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Abstract. The aim of this study is to present the concept of an (L,M)-fuzzy (E,K)-soft bornology as a
parameterized extension of the LM-valued bornology. By this way, we describe the notions of boundedness
and the parameterized degree of boundedness for L-fuzzy soft sets. We examine several fundamental
properties of the proposed structures. In addition, we induce a (2,M)-fuzzy (E,K)-soft bornology in a given
(2,M)-fuzzy (E,K)-soft topological space with the help of the measures of compactness of a soft set.

1. Introduction

Since Molodtsov [18] introduced the soft set theory to overcome some of the difficulties involving
the parametrization process in handling uncertainties, many researchers have applied soft set theory in
different directions [3, 7, 24, 25]. In 2001, Maji et al.[17] proposed the fuzzy soft set theory which is the
combination of fuzzy set and soft set theories. Later, many researchers focused on the theory of fuzzy soft
sets and they applied this theory to their own branches such as algebra, topology, decision making and so
on [4, 5, 8, 9, 21].

General topology, with its emphasis on neighborhoods, entourages, and proximity, primarily deals with
local phenomena. Through the years, there have been attempts to build frameworks to discuss macroscopic
phenomena and their interplay with topology. Bounded sets described in metric spaces play an important
role in some applications, but in general topological spaces, the notion of a ”bounded set” makes no sense
by the absence of the distance function. Hence in order to identify bounded sets independently from the
distance function, a structure named bornology (or so called abstract boundedness), has been constructed by
Hu [15]. And hence, Hu’s work opened a new perspective to discuss macroscopic phenomena in general
topological spaces. According to this definition a bornology is a collection of sets which satisfies some
certain conditions: closed for finite unions, closed hereditary and contains all singletons. The sets which
belong to a bornology are called as the bounded sets of the space. The families CL(X),F(X) and K(X) of all
nonempty closed, all nonempty finite and all nonempty compact subsets of a Hausdorff topological space
X, the family of all (totally) bounded subsets of a metric or uniform space are examples of boundedness. At
present the theory of bornological spaces is developed in various directions. Most of the research involving
bornologies is done in the context of topological linear spaces [14] and in topological algebras, that is in case
when the underlying set, in addition to topology, is endowed with a certain algebraic structure. Maio and
Kočinac [12] studied the notion of boundedness in a topological space and demonstrated the importance

2020 Mathematics Subject Classification. Primary 03G10; Secondary 03E72, 54A05
Keywords. Boundedness, bornology, bounded soft mapping, fuzzy soft set
Received: 29 April 2021; Revised: 29 August 2021; Accepted: 01 October 2021
Communicated by Ljubiša D.R. Kočinac
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of this notion in selection principles theory. Caserta et al. [6] investigated some properties of the function
spaces endowed with bornologies in the view of selection principles. Abel and Šostak [1] proposed the
notion of an L-bornology which is a family of L-fuzzy sets satisfies some certain conditions. Hence they
described the concept of classical boundedness for L-fuzzy sets. Later, Šostak and Uljane [22, 23] studied the
fuzzy-crisp and fuzzy-fuzzy approaches of the bornologies named as L-valued bornology and LM-valued
bornology, respectively. Paseka et al. [19] concerned and studied some categorical properties of the Abel
and Šostak’s fuzzy bornology.

The main intention of the present paper is to handle the soft interpretation of bornological spaces and
also shed light to the way of describing boundedness in parameterized spaces. This paper is arranged in
the following manner. In section 2, we recall some basic notions and notations for fuzzy soft sets. In Section
3, we describe the notions of (E,K)-soft L-bornology and (L,M)-fuzzy (E,K)-soft bornology. We investigate
the relations between these notions and we also study fundamental features of the (L,M)-fuzzy (E,K)-soft
bornological spaces. We introduce bounded fuzzy soft mappings and construct a category of such spaces.
In Section 4, we induce a (2,M)-fuzzy (E,K)-soft bornology in a (2,M)-fuzzy (E,K)-soft topological space by
using the measures of parameterized compactness of a soft set in the corresponding space.

2. Preliminaries

In our work two lattices L and M, will play the fundamental role. The first one is a complete DeMorgan
algebra L = (L,≤,∧,∨,′ ), satisfying the infinite distributivity law

α ∧ (
∨
i∈I

βi) =
∨
i∈I

(α ∧ βi),∀α ∈ L, {βi}i∈I ⊂ L.

The top and the bottom elements of L are denoted by 1L and 0L, respectively. By M we denote the
complete completely distributive lattice M = (M,≤,∧,∨) whose the bottom and the top elements are
denoted by 0M and 1M, respectively. For a complete lattice M and α, β ∈ M, the wedge-below relation C is
defined on M as follows: β C α⇔ if K ⊆M and α ≤

∨
K then ∃γ ∈ K, β ≤ γ.

As shown in [20] a lattice M is completely distributive if and only if the wedge-below relation has the
following property, α =

∨
{β ∈M | β C α}, for each α ∈M.

An element α in M is said to be coprime if α ≤ β ∨ γ implies that α ≤ β or α ≤ γ. The set of all nonzero
coprime elements of M is denoted by c(M). We also denote Mo = {α ∈ M | α C 1M}. For more details about
the lattices, we refer [13, 20].

Throughout this work, X refers to a nonempty initial universe and E denotes an arbitrary nonempty set
viewed on the sets of parameters.

The parameterized extension of an L-fuzzy set is called an L-fuzzy soft set and it is defined as follows.

Definition 2.1. ([21]) An L-fuzzy soft set ( f ,E) over the universe X with the set of parameters E is defined
by the set of ordered pairs

( f ,E) = {(e, fe) : e ∈ E, fe := f (e) ∈ LX
},

where f : E→ LX, is a mapping. Hence, for an L-fuzzy soft set ( f ,E) it is clear that f ∈ (LX)E.

The notation FS(X,E) denotes the family of all L-fuzzy soft sets on X with the set of parameters E.

Definition 2.2. ([21]) Let ( f ,E) and (1,E) be two L-fuzzy soft sets on X, then

(1) we say that ( f ,E) is an L-fuzzy soft subset of (1,E) and write ( f ,E) v (1,E) if fe ≤ 1e, for each e ∈ E.
( f ,E) and (,E)1 are called equal if ( f ,E) v (1,E) and (1,E) v ( f ,E).

(2) the union of ( f ,E) and (1,E) is an L-fuzzy soft set (h,E) = ( f ,E) t (1,E), where he = fe ∨ 1e, for each
e ∈ E.

(3) the intersection of ( f ,E) and (1,E) is an L-fuzzy soft set (h,E) = ( f ,E) u (1,E), where he = fe ∧ 1e, for
each e ∈ E.
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(4) the complement of an L-fuzzy soft set ( f ,E) is denoted by ( f ,E)′ = ( f ′,E), where f ′ : E → LX is a
mapping given by f ′e = ( fe)′, for each e ∈ E. Clearly ( f ′,E)′ = ( f ,E).

Definition 2.3. ([21])

(1) (Null L-fuzzy soft set) An L-fuzzy soft set ( f ,E) on X is called a null L-fuzzy soft set and denoted by
0̃, if fe(x) = 0, for each e ∈ E, x ∈ X.

(2) (Absolute L-fuzzy soft set) An L-fuzzy soft set ( f ,E) on X is called an absolute L-fuzzy soft set and
denoted by 1̃, if fe(x) = 1, for each e ∈ E, x ∈ X. Clearly (̃1)′ = 0̃ and 0̃′ = 1̃.

Proposition 2.4. ([2]) Let ∆ be an index set and ( f ,E), ( fi,E), (1i,E) ∈ FS(X,E), for all i ∈ ∆. Then the following
properties are satisfied.

(1) ( f ,E) u

⊔
i∈∆

(1i,E)

 =
⊔
i∈∆

(
( f ,E) u (1i,E)

)
and ( f ,E) t

�
i∈∆

(1i,E)

 =
�
i∈∆

(
( f ,E) t (1i,E)

)
.

(2)

�
i∈∆

( fi,E)


′

=
⊔
i∈∆

( f ′i ,E) and

⊔
i∈∆

( fi,E)


′

=
�
i∈∆

( f ′i ,E).

Definition 2.5. ([4, 16]) Let ( f ,E1) and (1,E2) be two L-fuzzy soft sets over X1 and X2, respectively. A
fuzzy soft mapping between FS(X1,E1) and FS(X2,E2) is a pair (ϕ,ψ), denoted also by simply ϕψ, of crisp
mappings ϕ : X1 → X2 and ψ : E1 → E2 such that:

(1) The image of ( f ,E1) under ϕψ is an L-fuzzy soft set over X2, defined by

ϕψ(( f ,E1))k(y) =
∨
ϕ(x)=y

∨
ψ(a)=k

fa(x), for all k ∈ E2, y ∈ X2.

(2) The pre-image of (1,E2) under ϕψ is an L-fuzzy soft set over X1, defined by

ϕ−1
ψ ((1,E2))e(x) = 1ψ(e)(ϕ(x)), for all e ∈ E1, x ∈ X1.

If ϕ and ψ are both injective (or surjective), then ϕψ is said to be injective (or surjective).

Proposition 2.6. ([16]) Let ( fi,E1) ∈ FS(X1,E1) and (1i,E2) ∈ FS(X2,E2) for all i ∈ Γ, where Γ is an index set. Then
the following properties are satisfied.

(1) ϕψ
(⊔

i∈Γ( fi,E1)
)

=
⊔

i∈Γ ϕψ(( fi,E1)).

(2) ϕψ
(�

i∈Γ( fi,E1)
)
v
�

i∈Γ ϕψ(( fi,E1)), the equality holds if ϕψ is injective.

(3) ϕ−1
ψ

(⊔
i∈Γ(1i,E2)

)
=

⊔
i∈Γ ϕ

−1
ψ ((1i,E2)) and ϕ−1

ψ

(�
i∈Γ(1i,E2)

)
=
�

i∈Γ ϕ
−1
ψ ((1i,E2)).

3. Boundedness in the fuzzy soft universe

In this section, we describe the notions of ”boundedness” and ”the parameterized degree of bounded-
ness” for L-fuzzy soft sets. In order to achieve this goal, we define the parameterized extensions of the
L-bornology and LM-valued bornology in the framework of mathematics of fuzzy sets. Besides, we observe
some elementary features of the (L,M)-fuzzy (E,K)-soft bornological spaces.

Definition 3.1. A parameterized family B = {Bk}k∈K of mappings Bk : FS(X,E) → 2 is called an (E,K)-soft
L-bornology if it satisfies the following conditions.

(B1)
⊔
{( f ,E) ∈ FS(X,E) | ( f ,E) ∈ Bk} = 1̃.
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(B2) If ( f ,E) ∈ Bk and (1,E) v ( f ,E), then (1,E) ∈ Bk.

(B3) If ( f1,E), ( f2,E) ∈ Bk, then ( f1,E) t ( f2,E) ∈ Bk.

Then the pair (X,B) is said to be an (E,K)-soft L-bornological space. If ( f ,E) ∈ Bk, then the L-fuzzy soft set
( f ,E) is called a bounded L-fuzzy soft set with respect to the parameter k ∈ K.

Definition 3.2. A mappingB : K→MFS(X,E) is called an (L,M)-fuzzy (E,K)-soft bornology on X if it satisfies
the following conditions.

(SB1) ∀α ∈Mo,∀k ∈ K,∃U ⊆ FS(X,E) s.t.
⊔
U = 1̃ and Bk(( f ,E)) ≥ α,∀( f ,E) ∈ U.

(SB2) If ( f ,E) v (1,E), then Bk(( f ,E)) ≥ Bk((1,E)), for all k ∈ K.

(SB3) Bk(( f ,E) t (1,E)) ≥ Bk(( f ,E)) ∧ Bk((1,E)), for all ( f ,E), (1,E) ∈ FS(X,E), k ∈ K.

Then the pair (X,B) is called an (L,M)-fuzzy (E,K)-soft bornological space and the value Bk(( f ,E)) is
interpreted as the parameterized degree of boundedness of an L-fuzzy soft set ( f ,E) in this space.

One can prefer to consider the following stronger version of the first axiom:
(SB1∗)

⊔
{( f ,E) ∈ FS(X,E) | Bk(( f ,E)) = 1M} = 1̃, ∀k ∈ K.

The mapping B : K → MFS(X,E) which satisfies the axioms (SB1∗), (SB2) and (SB3) is said to be a strong
(L,M)-fuzzy (E,K)-soft bornology on X.

Remark 3.3. (1) In case when both parameter sets are one-point, then we come to the definition of an
LM-valued bornology [23].

(2) If the parameter sets are both singletons and if besides M = 2, then we return to the definition of an
L-bornology [1].

(3) If the parameter sets are both singletons and if besides L = 2, then we return to the definition of an
M-valued bornology [22].

(4) If the parameter sets are both singletons and if besides L = M = 2, then we return to the original
definition of a bornology [15].

(5) If the parameter set K is singleton, then we get the crisp bornologies for the soft and the fuzzy soft
sets.

(6) If the parameter set E is singleton, then we get the soft bornologies for the crisp and L-fuzzy sets [11].
In the light of the above discussion, one may conclude that (L,M)-fuzzy (E,K)-soft bornology definition

is the general case of all proposed boundedness types given not only for the crisp but also for the fuzzy
universes.

Remark 3.4. It is noted that if B = {Bk}k∈K is an (E,K)-soft L-bornology on X, then the mapping B : K →
2FS(X,E) defined by B(k) := Bk = χBk is an (L, 2)-fuzzy (E,K)-soft bornology on X, where

χBk ((h,E)) =

1, if (h,E) ∈ Bk,
0, if (h,E) < Bk.

Example 3.5. Let K = {k1, k2, k3},E be a non-empty set and define a family of mappings B = {Bk}k∈K as follows:
Bk1 (( f ,E)) = 1,∀( f ,E) ∈ SS(X,E), Bk2 = {( f ,E) ∈ SS(X,E) | |( f ,E)| = supe∈E | f (e)| < n, for some n ∈ N} and
Bk3 = {( f ,E) ∈ SS(X,E) | |(F,E)| < ℵ0}, where SS(X,E) = {( f ,E) | f : E→ 2X

}denotes the set of all soft sets over
X with the set of parameters E. Since the parameterized family B = {Bk}k∈K of mappings Bk : SS(X,E)→ 2 is
an (E,K)-soft 2-bornology on X, then Bk = χBk is an (2, 2)-fuzzy (E,K)-soft bornology on X.
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Example 3.6. Let L = {(0, 0), (1, 1)} ∪ {(a, 0), (0, b), (a, a) | a, b ∈ (0, 1)} and let the relation ” ≤ ” on the set L be
defined by (m, b) ≤ (n, d) if and only if m ≤ n and b ≤ d.
Define an order reversing involution ′ : L→ L as follows:

For each x, y ∈ (0, 1), (x, 0)′ = (1 − x, 0), (0, y)′ = (0, 1 − y), (x, x)′ = (1 − x, 1 − x) and (1, 1)′ = (0, 0).
Then (L,≤,′ ) is a complete DeMorgan algebra. Let X = {x, y},E = (0, 0.5],L = M and fe(x) = fe(y) = (e, 0),
1e(x) = 1e(y) = (0, e) for each e ∈ E.
Define a mapping B : E→MFS(X,E) as follows:

Be((h,E)) =


(e, 0), if (h,E) = ( f ,E)
(0, e), if (h,E) = (1,E)
(1, 1), otherwise

.

Then the mapping B is an (L,M)-fuzzy (E,E)-soft bornology on X.

Example 3.7. Let L = {0, a, b, 1} be a diamond-type lattice with the order reversing involution ′ : L → L
defined by 0′ = 1, 1′ = 0, a′ = a and b′ = b. Then (L,≤,′ ) is a completely distributive DeMorgan algebra.
Let K = {k1, k2}, X = {x, y},E = {1, 2} and ( f ,E), (1,E) be two L-fuzzy soft sets defined by follows: f1(x) =
f1(y) = a, f2(x) = f2(y) = b and 11(x) = 11(y) = b, 12(x) = 12(y) = a. Define a mapping B : {k1, k2} → LFS(X,E) as
follows:

Bk1 ((h,E)) =


a, if (h,E) = ( f ,E) or (h,E) v ( f ,E)
b, if (h,E) = (1,E) or (h,E) v (1,E)
0, if (h,E) w ( f ,E) or (h,E) w (1,E)
1, otherwise

and Bk2 ((h,E)) = 1, for all (h,E) ∈ FS(X,E).

Then the mapping B is an (L,L)-fuzzy (E,K)-soft bornology on X.

Definition 3.8. LetLbe a subset of FS(X,E) that is closed under finite unions, then the mappingD : K→ML

is said to be an (L,M)-fuzzy (E,K)-soft bornology base if the followings are satisfied.

(1) ∀α ∈Mo,∀k ∈ K,∃U ⊆ L s.t.
⊔
U = 1̃ andDk(( f ,E)) ≥ α,∀( f ,E) ∈ U.

(2) Dk(( f ,E) t (1,E)) ≥ Dk(( f ,E)) ∧Dk((1,E)), for each ( f ,E), (1,E) ∈ L and for each k ∈ K.

Proposition 3.9. Let D : K → ML be an (L,M)-fuzzy (E,K)-soft bornology base on X. Then the mapping 〈D〉 :
K → MFS(X,E) defined by 〈D〉k(( f ,E)) =

∨
{Dk((1,E)) | (1,E) ∈ L, ( f ,E) v (1,E)} is an (L,M)-fuzzy (E,K)-soft

bornology on X.

Proof. (SB1) Ir is evident.
(SB2) Let ( f ,E), (1,E) ∈ FS(X,E) and k ∈ K be chosen. Then it is evident that
〈D〉k(( f ,E)) =

∨
{Dk((h,E)) | ( f ,E) v (h,E)} ≥

∨
{Dk((h,E)) | (1,E) v (h,E)} = 〈D〉k((1,E)).

(SB3) 〈D〉k(( f1,E) t ( f2,E)) =
∨
{Dk((1,E)) | (( f1,E) t ( f2,E)) v (1,E)}

=
∨
{Dk((11,E) t (12,E) | ( fi,E) v (1i,E), i = 1, 2)}

≥
∨
{Dk((11,E)) ∧Dk((12,E)) | ( fi,E) v (1i,E), i = 1, 2}

≥
∨
{Dk((11,E)) | ( f1,E) v (11,E)} ∧

∨
{Dk((12,E)) | ( f2,E) v (12,E)}

= 〈D〉k(( f1,E)) ∧ 〈D〉k(( f2,E)), for each k ∈ K.

Definition 3.10. Let (X1,B1) and (X2,B2) be an (L,M)-fuzzy (E1,K1)-soft and an (L,M)-fuzzy (E2,K2)-soft
bornological spaces, respectively. Then the fuzzy soft mapping ϕψ,η : (X1,B1) → (X2,B2) is said to be
bounded if B1

k(( f ,E1)) ≤ B2
η(k)(ϕψ(( f ,E1))) for all ( f ,E1) ∈ FS(X1,E1) and for all k ∈ K1.

Here ϕ : X1 → X2, ψ : E1 → E2 and η : K1 → K2 are crisp functions.

Proposition 3.11. Composition of two bounded fuzzy soft mappings is bounded, too.

Proof. The proof is evident.
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Example 3.12. Let B1 be the discrete (L,M)-fuzzy (E,K)-soft bornology on X, that is B1
k(( f ,E)) = 1M, for all

( f ,E) ∈ FS(X,E) and for all k ∈ K. Let us consider the identity fuzzy soft mapping (idX)(idE,idK) : (X,B1) →
(X,B2), where B2 is the (L,M)-fuzzy (E,K)-soft bornology given in Example 3.6. Since B1

e (( f ,E)) = (1, 1) �
(e, 0) = B2

e (ϕψ(( f ,E))), for some e ∈ E, the mapping (idX)(idE,idK) : (X,B1)→ (X,B2) is not bounded as different
from (idX)(idE,idK) : (X,B2)→ (X,B1) that is a bounded fuzzy soft mapping.

It is also easily seen that the identity fuzzy soft mapping (idX)(idE,idK) : (X,B)→ (X,B) is bounded, where
(X,B) is any (L,M)-fuzzy (E,K)-soft bornology. Hence (L,M)-fuzzy (E,K)−soft bornological spaces and
bounded fuzzy soft mappings between them form a category which is denoted by SBOR(L,M,E,K).

Proposition 3.13. Let B : K → MFS(X,E) (where, Bk ::= B(k) : FS(X,E) → M are mappings for all k ∈ K) be an
(L,M)-fuzzy (E,K)-soft bornology on X and α ∈ M, then the family Bα = {Bαk }k∈K of mappings Bαk : FS(X,E) → 2
which are defined by, Bαk = {( f ,E) ∈ FS(X,E) | Bk(( f ,E)) ≥ α} is an (E,K)-soft L-bornology on X, for each k ∈ K.

Proof. The proof can be easily verified by the construction of the level bornologies and by the axioms of
Definition 3.2. In addition the collection of α-levels {Bα | α ∈ c(M)} of an (L,M)-fuzzy (E,K)-soft bornology
is lower semi-continuous in the following sense:
B
α
k =

⋂
{B

β
k | β C α, β ∈M}, for each α ∈ c(M) and for all k ∈ K,

where B0M
k = FS(X,E) as the intersection of the empty-set. Hence each (L,M)-fuzzy (E,K)-soft bornology

B can be characterized by the lower semi-continuous decomposition into the level soft bornologies by for
each k ∈ K; {Bαk =

∨
βCαB

β
k | α ∈ c(M)}.

Now, let us consider the converse as follows.

Proposition 3.14. Let {Dα
| α ∈ c(M)} be an indexed family of (E,K)-soft L-bornologies on X, such that α ≤ β

impliesDβ
k ⊆ D

α
k , for each k ∈ K. Then the mapping B : K→MFS(X,E) defined by

Bk(( f ,E)) =
∨
{α ∈ c(M) | ( f ,E) ∈ Dα

k }, for all f ∈ FS(X,E) and k ∈ K,
is an (L,M)-fuzzy (E,K)-soft bornology on X.

Proof. Since each Dα = {Dα
k }k∈K satisfies the axioms of Definition 3.1, then

⊔
D
α
k = 1̃ for any k ∈ K. Hence

the axiom (SB1) is ensured by the construction.
(SB2) Let ( f ,E), (1,E) ∈ FS(X,E) be given such that ( f ,E) v (1,E), and k ∈ K be fixed. Then we have
Bk(( f ,E)) =

∨
{α ∈ c(M) | ( f ,E) ∈ Dα

k } ≥
∨
{α ∈ c(M) | (1,E) ∈ Dα

k } = Bk((1,E)).
(SB3) Let ( f ,E), (1,E) ∈ FS(X,E) and k ∈ K be given. Let α := Bk(( f ,E)) ∧ Bk((1,E)). We need to show that
Bk(( f ,E)t(1,E)) ≥ β for all βCα. Sinceα ≤ Bk(( f ,E)) andα ≤ Bk((1,E)), for each βCα, there existsγ1, γ2 ∈ c(M)
such that β ≤ γ1 ∧ γ2 and ( f ,E) ∈ Dγ1

k , (1,E) ∈ Dγ2

k . By the hypothesis, we get ( f ,E), (1,E) ∈ Dβ
k , and hence

( f ,E) t (1,E) ∈ Dβ
k . This witnesses the following inequality Bk(( f ,E) t (1,E)) ≥ Bk(( f ,E)) ∧ Bk((1,E)).

Proposition 3.15. Bαk =
⋂
{D

β
k | β ∈ c(M), β C α}, for each α ∈M and k ∈ K.

Proof. Let k ∈ K be a fixed parameter and ( f ,E) ∈ FS(X,E) be given such that ( f ,E) < Bαk . Then there exists

β ∈ c(M) with β C α such that ( f ,E) ∈ Dk(β), and hence ( f ,E) <
⋂
{D

β
k | β ∈ c(M), β C α}. This proves that

B
α
k ⊆

⋂
{D

β
k | β ∈ c(M), β C α} and hence also the equality Bαk =

⋂
{D

β
k | β ∈ c(M), β C α} since the converse

inequality is clear from the construction of the (L,M)-fuzzy (E,K)-soft bornology B.
a given indexed collection of (E,K)-soft L-bornologies {Dα

| α ∈ c(M)} (where Dα = {Dα
k : FS(X,E) →

2}k∈K) on X, let the mapping B : K → MFS(X,E) be the (L,M)-fuzzy (E,K)-soft bornology described as
above. Let us define a new indexed collection of (E,K)-soft L-bornologies {D

α
| α ∈ M} by describing

D
α

k :=
⋂
{D

β
k | βCα, β ∈ c(M)}, for any k ∈ K. Let the mappingB : K→MFS(X,E) be the (L,M)-fuzzy (E,K)-soft

bornology which is defined by follows:
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Bk(( f ,E)) =
∨
{α ∈M | ( f ,E) ∈ D

α

k }, for all ( f ,E) ∈ FS(X,E) and k ∈ K.
Then for each α ∈M and k ∈ K, we have

B
α

k =
⋂

βCα,β∈M

D
β

k =
⋂

γCβ,γ∈c(M)

⋂
βCα

D
β
k

 =
⋂

γCα,γ∈c(M)

D
γ
k = Bαk .

As a result, we have that B = B.

Definition 3.16. Let B(L,M,E,K,X) be the family of all (L,M)-fuzzy (E,K)-soft bornologies on X. Define a
partial order ” � ” by setting for B1,B2

∈ B(L,M,E,K,X) :
B

1
� B

2 :⇔ B1
k(( f ,E)) ≥ B2

k(( f ,E)) for all k ∈ K and ( f ,E) ∈ FS(X,E).
In this case, we say that B1 is coarser (or stronger) than B2, or B2 is said to be finer than B1.

Proposition 3.17. The partially ordered set (B(L,M,E,K,X),�) is a complete lattice.

Proof. The mapping B⊥ : K → MFS(X,E) which is described as B⊥k (( f ,E)) = 1M for each ( f ,E) ∈ FS(X,E) and
k ∈ K, is an (L,M)-fuzzy (E,K)-soft bornology on X. Besides it is obvious that B⊥ is the coarsest element of
B(L,M,E,K,X). Now let us identify the finest element of the B(L,M,E,K,X). Let S ⊆ X and α : E→ c(L) be
given, where c(L) denotes the set of all coprimes of L. Define Pt(S, β) = {

∨
x∈S xβ | x ∈ S}, for all β ∈ c(L) and

define a fuzzy soft set P : E→ FS(X,E); P(e) ∈ Pt(S, α(e)). Here xβ denotes a fuzzy point which is defined by

xβ(y) =

β, if y = x
0L, if y , x

, for some β ∈ c(L).

Then the mapping B> : K→MFS(X,E) defined by

B
>

k (( f ,E)) =

1M, if ∃S ⊆ X, |S| < ℵ0,∃P : E→ Pt(S, β) for some β ∈ c(L) such that ( f ,E) v (P,E),
0M, otherwise

is the finest (L,M)-fuzzy (E,K)-soft bornology in B(L,M,E,K,X). Further for a given family of {Bi :
K → MFS(X,E)

| i ∈ Γ} of (L,M)-fuzzy (E,K)-soft bornologies on X, define a mapping B∗ : K → MFS(X,E) by
setting B∗k(( f ,E)) =

∧
i∈ΓB

i
k(( f ,E)) for all ( f ,E) ∈ FS(X,E) and k ∈ K. Then the mapping B∗ is an (L,M)-fuzzy

(E,K)-soft bornology on X. Since the first two axioms of Definition 3.2 are easy to verify, we only check the
third axiom:
(SB3) Let ( f ,E), (1,E) ∈ FS(X,E) and k ∈ K be given. Then we have
B
∗

k(( f ,E) t (1,E)) =
∧
i∈I

B
i
k(( f ,E) t (1,E)) ≥

∧
i∈I

(Bi
k(( f ,E)) ∧ Bi

k((1,E))) = (
∧
i∈I

B
i
k(( f ,E))) ∧ (

∧
i∈I

B
i
k((1,E))) =

B
∗

k(( f ,E)) ∧ B∗k((1,E)).
By the construction we see that the mapping B∗ = gi∈IB

i is the least upper bound of the family
{B

i : K → MFS(X,E)
| i ∈ Γ} in B(L,M,E,K,X). Hence it is a complete join semi-lattice. Now let us build the

greatest lower bound of the family {Bi : K→MFS(X,E)
| i ∈ Γ} in B(L,M,E,K,X) by follows:

fi∈IB
i = gi∈I{B ∈ B(L,M,E,K,X) | Bk ≤

∧
i∈I

B
i
k,∀k ∈ K}.

Theorem 3.18. Let ϕψ,η : (X1,B1) → (X2,B2) be a fuzzy soft mapping, where the (L,M)-fuzzy (E1,K1)-soft
bornology B1 is an induced fuzzy soft bornology from an (L,M)-fuzzy (E1,K1)-soft bornology base D on X1. Then
the mapping ϕψ,η is bounded if and only ifDk(( f ,E1)) ≤ B2

η(k)(ϕψ(( f ,E1))) for all k ∈ K1 and ( f ,E1) ∈ FS(X1,E1).

Proof. Let ϕψ,η : (X1,B1)→ (X2,B2) be a bounded fuzzy soft mapping. Then B1
k(( f ,E1)) ≤ B2

η(k)(ϕψ(( f ,E1))),
for all k ∈ K1 and ( f ,E1) ∈ FS(X1,E1). Then from Proposition 3.9, it is easy to see that Dk((1,E1)) ≤
B

2
η(k)(ϕψ((1,E1))) for all k ∈ K1 and (1,E1) ∈ L ⊆ FS(X1,E1). For the converse implication, take k ∈ K1 and

( f ,E1) ∈ FS(X1,E1), then we have
B

1
k(( f ,E1)) =

∨
{Dk((1,E1)) | (1,E1) ∈ L, ( f ,E1) v (1,E1)}

≤
∨
{B

2
η(k)(ϕψ((1,E1))) | (1,E1) ∈ L, ϕψ(( f ,E1)) v ϕψ((1,E1))}

≤
∨
{B

2
η(k)((h,E2)) | (h,E2) ∈ L∗ ⊆ FS(X2,E2), ϕψ( f ,E1) v (h,E2)} = B2

η(k)(ϕψ(( f ,E1))).
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Theorem 3.19. Letϕψ,η : (X1,E1,K1)→ (X2,E2,K2,B2) be a fuzzy soft mapping, where (X2,B2) is an (L,M)-fuzzy
(E2,K2)-soft bornology and η : K1 → K2 is a surjective crisp function. Let L := {( f ,E1) = ϕ−1

ψ ((1,E2)) | (1,E2) ∈
FS(X2,E2)}. Then the mapping D : K1 → ML which is defined by Dk(( f ,E1)) = B2

η(k)((1,E2)), is an (L,M)-fuzzy
(E1,K1)-soft bornology base on X1. In addition, the induced (L,M)-fuzzy (E1,K1)-soft bornology B1 = 〈D〉 is the
coarsest (L,M)-fuzzy (E1,K1)-soft bornology on X1 for which ϕψ,η : (X1,B1)→ (X2,B2) is bounded.

Proof. (1) Let α ∈Mo and k ∈ K1 be given. Then since B2 is a fuzzy soft bornology on X2, then there exists a
familyV = {(1λ,E2) | λ ∈ Λ} ⊆ (LX2 )E2 such that

⊔
λ∈Λ(1λ,E2) = 1̃ and B2

η(k)((1λ,E2)) ≥ α, for each λ ∈ Λ. Let

U = {( fλ,E1) | ( fλ,E1) = ϕ−1
ψ ((1λ,E2)), (1λ,E2) ∈ V}. ThenDk(( fλ,E1)) ≥ α for each λ ∈ Λ and also it is easily

seen that
⊔
λ∈Λ( fλ,E1) =

⊔
λ∈Λ ϕ

−1
ψ ((1λ,E2)) = ϕ−1

ψ (
⊔
λ∈Λ(1λ,E2)) = ϕ−1

ψ (̃1) = 1̃.

(2) Let ( f1,E1) = ϕ−1
ψ ((11,E2)), ( f2,E1) = ϕ−1

ψ ((12,E2)) and k ∈ K1 be chosen. Then we have
Dk(( f1,E1)) ∧ Dk(( f2,E1)) = B2

η(k)((11,E2)) ∧ B2
η(k)((12,E2)) ≤ B2

η(k)((11,E2) t (12,E2)) = Dk(ϕ−1
ψ ((11,E2) t

(12,E2))) = Dk(( f1,E1) t ( f2,E1)) is satisfied by the equality of ϕ−1
ψ ((11,E2) t (12,E2)) = ϕ−1

ψ ((11,E2)) t
ϕ−1
ψ ((12,E2)).

From the above theorem and by the construction of B1, the fuzzy soft mapping ϕψ,η : (X1,B1 = 〈D〉)→
(X2,B2) is bounded.

Theorem 3.20. Let ϕψ,η : (X1,E1,K1,B1) → (X2,E2,K2) be a surjective fuzzy soft mapping, where (X1,B1) is
an (L,M)-fuzzy (E1,K1)-soft bornological space. Then the mapping B : K2 → MFS(X2,E2) which is defined by
Bη(k)((1,E2)) = B1

k(ϕ−1
ψ ((1,E2))) is an (L,M)-fuzzy (E2,K2)-soft bornology on X2. BesidesB is the finest (L,M)-fuzzy

(E2,K2)-soft bornology on X2 for which ϕψ,η is bounded.

Proof. (SB1) Let α ∈ Mo and k∗ ∈ K2 be given. Since η is surjective there exists k ∈ K1 such that k∗ = η(k).
Since B1 is a fuzzy soft bornology on X1, then there exists a familyU ⊆ FS(X1,E1) such that B1

k(( f ,E1)) ≥ α
for every ( f ,E1) ∈ U and

⊔
( f ,E1)∈U( f ,E1) = 1̃. For each ( f ,E1) ∈ U, let (1 f ,E2) = ϕψ(( f ,E1)) and let V =

{(1 f ,E2) | ( f ,E1) ∈ U}. Then⊔
{(1 f ,E2) | ( f ,E1) ∈ U} =

⊔
{ϕψ(( f ,E1)) | ( f ,E1) ∈ U} = ϕψ(

⊔
{( f ,E1) | ( f ,E1) ∈ U}) = ϕψ (̃1) = 1̃.

So, by the definition of B, for each (1 f ,E2) ∈ V, it is provided that Bη(k)((1 f ,E2)) = B1
k(ϕ−1

ψ ((1,E1))) =

B
1
k(ϕ−1

ψ (ϕψ(( f ,E1)))) = B1
k(( f ,E1)) ≥ α.

(SB2) It is easy to verify by the definition of the mapping B.
(SB3) Let (11,E2), (12,E2) ∈ (LX2 )E2 and k∗ ∈ K2 such that k∗ = η(k), for some k ∈ K1. Then we have
Bη(k)((11,E2)t(12,E2)) = B1

k(ϕ−1
ψ (((11,E2)t(12,E2)))) = B1

k(ϕ−1
ψ ((11,E2))tϕ−1

ψ ((12,E2))) ≥ B1
k(ϕ−1

ψ ((11,E2)))∧
B

1
k(ϕ−1

ψ ((12,E2))) = Bη(k)((11,E2)) ∧ Bη(k)((12,E2)).
From the construction of the mapping B, it is easy to verify that B is the finest (L,M)-fuzzy (E2,K2)-soft

bornology on X2 for which the fuzzy soft mapping ϕψ,η : (X1,B1)→ (X2,B) is bounded.

4. Relations between parameterized degree of compactness and boundedness

In this section, we build a (2,M)-fuzzy (E,K)-soft bornology in a given (2,M)-fuzzy (E,K)-soft topological
space by using the concept of the measures of compactness.

Definition 4.1. ([10]) Let τ : K → MFS(X,E) be a map and (1,E) ∈ FS(X,E). Define such a map comτ : K →
MFS(X,E) as follows.

comτ(k, (1,E)) =
∧

U⊆FS(X,E)

[τk(U) ≤ [[(1,E)ṽ
∨
U] ≤

∨
V∈2(U)

[(1,E)ṽ
∨
V]]]

If (X, τ) is an (L,M)-fuzzy (E,K)-soft topological space, then the value comτ(k, (1,E)) is called the com-
pactness degree of (1,E) with respect to the parameter k. So (1,E) is said to be compact L-fuzzy soft set
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with respect to k if comτ(k, (1,E)) = 1M. In this manner, the compactness degree of (1,E) in the whole space
(X, τ) is computed by the value comτ((1,E)) =

∧
k∈K comτ(k, (1,E)). So the L-fuzzy soft set (1,E) is said to be

compact in the fuzzy soft space (X, τ) if comτ((1,E)) = 1M.

Here, the inclusion [ ṽ ] : FS(X,E) × FS(X,E)→ L is described by [( f ,E)ṽ(1,E)] =
∧
x∈X

∧
e∈E

( f ′e (x) ∨ 1e(x))

Theorem 4.2. ([10]) Let (X, τ) be an (L,M)-fuzzy (E,K)-soft topological space and (1,E), (h,E) ∈ FS(X,E). Then
the following inequality is satisfied for each k ∈ K,

comτ(k, (1,E) t (h,E)) ≥ comτ(k, (1,E)) ∧ comτ(k, (h,E)).

Theorem 4.3. ([10]) Let ϕψ,η : (X1, τ1) → (X2, τ2) be a continuous fuzzy soft mapping between (L,M)-fuzzy
(E1,K1)-soft and (L,M)-fuzzy (E2,K2)-soft topological spaces. Then for each k ∈ K1 and (1,E1) ∈ FS(X1,E1), we have
comτ1 (k, (1,E1)) ≤ comτ2 (η(k), ϕψ((1,E1))).

Theorem 4.4. Let (X, τ) be a (2,M)-fuzzy (E,K)-soft topological space. Then the mappingBτ : K→MSS(X,E) which
is defined by follows:
B
τ
k (( f ,E)) =

∨
{comτ(k, (1,E)) | ( f ,E) v (1,E), (1,E) ∈ SS(X,E)}

satisfies the following properties.

(1) Bτk (Px
e ) = 1M, for all Px

e ∈ SP(X) and for all k ∈ K.

(2) If ( f ,E) v (1,E), then Bτk (( f ,E)) ≥ Bτk ((1,E)), for all ( f ,E), (1,E) ∈ SS(X,E) and for all k ∈ K.

(3) Bτk (( f ,E) t (1,E)) ≥ Bτk (( f ,E)) ∧ Bτk ((1,E)), for all ( f ,E), (1,E) ∈ SS(X,E) and for all k ∈ K.

Here SS(X,E) = {( f ,E) | f : E → 2X
} denotes the set of all soft sets over X with the set of parameters E and

SP(X) = {Px
e : E → 2X

| Px
e (e)(x) = {x} and otherwise Px

e (.)(.) = ∅,∀e ∈ E, x ∈ X} denotes the set of all soft points
over X.

Proof. (1) By Definition 4.1, for a fixed parameter k ∈ K, the compactness degree comτ(k,Px
e ) = 1M for any

soft point Px
e ∈ SP(X). So, it is obvious that Bτk (Px

e ) ≥ comτ(k,Px
e ) = 1M for any Px

e ∈ SP(X) and for any k ∈ K.
(2) It is obvious by the construction.
(3) It is easily obtained by Theorem 4.2 and the construction of the mapping Bτ.

In the light of the above theorem, we may conclude that the mapping Bτ : K → MSS(X,E) defined as a
way of above, is a (2,M)-fuzzy (E,K)-soft bornology on X.

Proposition 4.5. If ϕψ,η : (X1, τ1)→ (X2, τ2) is a continuous fuzzy soft mapping between (2,M)-fuzzy (E1,K1)-soft
and (2,M)-fuzzy (E2,K2)-soft topological spaces, then ϕψ,η : (X1,Bτ1 )→ (X2,Bτ2 ) is fuzzy soft bounded.

Proof. Let k ∈ K1 and ( f ,E) ∈ SS(X1,E1) be given arbitrary. Then by Theorem 4.3, we have
B
τ1

k (( f ,E1)) =
∨
{comτ1 (k, (1,E1)) | ( f ,E1) v (1,E1), (1,E1) ∈ SS(X1,E1)}

≤
∨
{comτ2 (η(k), ϕψ((1,E1))) | ( f ,E1) v (1,E1), (1,E1) ∈ SS(X1,E1)}

≤
∨
{comτ2 (η(k), (h,E2)) | ϕψ(( f ,E1)) v (h,E2), (h,E2) ∈ SS(X2,E2)}

= Bτ2
η(k)(ϕψ(( f ,E1))).

This witnesses the boundedness of the fuzzy soft mapping ϕψ,η.

Hence we get a functor F : STOP(2,M,E,K) → SBOR(2,M,E,K) from the category of (2,M)-fuzzy
(E,K)-soft topological spaces to (2,M)-fuzzy (E,K)-soft bornological spaces by defining F(X, τ) = (X,Bτ)
and F(ϕψ,η) = ϕψ,η.
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5. Conclusion

General bornological spaces play a key role in recent research of convergence structures on hyperspaces,
in optimization theory and in the study of topologies on function spaces. On the other hand, most of the
fundamental classical structures are extended now to the soft and the fuzzy soft universes by using the
parametrization tool. In order to make a contribution to these investigations, we intended to develop
counterparts of the theory of bornologies in the framework of soft and fuzzy soft sets. To achieve this
goal, we provided the concept of an (L,M)-fuzzy (E,K)-soft bornology and by this way, we described the
”parameterized degree of boundedness” for L-fuzzy soft sets. Furthermore, we studied some elementary
properties of the proposed concept.

In conclude, we hope that the results presented in this research will open a new perspective for applied
sciences. For further research, we plan to apply the notion of soft boundedness to the selection principles
theory.

Acknowledgements
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