On the Inequality $w(A B) \leq c\|A\| w(B)$ where A is a Positive Operator

El Hassan Benabdi ${ }^{\text {a }}$, Abderrahim Baghdad ${ }^{\text {b }}$, Mohamed Chraibi Kaadoud ${ }^{\text {b }}$, Mohamed Barraa ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Laboratory of Mathematics, Statistics and Applications, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
${ }^{b}$ Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad, Marrakesh, Morocco

Abstract

Abu-Omar and Kittaneh [Numerical radius inequalities for products of Hilbert space operators, J. Operator Theory 72(2) (2014),521-527], wonder what is the smallest constant c such that $w(A B) \leq c\|A\| w(B)$ for all bounded linear operators A, B on a complex Hilbert space with A is positive. Here, $w(\cdot)$ stands for the numerical radius. In this paper, we prove that $c=\frac{3 \sqrt{3}}{4}$.

1. Introduction

Let \mathcal{H} denote a complex Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denotes the induced norm. Let $\mathcal{B}(\mathcal{H})$ denote the collection of all bounded linear operators acting on \mathcal{H}. For $T \in \mathcal{B}(\mathcal{H})$, the numerical range of T is given by

$$
W(T)=\{\langle T x, x\rangle: x \in \mathcal{H} \text { and }\|x\|=1\} .
$$

It is known that $W(T)$ is a nonempty bounded convex subset (not necessarily closed) of the complex plane. To measure the location and relative size of $W(T)$, one frequently used quantity; numerical radius of T. It is denoted and given by

$$
w(T)=\sup \{|\lambda|: \lambda \in W(T)\}
$$

It is well-known that

$$
\begin{equation*}
\frac{1}{2}\|T\| \leq w(T) \leq\|T\| \tag{1}
\end{equation*}
$$

for all $T \in \mathcal{B}(\mathcal{H})$, that is $w(\cdot)$ defines an equivalent norm to $\|\cdot\|$ on $\mathcal{B}(\mathcal{H})$. Also, it is a basic fact that the norm $w(\cdot)$ is self-adjoint (i.e., $w\left(T^{*}\right)=w(T)$ for all $T \in \mathcal{B}(\mathcal{H})$ where T^{*} is the adjoint of T). For more material about the numerical radius and other information on the basic theory of numerical range, we refer the reader to [3].

[^0]The problem of the numerical radius of a product of operators consists in finding the best constant c, which satisfies the following inequality

$$
\begin{equation*}
w(A B) \leq c\|A\| w(B) \tag{2}
\end{equation*}
$$

where $A, B \in \mathcal{B}(\mathcal{H})$ satisfy some given conditions. It follows readily from the inequalities (1) that if $A, B \in \mathcal{B}(\mathcal{H})$, then

$$
\begin{equation*}
w(A B) \leq 2\|A\| w(B) \tag{3}
\end{equation*}
$$

The constant 2 in the inequality (3) is the best possible. Indeed, the sharpness of the inequality (3) is evident by taking $A:=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B:=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. The question of whether, when A and B commute,

$$
\begin{equation*}
w(A B) \leq\|A\| w(B) \tag{4}
\end{equation*}
$$

was open for about twenty years. In [4], Müller proved by a counterexample that the inequality (4) fails to be true. The related question of the best constants for the inequality (2) for commuting A and B has also been considered (see [5]), the best known result is that $1<c \leq \frac{1}{2} \sqrt{2+2 \sqrt{3}}$. In [1], Abu-Omar and Kittaneh wonder what is the smallest constant c such that the inequality

$$
w(A B) \leq c\|A\| w(B)
$$

holds for all $A, B \in \mathcal{B}(\mathcal{H})$ with A is positive(i.e., $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$). They proved that $\sqrt{5}-1 \leq c \leq 3 / 2$.
In this paper, we prove that for any $A, B \in \mathcal{B}(\mathcal{H})$ with A is positive, we have

$$
w(A B) \leq \frac{3 \sqrt{3}}{4}\|A\| w(B)
$$

Moreover, we show by giving an example, that the constant $\frac{3 \sqrt{3}}{4}$ is the smallest possible.

2. Main result

In order to prove our result, we need the following lemma.
Lemma 2.1. Let A, B be two 2×2 matrices with A is positive non-invertible. Then

$$
w(A B) \leq \frac{3 \sqrt{3}}{4}\|A\| w(B)
$$

Proof. Without loss of generality we may assume that $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $b=0$, then $A B=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$ and $w(A B)=|a|=\left\langle B\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\rangle \leq w(B)$ and we are done.
Therefore, suppose that $b \neq 0$. We may assume that $|b|=1$ and $a \geq 0$. So, $A B=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$, and then $w(A B)=\frac{a+\sqrt{a^{2}+1}}{2}$ (see, [2]). If $1 \leq a$, we have

$$
w(A B) \leq \frac{1+\sqrt{2}}{2} a \leq \frac{1+\sqrt{2}}{2} w(B)
$$

Let $0 \leq a<1$. According to [6],

$$
\begin{aligned}
w(B) & =\sup _{\theta \in \mathbb{R}}\left\|\operatorname{Re}\left(e^{i \theta} B\right)\right\| \\
& =\sup _{\theta \in \mathbb{R}} \frac{\left|\operatorname{Re}\left(e^{i \theta} a\right)+\operatorname{Re}\left(e^{i \theta} d\right)\right|+\sqrt{\left(\operatorname{Re}\left(e^{i \theta} a\right)-\operatorname{Re}\left(e^{i \theta} d\right)\right)^{2}+\left|e^{i \theta} b+e^{-i \theta} \bar{c}\right|^{2}}}{2} \\
& \geq \sup _{\theta \in \mathbb{R}} \sqrt{a^{2} \cos ^{2} \theta+\frac{1}{4}\left|e^{i \theta} b+e^{-i \theta} \bar{c}\right|^{2}} \\
& =w\left(\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]\right) .
\end{aligned}
$$

We claim that for any scalar c there is $\theta \in \mathbb{R}$ such that

$$
\left(1+a^{2}\right)^{2} \leq 4 a^{2} \cos ^{2} \theta+\left|1+e^{-2 i \theta} \bar{c}\right|^{2}
$$

If $a^{2} \leq|c|$, the result follows immediately. Now let $|c|<a^{2}$, then $\left|1+e^{-2 i \theta} \bar{c}\right| \geq 1-a^{2}$, hence by taking $\theta=0$ we have $\left(1+a^{2}\right)^{2}=4 a^{2}+\left(1-a^{2}\right)^{2} \leq 4 a^{2}+|1+\bar{c}|^{2}$. Our claim is then proved. It follows that $\frac{a^{2}+1}{2} \leq w\left(\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]\right) \leq w(B)$ and since $\frac{a+\sqrt{a^{2}+1}}{a^{2}+1} \leq \frac{3 \sqrt{3}}{4}$ for all $0 \leq a<1$, we derive that

$$
w(A B)=\frac{a+\sqrt{a^{2}+1}}{2}=\frac{a+\sqrt{a^{2}+1}}{a^{2}+1} \frac{a^{2}+1}{2} \leq \frac{3 \sqrt{3}}{4} w(B)
$$

as desired.
Now, we are ready to state and prove our main result.
Theorem 2.2. Let $A, B \in \mathcal{B}(\mathcal{H})$ with A is positive. Then

$$
\begin{equation*}
w(A B) \leq \frac{3 \sqrt{3}}{4}\|A\| w(B) \tag{5}
\end{equation*}
$$

Moreover, the constant $\frac{3 \sqrt{3}}{4}$ is the smallest possible.
Proof. We prove that for all unit vector $x \in \mathcal{H}$, we have

$$
|\langle A B x, x\rangle| \leq \frac{3 \sqrt{3}}{4}\|A\| w(B)
$$

Let $x \in \mathcal{H}$ be a unit vector. We may assume that x and $B x$ are linearly independent. Otherwise, $|\langle A B x, x\rangle| \leq$ $w(A) w(B)=\|A\| w(B)$. Therefore, let y be the subspace spanned by x and $B x$, and let P be the orthogonal projection of \mathcal{H} on \mathcal{y}. Put $\lambda:=\langle B x, x\rangle, \beta:=\|B x-\langle B x, x\rangle x\|$ and $y:=\frac{1}{\beta}(B x-\lambda x)$. Then $\{y, x\}$ is an orthonormal basis of \boldsymbol{y}. We identify the operators PAP and PBP with their restrictions to y. With respect to the basis $\{y, x\}, P A P$ and $P B P$ may be represented by the matrices $\left[\begin{array}{ll}a & b \\ \bar{b} & c\end{array}\right]$ and $\left[\begin{array}{ll}u & \beta \\ v & \lambda\end{array}\right]$, respectively, where u, v, a, b and c are scalars. Since $P A P$ is positive, the scalars a and c are non-negative. Furthermore, we may assume that $c \neq 0$, otherwise $b=0$ (reason: $a c \geq|b|^{2}$), $A x=0$ and $\langle A B x, x\rangle=0$. Therefore, as $P x=x$ and $P B x=B x$, we
have

$$
\begin{aligned}
|\langle A B x, x\rangle| & =|\langle A B P x, P x\rangle| \\
& =|\langle P A P P B P x, x\rangle| \\
& =\left\lvert\,\left\langle\left[\begin{array}{cc}
|b|^{2} / c & b \\
\bar{b} & c
\end{array}\right]\left[\begin{array}{ll}
u & \beta \\
v & \lambda
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right|\right. \\
& \left.\leq w\left(\begin{array}{cc}
|b|^{2} / c & b \\
\bar{b} & c
\end{array}\right]\left[\begin{array}{cc}
u & \beta \\
v & \lambda
\end{array}\right]\right) \\
& \leq \frac{3 \sqrt{3}}{4}\left\|\left[\begin{array}{cc}
{\left[\left.b\right|^{2} / c\right.} & b \\
\bar{b} & c
\end{array}\right]\right\| w\left(\left[\begin{array}{ll}
u & \beta \\
v & \lambda
\end{array}\right]\right) \quad \text { (by Lemma 2.1). }
\end{aligned}
$$

Since $a c \geq|b|^{2}$, it is easy to verify that

$$
\left\|\left[\begin{array}{cc}
|b|^{2} / c & b \\
\bar{b} & c
\end{array}\right]\right\|=\frac{|b|^{2}}{c}+c \leq\left\|\left[\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right]\right\| \text {. }
$$

It follows that

$$
\begin{aligned}
|\langle A B x, x\rangle| & \leq \frac{3 \sqrt{3}}{4}\|P A P\| w(P B P) \\
& \leq \frac{3 \sqrt{3}}{4}\|A\| w(B) .
\end{aligned}
$$

Consequently, for any unit vector $x \in \mathcal{H}$,

$$
|\langle A B x, x\rangle| \leq \frac{3 \sqrt{3}}{4}\|A\| w(B)
$$

and the inequality (5) is obtained by taking the supremum over all unit vectors $x \in \mathcal{H}$.
The sharpness of the inequality (5) is evident by taking $A=\left[\begin{array}{cc}3 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Indeed, A is positive, $\|A\|=4, w(B)=1 / 2$, and $w(A B)=3 \sqrt{3} / 2$, that is, $w(A B)=\frac{3 \sqrt{3}}{4}\|A\| w(B)$. This completes the proof.

References

[1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for products of Hilbert space operators, J. Operator Theory 72(2) (2014) 521-527.
[2] A. Abu-Omar, P. Y. Wu, Scalar approximants of quadratic operators with applications, Oper. Matrices 12(1) (2018) 253-262.
[3] K. E. Gustafson, D. K. M. Rao, Numerical range: The Field of Values of Linear Operators and Matrices, Springer, New York, NY, USA, 1997.
[4] V. Müller, The numerical radius of a commuting product, Michigan Math. J. 35 (1988) 255-260.
[5] K. Okubo, T. Ando, Operator radii of commuting products, Proc. Amer. Math. Soc. 56 (1976) 203-210.
[6] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178(1) (2007) 83-89.

[^0]: 2020 Mathematics Subject Classification. 47A10; 47A12; 47A30
 Keywords. Numerical radius; Numerical radius inequalities; Numerical range
 Received: 27 April 2021; Accepted: 20 May 2021
 Communicated by Fuad Kittaneh
 Email addresses: e.benabdi@um5r.ac.ma (El Hassan Benabdi), bagabd66@gmail.com (Abderrahim Baghdad), chraibik@uca.ac.ma (Mohamed Chraibi Kaadoud), barraa@hotmail.com (Mohamed Barraa)

