

$$
\begin{equation*}
\mathcal{A}_{0, m}=1, \quad \mathcal{A}_{n+1, m}=\sum_{k=0}^{n}\binom{n}{k} v_{n-k+1}\left(\mathcal{A}_{k, m}-\frac{c+m-a}{c+m} \mathcal{A}_{k, m+1}\right) \tag{12}
\end{equation*}
$$

with

$$
\alpha(z)=\sum_{n=0}^{\infty} v_{n} \frac{z^{n}}{n!}, \quad v_{0}=0
$$

More precisely, if we construct an infinite matrix $(\mathcal{A})_{n, m \geq 0}$ with the initial sequence given by $\mathcal{A}_{0, m}=1$, and each entry is given by (12). Then the first column of the matrix is $\mathcal{A}_{n, 0}=A_{n}$.

2. Recurrence relation for $M(a, c, \alpha(z))$

First, we have obtained the following result.
Theorem 2.1. The sequence $\left(A_{n}\right)_{n \geq 0}$ associated to the confluent hypergeometric $M(a, c, \alpha(z))$ is given explicitly by

$$
\begin{equation*}
A_{0}=1, A_{n}=\sum_{k=1}^{n} \frac{(a)_{k}}{(c)_{k}} B_{n, k}\left(v_{1}, v_{2}, \ldots, v_{n-k+1}\right) \tag{13}
\end{equation*}
$$

with

$$
\alpha(z)=\sum_{n=0}^{\infty} v_{n} \frac{z^{n}}{n!}, \quad v_{0}=0 .
$$

Proof. It is easily derived directly from the Faà di Bruno formula [6, Theorem A, pp. 137].
As consequence of the last result, we give alternative proofs to some explicit sequences arising from confluent hypergeometric functions.

Example 2.2. The exponential polynomials $\phi_{n}(x)$ are defined by means of the following generating function

$$
\exp \left(x\left(e^{z}-1\right)\right)=\sum_{n=0}^{\infty} \phi_{n}(x) \frac{z^{n}}{n!},
$$

and, can be represented as $M\left(a, a, x\left(e^{z}-1\right)\right)$.
From (13), (8) and (10), we obtain the well-known explicit formula for $\phi_{n}(x)$

$$
\begin{aligned}
\phi_{n}(x) & =\sum_{k=0}^{n} B_{n, k}(x, x, \ldots, x) \\
& =\sum_{k=0}^{n} B_{n, k}(1,1, \ldots, 1) x^{k} \\
& =\sum_{k=0}^{n} S(n, k) x^{k} .
\end{aligned}
$$

Example 2.3. The H-Cauchy numbers C_{n}^{k} are defined by the following generating function [8, 10]

$$
\frac{1}{k!} M(1, k+1, \ln (1+z))=\sum_{n=0}^{\infty} C_{n}^{(k)} \frac{z^{n}}{n!}
$$

or, equivalently,

$$
C_{n}^{(k)}=n!\int_{0}^{1} d x_{k} \int_{0}^{x_{k}} d x_{k-1} \cdots \int_{0}^{x_{2}}\binom{x_{1}}{n} d x_{1}
$$

Since

$$
\ln (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!\frac{z^{n}}{n!}
$$

we get

$$
C_{n}^{(k)}=\frac{1}{k!} \sum_{l=0}^{n} \frac{(1)_{l}}{(k+1)_{l}} B_{n, l}(0!,-1!, 2!, \ldots)
$$

Now, from (9), we have obtained the explicit formula for $C_{n}^{(k)}$

$$
C_{n}^{(k)}=\sum_{l=0}^{n} \frac{l!}{(l+k)!} S(n, l) .
$$

Example 2.4. The Gould-Hopper generalized Hermite polynomials $g_{n}^{m}(x, h),(m>0)$ are defined by the following generating function (see [7, 12])

$$
M\left(1,1, x z+h z^{m}\right)=\sum_{n=0}^{\infty} g_{n}^{m}(x, h) \frac{z^{n}}{n!}
$$

From (13), we get

$$
g_{n}^{m}(x, h)=1+\sum_{k=1}^{n} B_{n, k}(x, 0, \ldots, m!h, 0, \ldots, 0)
$$

Using (7), we get

$$
\begin{aligned}
g_{n}^{m}(x, h) & =1+\sum_{k=1}^{n}\left(\sum_{k_{1}+k_{2}=k, k_{1}+m k_{2}=n} \frac{n!}{k_{1}!k_{2}!}\left(\frac{x}{1!}\right)^{k_{1}}\left(\frac{m!h}{m!}\right)^{k_{2}}\right) \\
& =1+\sum_{k_{1}+m k_{2}=n} \frac{n!}{k_{1}!k_{2}!} x^{k_{1}} h^{k_{2}} \\
& =\sum_{k=0}^{[n / m]} \frac{n!}{(n-m k)!k!} x^{n-m k} h^{k} .
\end{aligned}
$$

By setting $m=2, h=-1$ and $x:=2 x$ in the above formula, we obtain the explicit formula for the classical Hermite polynomials.

In order to derive the recurrence relations for $M(a, c, \alpha(z))$, we suppose that

$$
\begin{equation*}
f_{m}(z):=\sum_{n=0}^{\infty} \mathcal{A}_{n, m} \frac{z^{n}}{n!}=M(a, c+m, \alpha(z)) \tag{14}
\end{equation*}
$$

where m is any non-negative integer and

$$
\begin{equation*}
\alpha(z)=\sum_{n=0}^{\infty} v_{n} \frac{z^{n}}{n!}, \tag{15}
\end{equation*}
$$

with $v_{0}=0$.
By differentiation (4) with respect to z, we obtain

$$
\frac{d}{d z} f_{m}(z)=\frac{\Gamma(c+m)}{\Gamma(a) \Gamma(c-a+m)}\left(\frac{d}{d z} \alpha(z)\right) \int_{0}^{1} t e^{\alpha(z) t}(1-t)^{c+m-a-1} t^{a-1} d t
$$

Thus,

$$
\begin{aligned}
& \frac{d}{d z} f_{m}(z)=\frac{d}{d z} \alpha(z) \frac{\Gamma(c+m)}{\Gamma(a) \Gamma(c-a+m)} \int_{0}^{1} e^{\alpha(z) t}(1-t)^{c+m-a-1} t^{a-1} d t \\
& \quad-\frac{d}{d z} \alpha(z) \frac{\Gamma(c+m)}{\Gamma(a) \Gamma(c-a+m)} \int_{0}^{1} e^{\alpha(z) t}(1-t)^{c+m-a} t^{a-1} d t
\end{aligned}
$$

and, we get

$$
\frac{d}{d z} f_{m}(z)=\frac{d}{d z} \alpha(z)\left(f_{m}(z)-\frac{c+m-a}{c+m} f_{m+1}(z)\right)
$$

This in turn leads to

$$
\sum_{n=0}^{\infty} \mathcal{A}_{n+1, m} \frac{z^{n}}{n!}=\left(\sum_{n=0}^{\infty} v_{n+1} \frac{z^{n}}{n!}\right) \sum_{n=0}^{\infty}\left(\mathcal{A}_{n, m}-\frac{c+m-a}{c+m} \mathcal{A}_{n, m+1}\right) \frac{z^{n}}{n!} .
$$

Applying the Cauchy product, we get

$$
\sum_{n=0}^{\infty} \mathcal{A}_{n+1, m} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} v_{n-k+1}\left(\mathcal{A}_{k, m}-\frac{c+m-a}{c+m} \mathcal{A}_{k, m+1}\right)\right) \frac{z^{n}}{n!} .
$$

Equating the coefficients of $\frac{z^{n}}{n!}$ in both sides of the last expression, we may therefore state:
Theorem 2.5. The sequence $\left(A_{n}\right)_{n \geq 0}$ associates to the exponential generating function $M(a, c, \alpha(z))$ satisfies the following recurrence relation

$$
\begin{align*}
& \mathcal{A}_{0, m}=1, \\
& \mathcal{A}_{n+1, m}=\sum_{k=0}^{n}\binom{n}{k} v_{n-k+1}\left(\mathcal{A}_{k, m}-\frac{c+m-a}{c+m} \mathcal{A}_{k, m+1}\right), \tag{16}
\end{align*}
$$

with

$$
\mathcal{A}_{n, 0}:=A_{n} .
$$

In particular, for $\alpha(z)=z$, we derive the following recurrence relations for the solution of Kummer's differential equation.
Corollary 2.6. The sequence associates to the exponential generating function $M(a, c, z)$ satisfies the following recurrence relation

$$
\begin{equation*}
\mathcal{A}_{0, m}=1, \quad \mathcal{A}_{n+1, m}=\mathcal{A}_{n, m}-\frac{c+m-a}{c+m} \mathcal{A}_{n, m+1}, \tag{17}
\end{equation*}
$$

with

$$
\mathcal{A}_{n, 0}:=\frac{(a)_{n}}{(c)_{n}} .
$$

Remark 2.7. If $v_{0} \neq 0$ in (15), then, the sequence $\left(A_{n}\right)_{n \geq 0}$ satisfies (16), with the initial sequence is given by $\mathcal{A}_{0, m}=M(a, c+m, \alpha(0))$.
Remark 2.8. The confluent hypergeometric function $M\left(a, c, \alpha\left(z_{0}\right)\right)$ can be computed as power series. We use the following procedure : define

$$
S_{N}=\sum_{i=0}^{N} A_{i} \frac{z_{0}^{i}}{i!},
$$

where A_{i} was computed using (16). For $n \geq 0$, let

$$
\begin{aligned}
& Z_{0}=1, Z_{n+1}=\frac{Z_{0}}{n+1} Z_{n} \\
& T_{n}=A_{n} Z_{n}
\end{aligned}
$$

Then $S_{0}=A_{0}$ and, for $n>0$, use the recurrence relationship to compute

$$
S_{n+1}=S_{n}+T_{n+1} .
$$

The process stop with $\left|\frac{T_{m+1}}{S_{m}}\right|<\varepsilon$ and return S_{m}.

Example 2.9. The generating function of Hermite polynomials $H_{n}(x)$ can be expressed as

$$
M\left(1,1,2 x z-z^{2}\right)=\sum_{n=0}^{\infty} H_{n}(x) \frac{z^{n}}{n!}
$$

In view of (16), we present the following algorithm for $H_{n}(x)$: we start with the sequence $\mathcal{H}_{0, m}=1$ as the first row of the matrix $\left(\mathcal{H}_{n, m}\right)_{n, m \geq 0}$. Each entry is determined recursively by

$$
\mathcal{H}_{n+1, m}=2 x\left(\mathcal{H}_{n, m}-\frac{m}{m+1} \mathcal{H}_{n, m+1}\right)-2 n\left(\mathcal{H}_{n-1, m}-\frac{m}{m+1} \mathcal{H}_{n-1, m+1}\right) .
$$

Then

$$
H_{n}(x):=\mathcal{H}_{n, 0}
$$

where $\mathcal{H}_{n, 0}$ are the first column of the matrix $\left(\mathcal{H}_{n, m}\right)_{n, m \geq 0}$.
Example 2.10. The generating function of exponential polynomials $\phi_{n}(x)$ can be expressed as

$$
M\left(1,1, x\left(e^{z}-1\right)\right)=\sum_{n=0}^{\infty} \phi_{n}(x) \frac{z^{n}}{n!}
$$

In view of (16), we obtain

$$
\mathcal{A}_{0, m}=1, \quad \mathcal{A}_{n+1, m}=x \sum_{k=0}^{n}\binom{n}{k}\left(\mathcal{A}_{k, m}-\frac{m}{m+1} \mathcal{A}_{k, m+1}\right)
$$

Then

$$
\phi_{n}(x):=\mathcal{A}_{n, 0} .
$$

3. Recurrence relation for $U(a, c, \alpha(z))$

In the present section, we derive a similar recurrence formula for $U(a, c, \alpha(z))$. Unlike Kummer's function which is an entire function of $z, U(a, c, \alpha(z))$ usually has a singularity at zero. If $a=-N$ with $N \in \mathbb{N}$, $U(a, c, \alpha(z))$ is a polynomial in z. In this case, letting

$$
\begin{equation*}
g_{m}(z):=\sum_{n=0}^{\infty} \mathcal{B}_{n, m} \frac{z^{n}}{n!}=U(a, c+m, \alpha(z)), \tag{18}
\end{equation*}
$$

By differentiation (5) with respect to z, we get

$$
\frac{d}{d z} g_{m}(z)=-\frac{1}{\Gamma(a)} \frac{d}{d z} \alpha(z) \int_{0}^{+\infty} e^{-\alpha(z) t} t^{a-1}(1+t)^{c-a+m} d t+\frac{1}{\Gamma(a)} \frac{d}{d z} \alpha(z) \int_{0}^{+\infty} e^{-\alpha(z) t} t^{a-1}(1+t)^{c-a-1+m} d t
$$

And so, we obtain

$$
\frac{d}{d z} g_{m}(z)=\frac{d}{d z} \alpha(z)\left(g_{m}(z)-g_{m+1}(z)\right)
$$

Applying some series manipulations, we get

$$
\sum_{n=0}^{\infty} \mathcal{B}_{n+1, m} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} v_{n-k+1}\left(\mathcal{B}_{k, m}-\mathcal{B}_{k, m+1}\right)\right) \frac{z^{n}}{n!}
$$

Upon equating the coefficients of $\frac{z^{n}}{n!}$, we get the following Theorem.

Theorem 3.1. The sequence $\left(B_{n}\right)_{n \geq 0}$ associates to the exponential generating function $U(a, c, \alpha(z))$ satisfies the following recurrence relation

$$
\begin{aligned}
& \mathcal{B}_{0, m}=U(a, c+m, \alpha(0)), \\
& \mathcal{B}_{n+1, m}=\sum_{k=0}^{n}\binom{n}{k} v_{n-k+1}\left(\mathcal{B}_{k, m}-\mathcal{B}_{k, m+1}\right),
\end{aligned}
$$

with $\mathcal{B}_{n, 0}=B_{n}$.
Example 3.2. The generalized Laguerre polynomials $L_{N}^{\gamma}(z)$ can be written as

$$
L_{N}^{\gamma}(x)=\frac{(-1)^{N}}{N!} U(-N, \gamma+1, z)
$$

In view of Theorem 3.1, we obtain

$$
\mathcal{L}_{0, m}=(-1)^{N}(\gamma+1+m)_{N}, \quad \mathcal{L}_{n+1, m}=\mathcal{L}_{n, m}-\mathcal{L}_{n, m+1} .
$$

Then

$$
L_{N}^{\gamma}(z)=\frac{(-1)^{N}}{N!} \sum_{k=0}^{N} \mathcal{L}_{k, 0} \frac{z^{k}}{k!}
$$

Remark 3.3. If $v_{0}=0$ and $\operatorname{Re}(c+m)<1$ then $\mathcal{B}_{0, m}=\frac{\Gamma(1-(c+m))}{\Gamma(a-(c+m)+1)}$.

4. Generalized hypergeometric function

It is well-known that a generalized hypergeometric series is a power series of the form

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

where p and q are nonnegative integers.
In this notation, the confluent hypergeometric function $M(a, c, z)$ and Tricomi confluent hypergeometric function $U(a, c, z)$ are

$$
\begin{aligned}
& M(a, c, z)={ }_{1} F_{1}(a ; c ; z), \\
& U(a, c, z)=z^{-a}{ }_{2} F_{0}\left(a, 1+a-c ;-;-\frac{1}{z}\right) .
\end{aligned}
$$

Theorem 2.1, can be extended as follows:
Theorem 4.1. The sequence $\left(G_{n}\right)_{n \geq 0}$ associated to the generalized hypergeometric series

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \alpha(z)\right)=\sum_{n=0}^{\infty} G_{n} \frac{z^{n}}{n!}
$$

is given explicitly by

$$
\begin{equation*}
G_{0}=1, G_{n}=\sum_{k=1}^{n} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} B_{n, k}\left(v_{1}, v_{2}, \ldots, v_{n-k+1}\right) \tag{19}
\end{equation*}
$$

with

$$
\alpha(z)=\sum_{n=0}^{\infty} v_{n} \frac{z^{n}}{n!}, \quad v_{0}=0
$$

Example 4.2. The Bernoulli polynomials $\mathfrak{B}_{n}(x)$ are defined by the following generating function

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{n=0}^{\infty} \mathfrak{B}_{n}(x) \frac{z^{n}}{n!}
$$

and can be expressed as [11]

$$
\sum_{n=0}^{\infty} \mathfrak{B}_{n}(x) \frac{z^{n}}{n!}={ }_{2} F_{1}\left(1,1 ; 2 ; 1-e^{z}\right) e^{x z}
$$

It follows from (19), (8) and (10) that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathfrak{B}_{n}(x) \frac{z^{n}}{n!} & =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} \frac{(1)_{i}(1)_{i}}{(2)_{i}} B_{n, i}(-1,-1, \ldots,-1)\right) \frac{z^{n}}{n!} \sum_{n=0}^{\infty} x^{n} \frac{z^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}(-1)^{i} \frac{i!}{i+1} S(n, i)\right) \frac{z^{n}}{n!} \sum_{n=0}^{\infty} x^{n} \frac{z^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} \sum_{i=0}^{k}(-1)^{i} \frac{i!}{i+1} S(k, i) x^{n-k}\right) \frac{z^{n}}{n!} .
\end{aligned}
$$

Comparing coefficients, we obtain

$$
\begin{aligned}
\mathfrak{B}_{n}(x) & =\sum_{k=0}^{n}\binom{n}{k} \sum_{i=0}^{k}(-1)^{i} \frac{i!}{i+1} S(k, i) x^{n-k} \\
& =\sum_{i=0}^{n}(-1)^{i} \frac{i!}{i+1} \sum_{k=0}^{n}\binom{n}{k} S(k, i) x^{n-k} .
\end{aligned}
$$

Since

$$
\begin{aligned}
S_{n}^{k}(x) & =\frac{1}{k!} \Delta^{k} x^{n} \\
& =\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(x+j)^{n} \\
& =\sum_{j=0}^{n}\binom{n}{j} S(j, k) x^{n-j},
\end{aligned}
$$

this reduces to

$$
\mathfrak{B}_{n}(x)=\sum_{i=0}^{n}(-1)^{i} \frac{i!}{i+1} S_{n}^{i}(x)
$$

Example 4.3. For $\lambda \in \mathbb{C}$ with $\lambda \neq 1$, the Frobenius-Euler numbers $H_{n}^{(\alpha)}(\lambda)$ of order $\alpha \in \mathbb{C}$ are defined by the following generating function [13]

$$
\left(\frac{1-\lambda}{e^{z}-\lambda}\right)^{\alpha}=\sum_{n=0}^{\infty} H_{n}^{(\alpha)}(\lambda) \frac{z^{n}}{n!} .
$$

It is not difficult to verify that

$$
\left(\frac{1-\lambda}{e^{z}-\lambda}\right)^{\alpha}={ }_{1} F_{0}\left(\alpha ;-; \frac{e^{z}-1}{\lambda-1}\right) .
$$

It follows that

$$
H_{0}^{(\alpha)}(\lambda)=1, \quad H_{n}^{(\alpha)}(\lambda)=\sum_{k=1}^{n}(\alpha)_{k} B_{n, k}\left(\frac{1}{\lambda-1}, \ldots, \frac{1}{\lambda-1}\right)
$$

Using (8) and (10), we get

$$
\begin{equation*}
H_{n}^{(\alpha)}(\lambda)=\sum_{k=0}^{n} \frac{(\alpha)_{k}}{(\lambda-1)^{k}} S(n, k) \tag{20}
\end{equation*}
$$

By substituting $\lambda=-1$ into (20), we obtain a known result for Euler numbers of order α

$$
E_{n}^{(\alpha)}=\sum_{k=0}^{n} \frac{(-1)^{k}}{2^{k}}(\alpha)_{k} S(n, k)
$$

The results obtained above can be generalized for the polynomials case

$$
H_{n}^{(\alpha)}(x \mid \lambda)=\sum_{k=0}^{n} \frac{(\alpha)_{k}}{(\lambda-1)^{k}} S_{n}^{k}(x),
$$

where $H_{n}(x \mid \lambda)$ are defined by

$$
\left(\frac{1-\lambda}{e^{z}-\lambda}\right)^{\alpha} e^{x z}=\sum_{n=0}^{\infty} H_{n}(x \mid \lambda) \frac{z^{n}}{n!}
$$

Example 4.4. The Lerch polynomials $\Phi_{n}^{(\lambda)}(x)$ of order λ are defined by the following ordinary generating function [3]

$$
\frac{1}{(1-x \ln (1+z))^{\lambda}}=\sum_{n=0}^{\infty} \Phi_{n}^{(\lambda)}(x) z^{n}
$$

Since

$$
\frac{1}{(1-x \ln (1+z))^{\lambda}}={ }_{1} F_{0}(\lambda ;-; x \ln (1+z)),
$$

we have

$$
\begin{aligned}
n!\Phi_{n}^{(\lambda)}(x) & =1+\sum_{k=1}^{n}(\lambda)_{k} B_{n, k}(-0!x, 1!x,-2!x, \ldots) \\
& =\sum_{k=0}^{n}(\lambda)_{k} s(n, k) x^{k} .
\end{aligned}
$$

It follows that

$$
\Phi_{n}^{(\lambda)}(x)=\sum_{k=0}^{n} \frac{(\lambda)_{k}}{n!} s(n, k) x^{k}
$$

Acknowledgements

The authors are grateful to referees for their careful reading, suggestions and valuable comments which have improved the paper substantially.

References

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] E. T. Bell, Exponential polynomials, Ann. Math. 35 (1934) 258-277.
[3] R. P. Boas Jr., R. C. Buck, Polynomial Expansions of Analytic Functions, Academic Press, New York, NY, USA, 1964.
[4] M. A. Boutiche, M. Rahmani, H. M. Srivastava, Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math. 14(2) (2017) Art. 89 1-10.
[5] C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[6] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Dordrecht, 1974.
[7] H. W. Gould, A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29 (1962) 51-63.
[8] Y. Komori, A. Yoshihara, Cauchy numbers and polynomials associated with hypergeometric Bernoulli numbers, J. Comb. Number Theory 9 (2017) 123-142.
[9] W. Kumam, H. M. Srivastava, S. A. Wani, S. Araci, P. Kumam, Truncated-exponential-based Frobenius-Euler polynomials, Adv. Difference Equ. (2019) Art. 530, 1-12.
[10] M. Rahmani, On p-Cauchy numbers, Filomat 30 (2016) 2731-2742.
[11] M. Rahmani, On p-Bernoulli numbers and polynomials, J. Number Theory 157 (2015) 350-366.
[12] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., Chichester; Halsted Press (John Wiley and Sons, Inc.), New York, 1984.
[13] H. M. Srivastava, M. A. Boutiche, M. Rahmani, Some explicit formulas for the Frobenius-Euler polynomials of higher order, Appl. Math. Inf. Sci. 11 (2017) 621-626.
[14] H. M. Srivastava, M. A. Boutiche, M. Rahmani, A class of Frobenius-type Eulerian polynomials. Rocky Mountain J. Math 48 (2018) 1003-1013.
[15] Y. He, S. Araci, H. M. Srivastava, Summation formulas for the products of the Frobenius-Euler polynomials, Ramanujan J. 44 (2017) 177-195.

[^0]: 2020 Mathematics Subject Classification. Primary 33C15, 33C20; Secondary 11B83, 65D20.
 Keywords. Bell partition polynomials, confluent hypergeometric functions, recurrence relations.
 Received: 03 May 2021; Revised: 25 October 2021; Accepted: 09 November 2021
 Communicated by Hari M. Srivastava
 Email addresses: lansari.abraza@gmail.com (Abrza Lensari), mourad.rahmani@usthb.edu.dz (Mourad Rahmani)

