A New Characterization of the Closure of Dirichlet Type Spaces \mathcal{D}_{s} in Bloch Spaces and Interpolating Blaschke Product

Shangjing Hao ${ }^{\text {a }}$, Liu Yang ${ }^{\text {b }}$
${ }^{a}$ School of Science, Xi'an Shiyou University, Xi'an 710065, China.
${ }^{b}$ School of mathematics and statistics, Shanxi Xueqian Normal University, 710100, China.

Abstract

In this paper, motivated by Qian, et al [20, 22], we give a new characterization for the closure of the space \mathcal{D}_{s} in the Bloch space. Moreover, a new characterization for interpolating Blaschke product in $\mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$ is also investigated.

1. Introduction

As usual, let \mathbb{D} be the open unit disk in the complex plane $\mathbb{C}, \mathbb{D}_{e}=\mathbb{C} \backslash \overline{\mathbb{D}}, H(\mathbb{D})$ be the class of all functions analytic in \mathbb{D} and H^{∞} denote the space of all bounded analytic function. A Blaschke product B with sequence of zeros $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{D}$ is called interpolating if there exists a positive constant δ such that

$$
\prod_{j \neq k}\left|\frac{a_{j}-a_{k}}{1-\overline{a_{j}} a_{k}}\right| \geq \delta, \quad k=1,2, \cdots
$$

Suppose that $0<p<\infty, H^{p}$ denotes the Hardy space, which consists of all functions $f \in H(\mathbb{D})$ for which (see [14])

$$
\|f\|_{H^{p}}^{p}=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<\infty
$$

Let $0 \leq s<\infty$. The Dirichlet type space \mathcal{D}_{s} consists of those functions $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{D}_{s}}=|f(0)|+\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{s} d A(z)\right)^{1 / 2}<\infty
$$

The space \mathcal{D}_{s} has been studied extensively. In particular, if $s=0$, this gives the classical Dirichlet space \mathcal{D}. If $s=1$, then \mathcal{D}_{s} is the Hardy space H^{2}. When $s>1$, it gives the Bergman space A_{s-2}^{2}. Stegenga [25] and Taylor [26] studied the multipliers of the space \mathcal{D}_{s} respectively. Rochberg and Wu [23] studied small hankel

[^0]operator acting on the space \mathcal{D}_{s}. Pau and Pérez [18] investigated composition operator acting on the space \mathcal{D}_{s}. For more information relate to the space \mathcal{D}_{s}, we refer to $[18,23,25,26]$ and the paper referinthere.

The Bloch space $\mathcal{B}([28])$ is the class of all $f \in H(\mathbb{D})$ for which

$$
\|f\|_{\mathcal{B}}:=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

Recently, the problem of characterizing the closure $C_{\mathcal{B}}(H \cap \mathcal{B})$ of $H \cap \mathcal{B}$ in the Bloch norms for certain spaces H of analytic functions in \mathbb{D} has attracted the interest of many scholars. In 1974, Anderson, Clunie and Pommerenke in [1] raised the problem of characterizing the closure of H^{∞} in the Bloch norm? (The problem is still unsolved.) Zhao in [27] studied the closures of some Möbius invariant spaces in the Bloch space. Lou and Chen [15] generalized [27] to a more general analytic function spaces. Monreal Galán and Nicolau in [16] characterized the closure in the Bloch norm of the space $H^{p} \cap \mathcal{B}$, i.e., $\mathcal{C}_{\mathcal{B}}\left(H^{p} \cap \mathcal{B}\right)$. Galanopoulos, Monreal Galán and Pau [12] have extended this result to the whole range $0<p<\infty$. Bao and Göğüş in [2] studied the closure of Dirichlet type spaces \mathcal{D}_{s} in the Bloch space. Galanopoulos and Girela [13] generalized the results in [2] to a more general class of Dirichlet type spaces \mathcal{D}_{s}^{p}. Qian, Li and Zhu in [21, 22] studied the closure of Dirichlet type spaces \mathcal{D}_{μ} in the Bloch space.

Motivated by Qian and Zhu in [22], we study the closure of the Dirichlet type spaces \mathcal{D}_{s} in the Bloch space via pseudoanalytic extension. Pseudoanalytic extension was introduced by Dyn'kin in [11]. There are many papers related to pseudoanalytic extension, we refer to $[3,6,8,9,11]$. Moreover, motivated by Qian and Shi in [20], a new characterization for interpolating Blaschke product in $C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$ is also given.

In this paper, let $f \in H(\mathbb{D})$ and F be the primitive function of f with $F(0)=0$, that is,

$$
F(z)=\int_{0}^{z} f(w) d w, \quad z \in \mathbb{D}
$$

We say that $A \lesssim B$ if there exists a constant C such that $A \leq C B$. The symbol $A \approx B$ means that $A \lesssim B \lesssim A$.

2. Closure of Dirichlet type spaces in Bloch spaces

Before we go into proofs, we need some lemmas.
Lemma 1. [28] Suppose $s>0$ and $t>-1$. Then there exists a positive constant C such that

$$
\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{t}}{|1-\bar{z} w|^{2+t+s}} d A(w) \leq \frac{C}{\left(1-|z|^{2}\right)^{s}}
$$

for all $z \in \mathbb{D}$.
Lemma 2. [24] Let $0<s<1$ and let n be a positive integer. Then

$$
g \in \mathcal{D}_{s} \Leftrightarrow \int_{\mathbb{D}}\left|g^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2(n-1)}\left(1-|z|^{2}\right)^{s} d A(z)<\infty
$$

Using the same strategy as [3], we have the following result.
Lemma 3. Let $n \geq 2$ be an integer and let f be a Bloch function. Let F be the primitive of f with $F(0)=0$. Then the following statements are equivalent.
(1) $f \in \mathcal{D}_{s}$;
(2) There exists a function $G \in C^{1}(\mathbb{C} \backslash \overline{\mathbb{D}})$ satisfying

$$
\begin{align*}
\lim _{r \rightarrow 1^{+}} G\left(r e^{i \theta}\right) & =F\left(e^{i \theta}\right) \text { a.e. and in } L^{2}[0,2 \pi], \tag{a}\\
G(z) & =O\left(z^{n}\right), \text { as } z \rightarrow \infty, \tag{b}\\
\bar{\partial} G(z) & =O\left(z^{n-2}\right), \text { as } z \rightarrow \infty, \tag{c}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(z)|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(|z|^{2}-1\right)^{s} d A(z)<\infty \tag{d}
\end{equation*}
$$

where

$$
\bar{\partial}=\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right), \quad z=x+i y
$$

Proof. (1) \Rightarrow (2) Let $z \in \mathbb{D}_{e}$ and

$$
G(z)=\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\left(z^{*}-z\right)^{i} F^{(i)}\left(z^{*}\right), \quad z^{*}=\frac{1}{\bar{z}^{\prime}}
$$

where $f \in \mathcal{D}_{s}$ and $F\left(z^{*}\right)=\int_{0}^{z^{*}} f(w) d w$. Since $f \in \mathcal{D}_{s} \subseteq H^{2}$, then F has a continuous extension to the closed unit disk. By the facts on Hardy spaces (see [4]), it follows that, for $i=1,2, \ldots$,

$$
\begin{equation*}
M_{2}\left(r, F^{i}\right)=o\left((1-r)^{1-i}\right), \quad M_{\infty}\left(r, F^{i}\right)=o\left((1-r)^{\frac{1}{2}-i}\right), \text { as } r \rightarrow 1^{-} . \tag{e}
\end{equation*}
$$

Using (e), we deduce that

$$
\lim _{r \rightarrow 1^{+}} G\left(r e^{i \theta}\right)=F\left(e^{i \theta}\right) \text { a.e. and in } L^{2}
$$

and

$$
G(z)=O\left(z^{n}\right), \text { as } z \rightarrow \infty .
$$

Note that

$$
\bar{\partial} G(z)=\frac{(-1)^{n+1}}{n!}\left(z^{*}-z\right)^{n}\left(z^{*}\right)^{2} F^{(n+1)}\left(z^{*}\right)
$$

We have,

$$
\bar{\partial} G(z)=O\left(z^{n-2}\right), \text { as } z \rightarrow \infty
$$

Making a change of variable with $z=\frac{1}{\bar{w}}=w^{*}$ and combining with Lemma 2, we have

$$
\begin{aligned}
& \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(z)|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(|z|^{2}-1\right)^{s} d A(z)=\frac{1}{(n!)^{2}} \int_{\mathbb{D}_{e}} \frac{\left|z^{*}-z\right|^{2 n}\left|z^{*}\right| 4\left|f^{(n)}\left(z^{*}\right)\right|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(|z|^{2}-1\right)^{s} d A(z) \\
\approx & \int_{\mathbb{D}}\left|f^{(n)}(w)\right|^{2}\left(1-|w|^{2}\right)^{2(n-1)}\left(1-|w|^{2}\right)^{s} d A(w) \lesssim\|f\|_{\mathcal{D}_{s}}^{2} .
\end{aligned}
$$

$(2) \Rightarrow(1)$. Using the Cauchy-Green's formula and (a), we obtain

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \int_{|\xi|=1} \frac{F(\xi)}{\xi-z} d \xi=\frac{1}{2 \pi i} \int_{|\xi|=R} \frac{G(\xi)}{\xi-z} d \xi-\frac{1}{\pi} \int_{1<|\xi|<R} \frac{\bar{\partial} G(\xi)}{\xi-z} d A(\xi), \quad z \in \mathbb{D} . \tag{f}
\end{equation*}
$$

Combine with (b) and (c), we have that

$$
\int_{|\xi|=R} \frac{G(\xi)}{(\xi-z)^{n+2}} d \xi \rightarrow 0, \text { as } R \rightarrow \infty
$$

and

$$
\int_{\mathbb{D}_{e}}\left|\frac{\bar{\partial} G(\xi)}{(\xi-z)^{n+2}}\right| d A(\xi)<\infty
$$

Using these facts and differentiating $n+1$ times in (f), we get

$$
F^{(n+1)}(z)=-\frac{(n+1)!}{\pi} \int_{\mathbb{D}_{e}} \frac{\bar{\partial} G(\xi)}{(\xi-z)^{n+2}} d A(\xi) .
$$

Using Hölder's inequality, we deduce that

$$
\left|F^{(n+1)}(z)\right|^{2} \lesssim \int_{\mathbb{D}_{e}} \frac{1}{|\xi-z|^{4}} d A(\xi) \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(\xi)|^{2}}{|\xi-z|^{2 n}} d A(\xi)
$$

Making the change of variables $\xi=\frac{1}{\bar{w}}=w^{*}(w \in \mathbb{D})$ and combining with Lemma 1, we have

$$
\int_{\mathbb{D}_{e}} \frac{1}{|\xi-z|^{4}} d A(\xi) \lesssim \int_{\mathbb{D}} \frac{1}{|1-\bar{w} z|^{4}} d A(w) \lesssim \frac{1}{\left(1-|z|^{2}\right)^{2}}
$$

Hence,

$$
\left|F^{(n+1)}(z)\right|^{2} \lesssim \frac{1}{\left(1-|z|^{2}\right)^{2}} \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G\left(w^{*}\right)\right|^{2}}{\left|w^{*}-z\right|^{2 n}} d A\left(w^{*}\right)
$$

Using Lemma 1 and (d), we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2(n-1)}\left(1-|z|^{2}\right)^{s} d A(z) \\
= & \int_{\mathbb{D}}\left|F^{(n+1)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2(n-1)}\left(|z|^{2}-1\right)^{s} d A(z) \\
\lesssim & \int_{\mathbb{D}} \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G\left(w^{*}\right)\right|^{2}}{\left|w^{*}-z\right|^{2 n}} d A\left(w^{*}\right)\left(1-|z|^{2}\right)^{2(n-2)}\left(1-|z|^{2}\right)^{s} d A(z) \\
= & \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left|\bar{\partial} G\left(w^{*}\right)\right|^{2}}{|1-\bar{w} z|^{2 n}}|w|^{2 n-4} d A(w)\left(1-|z|^{2}\right)^{2(n-2)}\left(1-|z|^{2}\right)^{s} d A(z) \\
= & \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{2(n-2)}\left(1-|z|^{2}\right)^{s}}{|1-\bar{w} z|^{2 n}} d A(z)\left|\bar{\partial} G\left(w^{*}\right)\right|^{2}|w|^{2 n-4} d A(w) \\
\lesssim & \int_{\mathbb{D}} \frac{1}{\left(1-|w|^{2}\right)^{2-s}}\left|\bar{\partial} G\left(w^{*}\right)\right|^{2}|w|^{2 n-4} d A(w) \\
\lesssim & \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(\xi)|^{2}}{\left(|\xi|^{n}-1\right)^{2}}\left(|z|^{2}-1\right)^{s} d A(\xi)<\infty,
\end{aligned}
$$

which implies that $f \in \mathcal{D}_{s}$ by Lemma 2 . The proof is complete.
We also need the following lemma.
Lemma 4. [3] Let $n \geq 2$ be an integer and let $f \in H(\mathbb{D})$. Let $F \in H^{2}$ be the primitive of f with $F(0)=0$. Then the following statements are equivalent.
(1) $f \in \mathcal{B}$;
(2) There exists a function $G \in C^{1}(\mathbb{C} \backslash \overline{\mathbb{D}})$ satisfying

$$
\begin{align*}
\lim _{r \rightarrow 1^{+}} G\left(r e^{i \theta}\right) & =F\left(e^{i \theta}\right) \text { a.e. and in } L^{2}[0,2 \pi], \tag{g}\\
G(z) & =O\left(z^{n}\right), \text { as } z \rightarrow \infty, \tag{h}\\
\bar{\partial} G(z) & =O\left(z^{n-2}\right), \text { as } z \rightarrow \infty, \tag{i}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(z)|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{a}(z)\right|^{2}}\right)^{p} s d A(z)<\infty, \tag{j}
\end{equation*}
$$

where $1<p<2$ and $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}$.
Theorem 1. Let $f \in \mathcal{B}, n \geq 2,0<s<1$ and $1<p<2$. For any $\epsilon>0$, the following are equivalent.
(1) $f \in \mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$.
(2)

$$
\int_{\Omega_{e}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2-p}} d A(w)<\infty
$$

where

$$
\Omega_{\epsilon}(f)=\left\{w \in \mathbb{D}:\left(1-|w|^{2}\right)^{n}\left|f^{(n)}(w)\right| \geq \epsilon\right\} .
$$

$$
\begin{equation*}
\int_{\Delta_{e}(G)} \frac{1}{\left(1-|w|^{2}\right)^{2-p}} d A(w)<\infty, \tag{3}
\end{equation*}
$$

where

$$
\Delta_{\epsilon}(G)=\left\{w \in \mathbb{D}: \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(z)|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z) \geq \epsilon^{2}\right\}
$$

where G is the function in Lemma 3.
Proof. (1) \Leftrightarrow (2). See [2].
(1) \Rightarrow (3). Suppose that $f \in \mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \subseteq \mathcal{B}$. For any $h \in \mathcal{B}$, from the proof of Lemma 4 (Theorem 2.1 in [3]), there exists a constant $C>0$, such that

$$
\left(\int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G(z)-\bar{\partial} G_{1}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z)\right)^{1 / 2} \leq C\|f-h\|_{\mathcal{B}}
$$

where G, G_{1} are its pseudoanalytic extension of f and h, respectively. Since $f \in \mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \subseteq \mathcal{B}$, for any $\epsilon>0$, there exists a function $g \in \mathcal{D}_{s} \cap \mathcal{B}$, such that

$$
\|f-g\|_{\mathcal{B}} \leq \frac{\epsilon}{2 C}
$$

where C is the constant stated as above. Thus,

$$
\left(\int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G(z)-\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z)\right)^{1 / 2} \leq \frac{\epsilon}{2}
$$

Here G_{2} is its pseudoanalytic extension of g. Note that

$$
\begin{aligned}
& \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(z)|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z) \\
\leq & 2 \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G(z)-\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w v}(z)\right|^{2}}\right)^{p} d A(z)+2 \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z) .
\end{aligned}
$$

Hence $\Delta_{\epsilon}(G) \subseteq \Delta_{\frac{\epsilon}{2}}\left(G_{2}\right)$. Then

$$
\begin{aligned}
& \int_{\Delta_{e}(G)} \frac{1}{} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
\leq & \int_{\Delta_{\frac{\epsilon}{2}}\left(G_{2}\right)} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
\leq & \frac{4}{\epsilon^{4}} \int_{\Delta_{\frac{\epsilon}{2}}\left(G_{2}\right)} \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} d A(z) \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
= & \frac{4}{\epsilon^{4}} \int_{\Delta_{\frac{\epsilon}{2}}\left(G_{2}\right)}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}} d A(z) \\
\lesssim & \int_{\mathbb{D}_{e}} \int_{\mathbb{D}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \frac{\left|\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}} d A(z) .
\end{aligned}
$$

Making a change of variable with $z=\frac{1}{\bar{v}}$ and using Lemma 1, we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}\left(1-\frac{1}{\left|\varphi_{w}(z)\right|^{2}}\right)^{p} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
&= \int_{\mathbb{D}} \frac{\left(1-\left.|w|\right|^{p}\left(|z|^{2}-1\right)^{p}\right.}{\left.|z-w|\right|^{2 p}} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
&= \int_{\mathbb{D}} \frac{\left(1-\left.|w|\right|^{p}\left(1-|v|^{2}\right)^{p}\right.}{|1-\bar{v} w|^{2 p}} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \\
& \lessgtr\left(1-|v|^{2}\right)^{s} \lesssim\left(|z|^{2}-1\right)^{s} .
\end{aligned}
$$

By Lemma 3, we have

$$
\int_{\Delta_{e}(G)} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \lesssim \int_{\mathbb{D}_{e}} \frac{\left|\bar{\partial} G_{2}(z)\right|^{2}}{\left(|z|^{n}-1\right)^{2}}\left(|z|^{2}-1\right)^{s} d A(z) \lesssim\|g\|_{\mathcal{D}_{s}}^{2}
$$

$(3) \Rightarrow(2)$. From the proof of Lemma 4 (see [3]), for any $z \in \mathbb{D}$, we have

$$
\int_{\mathbb{D}}\left|f^{(n)}(w)\right|^{2}\left(1-|w|^{2}\right)^{2 n-2}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{p} d A(w) \lesssim \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(w)|^{2}}{\left(|w|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{z}(w)\right|^{2}}\right)^{p} d A(w)
$$

Using sub-mean inequality of $\left|f^{(n)}\right|^{2}$, we have

$$
\left|f^{(n)}(z)\right|^{2} \lesssim\left(1-|z|^{2}\right)^{-2} \int_{D(z, r)}\left|f^{(n)}(w)\right|^{2} d A(w)
$$

where $D(z, r)=\left\{w \in \mathbb{D}:\left|\varphi_{w}(z)\right|<r\right\}$. Hence,

$$
\begin{aligned}
\left(1-|z|^{2}\right)^{2 n}\left|f^{(n)}(z)\right|^{2} & \lesssim\left(1-|z|^{2}\right)^{2 n-2} \int_{D(z, r)}\left|f^{(n)}(w)\right|^{2} d A(w) \\
& \lesssim \int_{\mathbb{D}}\left|f^{(n)}(w)\right|^{2}\left(1-|w|^{2}\right)^{2 n-2}\left(1-\left|\varphi_{z}(w)\right|^{2}\right)^{p} d A(w) \\
& \lesssim \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(w)|^{2}}{\left(|w|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{z}(w)\right|^{2}}\right)^{p} d A(w) .
\end{aligned}
$$

Thus there exists a constant $C>1$ such that

$$
\left(1-|z|^{2}\right)^{2 n}\left|f^{(n)}(z)\right|^{2} \leq C \int_{\mathbb{D}_{e}} \frac{|\bar{\partial} G(w)|^{2}}{\left(|w|^{n}-1\right)^{2}}\left(1-\frac{1}{\left|\varphi_{z}(w)\right|^{2}}\right)^{p} d A(w)
$$

Thus,

$$
\Omega_{\epsilon}(f) \subseteq \Delta_{\frac{e}{\sqrt{C}}}(G)
$$

and

$$
\int_{\Omega_{e}(f)} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w) \leq \int_{\Delta_{\frac{e}{\sqrt{C}}}(G)} \frac{1}{\left(1-|w|^{2}\right)^{2-s}} d A(w)
$$

The proof is complete.

3. Inner function in $C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$

In this section, we will give some equivalent characterizations of inner function in $\mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$. An analytic function in the unit disc \mathbb{D} is called an inner function if it is bounded and modulus equals 1 almost everywhere on the boundary $\partial \mathbb{D}$. Let us recall the following notion [10].

Let X and Y be two classes of analytic functions on \mathbb{D}, and $X \subseteq Y$. Suppose that θ is an inner function, θ is said to be (X, Y)-improving, if every function $f \in X$ satisfying $f \theta \in Y$ must actually satisfy $f \theta \in X$.
Theorem 2. Let $0<s<1$ and θ be an interpolating Blaschke product with zeros $\left\{a_{k}\right\}_{k=1}^{\infty}$. Then
(1) $\theta \in C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$.
(2) $\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|^{2}\right)^{s}<\infty$.
(3) $\theta \in \mathcal{D}_{s}$.
(4) θ is $\left(C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \cap B M O A, B M O A\right)$-improving.

Proof. (1) $\Leftrightarrow(2)$. See [2].
$(2) \Leftrightarrow(3)$. See [19].
(3) \Rightarrow (4). Supposed that $\theta \in \mathcal{D}_{s}, f \in C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \cap B M O A, f \theta \in B M O A$, we only need to prove $f \theta \in C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$. That is, for any $\epsilon>0$,

$$
\int_{\Lambda_{e}(f \theta)} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z)<\infty,
$$

where

$$
\Lambda_{\epsilon}(f \theta)=\left\{z \in \mathbb{D}:\left(1-|z|^{2}\right)\left|(f \theta)^{\prime}(z)\right| \geq \epsilon\right\} .
$$

Since $f \in \mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \cap B M O A \subseteq \mathcal{C}_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$, for any $\epsilon>0$, there exists $g \in \mathcal{D}_{s} \cap \mathcal{B}$, such that

$$
\|f-g\|_{\mathcal{B}} \leq \frac{\epsilon}{2} .
$$

Since

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|(f \theta)^{\prime}(z)\right| & =\left(1-|z|^{2}\right)\left|f^{\prime}(z) \theta(z)+f(z) \theta^{\prime}(z)\right| \\
& \leq\left(1-|z|^{2}\right)\left|f^{\prime}(z) \theta(z)\right|+\left(1-|z|^{2}\right)\left|f(z) \theta^{\prime}(z)\right| \\
& \leq\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|+\left(1-|z|^{2}\right)\left|f(z) \theta^{\prime}(z)\right| \\
& \leq\left(1-|z|^{2}\right)\left|f^{\prime}(z)-g^{\prime}(z)\right|+\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|+\left(1-|z|^{2}\right)\left|f(z) \theta^{\prime}(z)\right|,
\end{aligned}
$$

we see that

$$
\Lambda_{\epsilon}(f \theta) \subseteq \Gamma_{f, g, \theta}=\left\{z \in \mathbb{D}:\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|+\left(1-|z|^{2}\right)\left|f(z) \theta^{\prime}(z)\right| \geq \frac{\epsilon}{2}\right\}
$$

Then

$$
\begin{aligned}
\int_{\Lambda_{\epsilon}(f \theta)} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z) & \lesssim \int_{\Gamma_{f, g, \theta}} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z) \\
& \lesssim \frac{4}{\epsilon^{2}} \int_{\Gamma_{f, g, \theta}}\left(\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|+\left(1-|z|^{2}\right)\left|f(z) \theta^{\prime}(z)\right|\right)^{2} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z) \\
& \lesssim A_{1}+A_{2},
\end{aligned}
$$

where

$$
A_{1}:=\int_{\Gamma_{f, g, \theta}}\left(1-|z|^{2}\right)^{2}\left|g^{\prime}(z)\right|^{2} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z)
$$

and

$$
A_{2}:=\int_{\Gamma_{f, g, \theta}}\left(1-|z|^{2}\right)^{2}|f(z)|^{2}\left|\theta^{\prime}(z)\right|^{2} \frac{1}{\left(1-|z|^{2}\right)^{2-s}} d A(z)
$$

It is obvious that $A_{1} \lesssim\|g\|_{\mathcal{D}_{s}}^{2}$. We only need to prove that $A_{2}<\infty$. Since $f \theta \in B M O A$, by [5, Theorem 1], we have

$$
\sup _{z \in \mathbb{D}}\left(1-|\theta(z)|^{2}\right)|f(z)|^{2}<\infty,
$$

and hence

$$
\begin{aligned}
A_{2} & \lesssim \int_{\Gamma_{f, g, \theta}}|f(z)|^{2}\left|\theta^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{s} d A(z) \\
& \lesssim \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}|f(z)|^{2} \frac{\left(1-|\theta(z)|^{2}\right)^{2}}{\left(1-|z|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{s} d A(z) \\
& \lesssim \sup _{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left(1-\mid \theta\left(\left.z\right|^{2}\right)\right.}{\left(1-|z|^{2}\right)^{2}}\left(1-|z|^{2}\right)^{s} d A(z) \lesssim\|\theta\|_{\mathcal{D}_{s^{\prime}}}^{2}
\end{aligned}
$$

where the last inequality due to [7].
$(4) \Rightarrow(1)$. Since $1 \in C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right) \cap B M O A$ and $1 \cdot \theta \in H^{\infty} \subseteq B M O A$. Then $\theta \in C_{\mathcal{B}}\left(\mathcal{D}_{s} \cap \mathcal{B}\right)$. The proof is complete.

Acknowledgement. The authors thank the referee for his (or her) helpful comments and suggestions that led to the improvement of this paper.

References

[1] J. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[2] G. Bao and N. Gögüş, On the closures of Dirichlet type spaces in the Bloch space, Complex Anal. Oper. Theory 13 (2019), 45-59.
[3] G. Bao, H. Wulan and F. Ye, The pseudoanalytic extensions for some spaces of analyic functions, https://arxiv.org/abs/1504.01305.
[4] P. Duren, Theory of H^{p} Spaces, Academic Press, New York, 1970.
[5] K. Dyakonov, Division and multiplication by inner functions and embedding theorems for star-invariant subspaces, Amer. J. Math. 115 (1993), 881-902.
[6] K. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), 143-167.
[7] K. Dyakonov,Besov spaces and outer functions, Michigan Math. J. 45(1998), 143-157.
[8] K. Dyakonov, Toeplitz operators and arguments of analytic functions, Math. Ann. 344 (2009), 353-380.
[9] K. Dyakonov and D. Girela, On Q_{p} spaces and pseudoanalytic extension, Ann. Acad. Sci. Fenn. Math. 25 (2000), 477-486.
[10] K. Dyakonov, Self-improving behaviour of inner functions as multipliers, J. Funct. Anal. 240 (2006), 429-444.
[11] E. Dyn'kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45-70.
[12] P. Galanopoulos, N. Monreal Galán and J. Pau, Closure of Hardy spaces in the Bloch space, J. Math. Anal. Appl. 429 (2015), 1214-1221.
[13] P. Galanopoulos and D. Girela, The closure of Dirichlet spaces in Bloch space, Ann. Acad. Sci. Fenn. Math. 44 (2019), 91-101.
[14] J. Garnett, Bounded Analytic Functions, Springer, New York, 2007.
[15] Z. Lou and W. Chen, Distances from Bloch functions to Q_{K}-type spaces, Integr. Equ. Oper. Theory. 67 (2010), 171-181.
[16] N. Monreal Galán and A. Nicolau, The closure of the Hardy space in the Bloch norm, Algebra i Analiz 22 (2010), 75-81, translation in St. Petersburg Math. J. 22 (2011), 55-59.
[17] J. Ortega and J. Fàbrega, Pointwise multipliers and corona type decomposition in BMOA. Ann, Inst. Fourier (Grenoble) 46 (1996), 111-137.
[18] J. Pau and P. A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2012), 682-694.
[19] J. Peláez, Inner functions as improving multipliers, J. Funct. Anal. 255 (2008), 1403-1418.
[20] R. Qian and Y. Shi, Inner function in Dirichlet type spaces, J. Math. Anal. Appl. 421 (2015), 1844-1854.
[21] R. Qian and S. Li, Composition operators and closures of Dirichlet type spaces \mathcal{D}_{μ} in Bloch type spaces, Anal. Math. 45 (2019), 121-132.
[22] R. Qian and X. Zhu, A new characterization of certain Dirichlet type spaces with application, Bull. Belg. Math. Soc. Simon Stevin, to appear.
[23] R. Rochberg and Z. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37(1993), 101-122.
[24] J. Rättyä, n-th derivative characterisations, mean growth of derivatives and $F(p, q, s)$, Bull. Austral. Math. Soc. 68 (2003), 405-421.
[25] D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24(1980), 113-139.
[26] G. Taylor, Multipliers on D_{α}, Trans. Amer. Math. Soc. 123(1966), 229-240.
[27] R. Zhao, Distances from Bloch functions to some Möbius invariant spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008), 303-313.
[28] K. Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007.

[^0]: 2020 Mathematics Subject Classification. Primary 30D50; Secondary 30D45
 Keywords. \mathcal{D}_{s} space, Bloch space, pseudoanalytic extension, interpolating Blaschke product.
 Received: 26 April 2021; Accepted: 25 August 2021
 Communicated by Miodrag Mateljević
 Corresponding author: Shangjing Hao
 This work was supported by Education Department of Shaanxi Provincial Government (No.19JK0213).
 Email addresses: haoshangjing1978@163.com (Shangjing Hao), 381900567@qq.com (Liu Yang)

