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Existence of Solutions for Non-Autonomous Second-Order Stochastic
Inclusions with Clarke’s Subdifferential and non Instantaneous

Impulses
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Abstract. This manuscript explores a new class of non-autonomous second-order stochastic inclusions of
Clarke’s subdifferential form with non-instantaneous impulses (NIIs), unbounded delay, and the Rosenblatt
process in Hilbert spaces. The existence of a solution is deduced by employing a fixed point strategy for
a set-valued map together with the evolution operator and stochastic analysis approach. An example is
analyzed for theoretical developments.

1. Introduction

Due to its practical applications in several fields, for instance, finance, physics, electrical engineering,
medicine, and telecommunication, among others, many scholars have addressed stochastic evolution equa-
tions, and have already gained several fruitful results. To explore more, we refer to the following books and
articles and the references cited therein [1–4]. In numerous regions of research, there has been a growing
revenue in the evaluation of the frameworks fusing memory, i.e., there is the impact of postponement on
state conditions. In this way, there is a genuine desire to talk about stochastic differential systems with
delay.

In abstract spaces, Henrı́quez [23] assessed the presence of mild solutions, as well as classical solutions for
a non-autonomous second-order (NASO) delayed functional differential equation with unbounded delay.
Henrı́quez et al. [29] considered NASO differential structure with nonlocal initial data and developed the
existence of solutions by applying the principle of the Hausdorffmeasure of non-compactness. Benchohra
et al. [37] used a fixed point theorem developed by Darbo with the Kuratowski measure of non-compactness
to build certain adequate conditions that guarantee the presence of a solution for a NASO non-instantaneous
integro-differential system.

Because of its easy calculus and interesting attributes, the fractional Brownian motion (fBm) has attracted
many scholars. One can go through the works in [4–6] for further details. In certain cases, where the
mechanism is not Gaussian, the Rosenblatt process is chosen over fBm. Although the theory of the
Rosenblatt process was established during 60’s and 70’s, significant development has been made in the last
decade because of its self-similarity, long-range dependency, and stationary increments.
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In the literature, there are numerous articles that studied various theoretical facets of the Rosenblatt
process. Ouahra et al. [35] discussed the qualitative properties of an stochastic delayed neutral functional
differential system including impulses, Poisson jump, and the Rosenblatt process. Leonenko and Ahn [7]
gave a fruitful result for the rate of convergence of the Rosenblatt process. The distribution property of
the Rosenblatt process was investigated by Maejma and Tudor [8]. Sakthivel et al.[9] analyzed an abstract
NASO stochastic evolution model with unbounded delay governed by the Rosenblatt process and proved
its existence using the Krasnoselskii–Schaefer fixed point theorem, also studied the related autonomous
system with bounded delay.

Lakhel and Tlidi [36] employed the Banach fixed point theorem to discuss the existence, uniqueness, and
established stability criteria for a neutral stochastic functional differential system with impulses involving
variable delays governed by the Rosenblatt process.

On the other hand, Clarke’s subdifferential emerges from the applied discipline, namely thermo-
viscoelasticity, filtration in porous materials, riveting applications in optimization, and non-smooth analysis
[10, 11]. Recently, Vijayakumar [12] considered NASO stochastic inclusions of Clarke’s subdifferential form
and established the approximate controllability for the proposed systems.

Hernandez and O’Regan [13] introduced the theory of NIIs. Thereafter, many researchers gave various
results on differential equations with NIIs. Pierri et al. [14], Yu and Wang [15], Fekan and Wang [16], and
many more [17, 18] studied various qualitative properties of differential systems with NIIs. To the best of
our incite, no result guarantees the existence of a solution for a NASO stochastic differential inclusions with
Clarke’s subdifferential including the Rosenblatt process and NIIs.

Let Z and (Z , ∥ · ∥Z , ⟨·⟩Z ) be Hilbert spaces that are real and separable. The notation L(Z ,Z) reflects the
space of all bounded linear operators from Z intoZ. Strongly motivated by the above facts and discussions,
we examine the subsequent stochastic differential inclusion with unbounded delay and NIIs

dχ′(τ) ∈ [A (τ)χ(τ) + ∂Σ(τ, χ(τ))]dτ + q(τ, χτ)dZH(τ), τ ∈
M

∪
k=0

(tk, rk+1];

χ(τ) = fk(τ, χτ), τ ∈
M

∪
k=1

(rk, tk];

χ′(τ) = 1k(τ, χτ), τ ∈
M

∪
k=1

(rk, tk];

χ(τ) = η(τ), τ ∈] −∞, 0];
χ′(0) = ξ,

(1.1)

where, χ(·) is Z-valued stochastic process, A (τ) : D(A (τ)) ⊆ Z → Z is closed and linear whose domain
is dense in Z. The τ−segment of χ, χτ :] − ∞, 0] → Z is given by χτ(θ) = χ(τ + θ); θ ∈] − ∞, 0], and
belongs to an abstract phase space W described in Sect. 2. Let J = [0, β], J0 =] − ∞, 0]. The notation ∂Σ
represents the Clarke generalized subdifferential (see [10]) of a locally Lipschitz function Σ(τ, ·) : Z → R;
q : J × W → L0

2, fk, 1k : (rk, tk] × W → Z, k = 1, . . . ,M are suitable functions. The initial data η is Γ0-
measurable W -valued stochastic process and ξ is Γ0-measurable Z-valued stochastic process. Also, η and
ξ have finite second moment, and are independent of the Rosenblatt process ZH.

The points 0 = r0 < t0 < r1 < t1 < . . . < tM < rM+1 = β are impulsive positions. The impulses begin
abruptly at rk and continue to have an impact on (rk, tk]. The function χ(·) takes distinct values in the two
subintervals (rk, tk], (tk, rk+1] and is continuous at tk.

The following is the summary of the rest of the manuscript: Sect. 2 is devoted to basic results, concepts,
and Lemmas. The existence result for the proposed system (1.1) is covered in Sect. 3 by using set-valued
(multi-valued) fixed point theorem [19]. We have reserved Sect. 4 for an example to show the applicability
of the acquired result.

2. Preliminaries

Consider the probability space (Ω,Γ, {Γτ}τ≥0,P) that is complete with the right continuous increasing
sub σ-algebras {Γτ}τ∈J with Γτ ∈ Γ generated by all P-null sets and {ZH(t), t ∈ [0, τ]}; where ZH(τ) represents
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the Rosenblatt process on Z , and H ∈ ( 1
2 , 1) . Let L2(Ω,Z) be the Banach space of strongly measurable,

Z-valued random variables with the norm ∥χ(·)∥L2 = (E∥χ(·)∥2
Z

)
1
2 , where E∥χ∥2 =

∫
Ω
∥χ∥2dP < ∞. Let {ei}

∞

i=1
be a complete orthonormal basis for Z . The operator Q ∈ L(Z ) is defined by Qei = νiei, i ∈ N with trace

Tr(Q) =
∞∑

i=1
νi < ∞; νi ≥ 0. Denote a sequence of mutually independent Rosenblatt processes by {zi(τ)}∞i on

(Ω,Γ,P), which are two-sided and one-dimensional. A Z -valued stochastic process ZQ(ℓ) is defined as

ZQ(ℓ) =
∞∑

i=1

zi(ℓ)Q
1
2 ei, ℓ ≥ 0.

Moreover, the above series is convergent in Z if Q ≥ 0 and Q = Q∗(adjoint of Q).
Let Z0 = Q

1
2 Z be the Hilbert space with the inner product ⟨z1, z2⟩Z0 = ⟨Q

1
2 z1,Q

1
2 z2⟩Z . Further, let

L2(Z0,Z) := L0
2 be the space of Hilbert–Schmidt operators from Z0 into Z. Clearly, L0

2 equipped with the

inner product ⟨Φ1,Φ2⟩ =
∞∑

i=1
⟨Φ1ei,Φ2ei⟩ is a Hilbert space. Moreover, ∥Φ∥2

L2
0
= ∥ΦQ

1
2 ∥

2 = Tr(ΦQΦ∗).

Let J be the interval with the given horizon β. Then the one dimensional Rosenblatt process is repre-
sented by [20]

ZαH(τ) = c(H)
∫ τ

0

∫ τ

0

[ ∫ τ

b1∨b2

∂KĤ

∂u
(u, b1)

∂KĤ

∂u
(u, b2)ds

]
dB(b1)dB(b2)

where B = {B(τ) : τ ∈ J} is the Wiener process, Ĥ = H+1
2 , c(H) = 1

H+1

√
H

2(2H−1) and the kernel KH(·, ·) is given
by

KH(ℓ, s) =

cH s
1
2−H
∫ ℓ

s (u − s)H− 3
2 uH− 1

2 du, ℓ > s;
0, ℓ ≤ s

where cH =
√

H(2H−1)
B(2−2H,H− 1

2 )
; B(·, ·) represents the Beta function. The space PC(Z) formed by all Z-valued

stochastic processes {χ(τ) : τ ∈ J} that are Γτ-adapted, measurable with χ is continuous at τ , rk, χrk = χr−k
,

and χr+k
exist for k = 1, ...,M, is a Banach space with ∥χ∥PC =

(
sup
β≥s≥0

E∥χ(s)∥2
) 1

2 .

The phase space (W , ∥ · ∥W ) formed by all Γ0-measurable mappings from J0 into Z is a semi-normed
linear space and the accompanying axioms hold (cf.[21, 22])

(i) If χ : ]−∞, β]→ Z, β > 0, is such that χ|[0,β] ∈ PC([0, β],Z) with χ0 ∈ W , then for all τ ∈ [0, β] following
hold:

(a) χτ ∈ W ;

(b) ∥χ(τ)∥ ≤ J ∥χτ∥W , where J > 0 is a constant;

(c) ∥χτ∥W ≤ K(τ) sup{ ∥χ(s)∥ : τ ≥ s ≥ 0 } + L(τ)∥χ0∥W ,
where K,L : R+ ∪ {0} → [1,∞), K and L are continuous and locally bounded respectively, and are
independent of χ(·).

(i) W is complete space.

The result given below is extracted from the above axioms:

Lemma 2.1. [17] Let the process χ :] −∞, β]→ Z be measurable and Γτ-adapted with
χ|J ∈ PC(Z), χ0 = η(τ) ∈ L 2

Γ0
(Ω,W ), then

∥χτ∥W ≤ Kβ sup
τ∈J
E∥χ(τ)∥ + Lβ∥η∥W ,
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where Kβ = max
τ∈J

K(τ) and Lβ = sup
τ∈J

L(τ).

For further development, we describe the following theory of evolution operator.

Definition 2.2. [30] A mapping G : J × J → L(Z) is characterized as an evolution operator for χ′′(τ) =
A (τ)χ(τ), β ≥ s, τ ≥ 0 if meet the subsequent conditions:

(B1) The map (τ, s) 7→ G(τ, s)χ is of class C1 for every χ ∈ Z, and

(i) G(τ, τ) = 0 for every τ ∈ J,

(ii) For every χ ∈ Z, for all τ, s ∈ J,

∂
∂τ
G(τ, s)|τ=s χ = χ and

∂
∂s
G(τ, s)|τ=s χ = −χ.

(B2) For χ ∈ D(A (τ)), G(τ, s)χ ∈ D(A (τ)) for all s, τ ∈ J, the map (τ, s) 7→ G(τ, s)χ is of class C2 and

(i) ∂2

∂τ2G(τ, s)χ = A (τ)G(τ, s)χ,

(ii) ∂2

∂s2G(τ, s)χ = G(τ, s)A (s)χ,

(iii) ∂2

∂s∂τG(τ, s)|τ=s χ = 0

(B3) For all s, τ ∈ J, if χ ∈ D(A (τ)) then ∂
∂sG(τ, s)χ ∈ D(A (τ)), ∂3

∂τ2∂sG(τ, s)χ, ∂3

∂s2∂τG(τ, s)χ exist, also

(i) ∂3

∂τ2∂sG(τ, s)χ = A (τ) ∂∂sG(τ, s)χ,

(ii) ∂3

∂s2∂τG(τ, s)χ = ∂
∂τG(τ, s)A (s)χ,

and the map (τ, s) 7→ A (τ) ∂∂sG(τ, s)χ is continuous.

Throughout the article, we suppose an evolution operatorG(τ, s) exists related to the operator A (τ). Besides,
we present E(τ, s) = − ∂∂sG(τ, s).

We are now presenting some useful definitions for the set-valued map (see [24, 25]). Let P(Z) denote the
family of all non-empty subsets of Z. For convenience, set:

Pcl(Z) = {χ ∈ P(Z) : χ is closed}, Pbd(Z) = {χ ∈ P(Z) : χ is bounded},
Pcv(Z) = {χ ∈ P(Z) : χ is convex}, Pcp(Z) = {χ ∈ P(Z) : χ is compact},

Consider Zd : P(Z) × P(Z)→ R+ ∪ {∞} given by

Zd(G,H) = max
{

sup
u∈G

d(u,H), sup
v∈H

d(G, v)
}
,

where d(u,H) = inf
v∈H

d(u, v), d(G, v) = inf
u∈G

d(u, v). Then (Pbd,cl(Z),Zd) is a metric space.

Definition 2.3. Let Θ : Z→ P(Z) be a set-valued mapping, then

(i) Θ is closed (convex) valued if Θ(χ) is closed (convex) for every χ ∈ Z.

(ii) Θ is bounded on bounded sets if Θ(D) = ∪χ∈D Θ(χ) is bounded in Z for all D ∈ Pbd(Z).

(iii) If for each χ ∈ Z, Θ(χ) , ∅ is closed subset of Z, and if for each open set J in Z containing Θ(χ), there is an
open neighbourhood O of χ such that Θ(O) ⊆ J, then Θ is characterized as upper semi-continuous (u.s.c.) on
Z,

(iv) If Θ(J) is relatively compact for every J ∈ Pbd(Z), then Θ is completely continuous .



A. Upadhyay, S. Kumar / Filomat 36:4 (2022), 1215–1230 1219

(v) If there is a χ ∈ Z such that χ ∈ Θ(χ), then Θ has a fixed element.

Definition 2.4. A set-valued operator Θ : Z→ Pbd,cl(Z) is known to be contraction if there is
γ ∈ (0, 1) to ensure that

Zd(χ1, χ2) ≤ γ d(χ1, χ2), ∀ χ1, χ2 ∈ Z.

Definition 2.5. The Clarke generalized directional derivative of a locally Lipschitz functional
Σ : Z→ R at z ∈ Z in the direction w is defined as

Σ0(z; w) = lim sup
x→z ε→0+

Σ(x+εw)−Σ(x)
ε .

The Clarke generalized subdifferential of Σ is a subset of Z∗, and at a point z ∈ Z is defined as

∂Σ(z) = {z∗ ∈ Z∗ : Σ0(z; w) ≥ ⟨z∗,w⟩, for all w ∈ Z}.

Lemma 2.6. [19] Let Θ̄1 : Z→ Pcl,cv,bd(Z), Θ̄2 : Z→ Pcl,cv(Z) be set-valued maps satisfying

(a) Θ̄1 is a contraction,

(b) Θ̄2 is u.s.c. and completely continuous.

Then either (i) the inclusion λχ ∈ Θ̄1χ + Θ̄2χ has a solution for λ = 1, or
(ii) the set {χ ∈ Z : λχ ∈ Θ̄1χ + Θ̄2χ, λ > 1} is unbounded.

The following result plays a key role in dealing with the stochastic term.

Lemma 2.7. [26] Letϕ : J→ L0
2 be such that sup

τ∈J
∥ϕ∥2

L0
2
< ∞. Suppose that there is M > 0 satisfying ∥G(τ, s)∥2 ≤M

for all τ ≥ s. Then

E∥
∫ τ

0 G(τ, s)ϕ(s)dZH(s)∥2
Z
≤ c(H)Mτ2H

(
sup
τ∈J
∥ϕ∥2

L0
2

)
.

Now we introduce a solution of proposed system (1.1) as follows

Definition 2.8. An stochastic process χ :] −∞, β]→ Z is called a mild solution for (1.1) if

1. the measurable process χτ is adapted to Γτ, τ ≥ 0,

2. χ = η(τ) on ] −∞, 0], satisfying ∥η∥2
W
< ∞, χτ ∈ W , τ ∈ J with χ′(0) = ξ ∈ Z, χ|J ∈ PC(Z) and following

integral equation hold:

χ(τ) =



E(τ, 0)η(0) +G(τ, 0)ξ +
∫ τ

0 G(τ, s)ρ(s)ds
+
∫ τ

0 G(τ, s)q(s, χs)dZH(s), τ ∈ [0, r1];

fk(τ, χτ), τ ∈
M

∪
k=1

(rk, tk];

E(τ, tk) fk(tk, χtk ) +G(τ, tk)1k(tk, χtk ) +
∫ τ

tk
G(τ, s)ρ(s)ds

+
∫ τ

tk
G(τ, s)q(s, χs)dZH(s), τ ∈

M

∪
k=1

(tk, rk+1].

(2.1)
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3. Existence of solution

We start this section by imposing the following conditions on the system parameters:
Suppose assumptions (A1 − A7) in Kozak [31] on the operators A (τ), τ ∈ J hold, which ensure the

existence of the evolution operator G(τ, s) satisfying the conditions (B1) − (B3).

(S1) : The operator G(τ, s) is compact for all τ ≥ s, also there exists M > 0 such that

sup
(τ,s)∈J×J

∥E(τ, s)∥ ∨ sup
(τ,s)∈J×J

∥G(τ, s)∥ ≤M, for all τ ≥ s.

(S2) : The functions fk, 1k : (rk, tk] ×W → Z are continuous, and also there are ck > 0, γk > 0, k = 1, . . .M in
order that for all η, η1, η2 ∈ W ,

E∥ fk(τ, η1) − fk(τ, η2)∥2
Z
≤ γk∥η1 − η2∥

2
W , E∥ fk(τ, η)∥2 ≤ γk(1 + ∥η∥2W ),

E∥1k(τ, η1) − 1k(τ, η2)∥2
Z
≤ ck∥η1 − η2∥

2
W , E∥1k(τ, η)∥2 ≤ ck(1 + ∥η∥2W ).

(S3) : Let Σ : J ×W → R be the map such that:

(i) For all χ ∈ Z, Σ(·, χ) is measurable .

(ii) For a.e. τ ∈ J, Σ(τ, ·) is locally Lipschitz .

(iii) There is b1(·) ∈ L1(J,R+) and 0 ≤ b2 in order that

∥∂Σ(s, χ)∥2 = sup{∥ρ(s)∥2| ρ(s) ∈ ∂Σ(s, χ)}

≤ b1(s) + b2∥χ∥
2 for all χ ∈ Z, a.e. s ∈ J.

(S4) : (i) The function q(τ, ·) : W → L0
2 is continuous for all τ ∈ J, and q(·, η) : J→ L0

2 is strongly measurable
for each η ∈ W . Also, there is Mq > 0 to ensure that

E∥q(τ, η1) − q(τ, η2)∥2L0
2
≤ Mq∥η1 − η2∥

2
W , η1, η2 ∈ W .

(ii) There is a continuous function mq : [0,∞) → (0,∞) that is non decreasing, and m(·) ∈ L1(J,R+) with
the aim that

E∥q(τ, η)∥2L0
2
≤ m(τ)mq(∥η∥2W ), (τ, η) ∈ J ×W .

Consider the set-valued map S : L 2(J,Z)→ 2L 2(J,Z)given by

SΣ,χ = {ρ ∈ L 2(J,Z)| ρ(τ) ∈ ∂Σ(τ, χ(τ)) a.e. τ ∈ J, χ ∈ L 2(J,Z)}.

Lemma 3.1. [27] The set SΣ,χ is non empty, and has convex, weakly compact values for each ρ ∈ L 2(J,Z) provided
the assumption (S3) holds.

Lemma 3.2. [28] Let the interval [0, β] be compact, and the set-valued map Σ satisfies (S3). Let F be a linear
continuous operator from L 2([0, β],Z) to C([0, β],Z). Then,

F ◦ SΣ : C([0, β],Z)→ Pcp,cv(Z), χ→ (F ◦ SΣ)(χ) := F(SΣ,χ)

has closed graph in C([0, β],Z) × C([0, β],Z).
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Consider the space Wβ = {χ : ] − ∞, β] → Z / χ0 = η ∈ W , ξ ∈ Z, χ|J ∈ PC
(
Z
)
, sup
τ∈J
E∥χ(τ)∥2 < ∞} with

the semi-norm ∥χ∥β = ∥χ0∥W +
(

sup
τ∈J
E∥χ(τ)∥2

)1/2
.

In view of Lemma 2.1, we have

∥yτ + ητ∥
2
W ≤ 2(∥yτ∥2W + ∥ητ∥

2
W ) ≤4{K2

β sup
τ∈J
E∥y(s)∥2 + L2

β∥y0∥
2
W + K2

β sup
τ∈J
E∥η(s)∥2 + L2

β∥η0∥
2
W }

≤4{K2
β sup
τ∈J
E∥y(s)∥2 + L2

β∥η∥
2
W }, τ ∈ J, (3.1)

Consider the set-valued map Θ : Wβ → P(Wβ) characterized by Θχ, the set of all σ ∈ Wβ satisfying

σ(τ) =



η(τ), τ ∈ J0;
E(τ, 0)η(0) +G(τ, 0)ξ +

∫ τ
0 G(τ, s)ρ(s)ds +

∫ τ
0 G(τ, s)q(s, χs)dZH(s), τ ∈ [0, r1];

fk(τ, χτ), τ ∈
M

∪
k=1

(rk, tk];

E(τ, tk) fk(tk, χtk ) +G(τ, tk)1k(tk, χtk ) +
∫ τ

tk
G(τ, s)ρ(s)ds

+
∫ τ

tk
G(τ, s)q(s, χs)dZH(s), τ ∈

M

∪
k=1

(tk, rk+1],

(3.2)

where ρ ∈ SΣ,χ. We shall show that Θ has a fixed point in Wβ that is a required solution for the system (1.1).
Define η(·) :] −∞, β]→ Z by

η(τ) =

η(τ), τ ∈ J0;
0, τ ∈ J.

Obviously, η ∈ Wβ and η0 = η. Set χ(τ) = η(τ) + y(τ), −∞ < τ ≤ β. Clearly χ(·) satisfies (2.1) if and only if
y0 = 0 and

y(τ) =



E(τ, 0)η(0) +G(τ, 0)ξ +
∫ τ

0 G(τ, s)ρ(s)ds +
∫ τ

0 G(τ, s)q(s, ys + ηs)dZH(s), τ ∈ [0, r1];

fk(τ, yτ + ητ), τ ∈
M

∪
k=1

(rk, tk];

E(τ, tk) fk(tk, ytk + ηtk
) +G(τ, tk)1k(tk, ytk + ηtk

) +
∫ τ

tk
G(τ, s)ρ(s)ds

+
∫ τ

tk
G(τ, s)q(s, ys + ηs)dZH(s), τ ∈

M

∪
k=1

(tk, rk+1],

(3.3)

Consider the set W 0
β = {χ ∈ Wβ : y0 = 0 ∈ W }with the semi-norm given by

∥y∥β = ∥y0∥W +
(

sup
s∈J
E∥y(s)∥2

)1/2
=
(

sup
s∈J
E∥y(s)∥2

)1/2
.

Then (W 0
β , ∥ · ∥β) forms a Banach space.

Now suppose that the set-valued map Θ̄ : W 0
β → P(W 0

β ) defined by Θ̄y, the set of all σ̄ ∈ W 0
β satisfying

σ̄(τ) = 0, τ ∈ J0 and

σ̄(τ) =



E(τ, 0)η(0) +G(τ, 0)ξ +
∫ τ

0 G(τ, s)ρ(s)ds +
∫ τ

0 G(τ, s)q(s, ys + ηs)dZH(s), τ ∈ [0, r1];

fk(τ, yτ + ητ), τ ∈
M

∪
k=1

(rk, tk];

E(τ, tk) fk(tk, ytk + ηtk
) +G(τ, tk)1k(tk, ytk + ηtk

) +
∫ τ

tk
G(τ, s)ρ(s)ds

+
∫ τ

tk
G(τ, s)q(s, ys + ηs)dZH(s), τ ∈

M

∪
k=1

(tk, rk+1],

(3.4)
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where ρ ∈ SΣ,y = {ρ ∈ L2(J,L(Z,Z ) | ρ(τ) ∈ ∂Σ(τ, y(τ) + ητ) a.e.τ ∈ J}. If Θ̄ has a fixed point in W 0
β then

Θ has a fixed point in W 0
β . We now assert that Θ̄ fulfils all assumptions of Lemma 2.6. For κ > 0, let

Dκ(0,W 0
β ) = {y ∈ W 0

β : E∥y∥2β ≤ κ}. Clearly, Dκ ⊂ W 0
β is convex, closed, and bounded. Now in view of

inequality (3.1) and Lemma 2.1, it follows that

∥yτ + ητ∥
2
W ≤ 4[K2

βκ + L2
β∥η∥

2
W ] = κ∗, τ ∈ J.

Next, split Θ̄ = Θ̄1 + Θ̄2, where

(Θ̄1y)(τ) =



E(τ, 0)η(0) +G(τ, 0)ξ +
∫ τ

0 G(τ, s)q(s, ys + ηs)dZH(s), τ ∈ [0, r1];

fk(τ, yτ + ητ), τ ∈
M

∪
k=1

(rk, tk];

E(τ, tk) fk(tk, ytk + ηtk
) +G(τ, tk)1k(tk, ytk + ηtk

)

+
∫ τ

tk
G(τ, s)q(s, ys + ηs)dZH(s), τ ∈

M

∪
k=1

(tk, rk+1],

(3.5)

and

(Θ̄2y)(τ) =



∫ τ
0 G(τ, s)ρ(s)ds, τ ∈ [0, r1];

0, τ ∈
M

∪
k=1

(rk, tk];∫ τ
tk
G(τ, s)ρ(s)ds, τ ∈

M

∪
k=1

(tk, rk+1].

(3.6)

Lemma 3.3. If (S1), (S2) and (S4) hold, then Θ̄1 takes bounded sets into bounded sets in W 0
β , and is a contraction on

W 0
β .

Proof. Claim 1: Θ̄1 maps bounded sets to bounded sets in W 0
β .

Let y ∈ Dκ(0,W 0
β ), then by (S1), (S2) and (S4), for τ ∈ [0, r1], we get

E∥y(τ)∥2
Z
≤ 3M

[
E∥η∥2

Z
+ E∥ξ∥2

Z
+ r2H

1 c(H)Tr(Q)
∫ r1

0
m(s)mq(∥ys + ηs∥

2
W )ds

]
≤ 3M

[
E∥η∥2

Z
+ E∥ξ∥2

Z
+ r2H

1 c(H)Tr(Q)mq(κ∗)∥m(τ)∥L1 := s0.

For any τ ∈ (rk, tk], k = 1, 2, . . . ,M,

E∥y(τ)∥2
Z
≤ E∥ fk(τ, yτ + ητ)∥

2
Z
≤ γk(∥yτ + ητ∥

2
W + 1) ≤ γk(κ∗ + 1) := ζk.

Similarly, for τ ∈ (tk, rk+1], k = 1, 2, . . . ,M, compute

E∥y(τ)∥2
Z
≤ 3[E∥E(τ, tk) fk(tk, ytk + ηtk

)∥2
Z
+ E∥G(τ, tk)1k(tk, ytk + ηtk

)∥2
Z

+ E∥

∫ τ

tk

G(τ, s)q(s, ys + ηs)dZH(s)∥2
Z

≤ 3M
{
(γk + ck)(∥ytk + ηtk

∥
2
W + 1) + (rk+1 − tk)2Hc(H)M Tr(Q)

∫ τ

tk

m(s)mq(∥ys + ηs∥
2
W )ds

}
≤ 3M

{
(γk + ck)(κ∗ + 1) + (rk+1 − tk)2Hc(H)M Tr(Q)mq(κ∗)∥m(τ)∥L1 := sk.

SetN = max
0≤k≤M

{sk} + max
1≤k≤M

{ζk}, we get ∥Θ̄1∥
2
Z
≤ N .

Claim 2: Θ̄1 is a contraction on W 0
β .
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Let χ∗, χ∗∗ ∈ W 0
β . Then for τ ∈ [0, r1], we have

E∥(Θ̄1χ
∗)(τ) − (Θ̄1χ

∗∗)(τ)∥2
Z
= E∥

∫ τ

0
G(τ, s)[q(s, χ∗s + ηs) − q(s, χ∗∗s + ηs)]dZH(s)∥2

Z
.

Using Lemma 2.1, 2.7, and (S4)(i), we obtain

E∥(Θ̄1χ
∗)(τ) − (Θ̄1χ

∗∗)(τ)∥2
Z
≤ c(H)Mτ2HE∥q(s, χ∗s + ηs) − q(s, χ∗∗s + ηs)∥

2
L0

2

≤ c(H)Mβ2HTr(Q)Mq∥χ
∗

s − χ
∗∗

s ∥
2
W

≤ 2K2
βc(H)Mβ2HTr(Q)Mq sup

s∈J
E∥χ∗(s) − χ∗∗(s)∥2Y

= 2K2
βc(H)Mβ2HTr(Q)Mq∥χ

∗
− χ∗∗∥2PC

Further, for τ ∈
M

∪
i=1

(rk, tk], using Lemma 2.1 and (S2)(i), we have

E∥(Θ̄1χ
∗)(τ) − (Θ̄1χ

∗∗)(τ)∥2
Z
≤ E∥ fk(τ, χ∗τ + ητ) − fk(τ, χ∗∗τ + ητ)∥

2
Y

≤ γk∥χ
∗

τ − χ
∗∗

τ ∥
2
W

≤ 4γkK2
β sup

s∈J
E∥χ∗(s) − χ∗∗(s)∥2Y

≤ 4γkK2
β∥χ

∗
− χ∗∗∥2PC.

Lastly, for τ ∈
M

∪
i=1

(tk, rk+1],

E∥(Θ̄1χ
∗)(τ) − (Θ̄1χ

∗∗)(τ)∥2
Z
≤ 3∥E(τ, tk)∥2

Z
E∥ fk(tk, χ

∗

tk
+ ηtk

) − fk(tk, χ
∗∗

tk
+ ηtk

)∥2Y
+ 3∥G(τ, tk)∥2

Z
∥1k(tk, χ

∗

tk
+ ηtk

) − 1k(tk, χ
∗

tk
+ ηtk

)∥2
Z

+ 3E∥
∫ τ

tk

G(τ, s)[q(s, χ∗s + ηs) − q(s, χ∗∗s + ηs)]dZH(s)∥2
Z

≤ 3Mγk∥χ
∗

tk
− χ∗∗tk

∥
2
W + 3Mck∥χ

∗

tk
− χ∗∗tk

∥
2
W + 3c(H)Tr(Q)MMqβ

2H
∥χ∗s − χ

∗∗

s ∥
2
W

≤ 12MK2
β[γk + ck + β

2Hc(H)Tr(Q)Mq]∥χ∗ − χ∗∗∥2PC.

Thus for τ ∈ J,

E∥(Θ̄1χ
∗)(τ) − (Θ̄1χ

∗∗)(τ)∥2
Z
≤M0∥χ

∗
− χ∗∗∥2PC. (3.7)

where M0 = max
1≤k≤M

4K2
β[(1 + 3M)γk + 3M(ck + β

2Hc(H)Tr(Q)Mq)] < 1.

Hence Θ̄1 is a contraction on W 0
β .

Lemma 3.4. If (S1) and (S3) hold, then Θ̄2 has convex, compact values, and also is completely continuous.

Proof. Claim 1: Θ̄2 is convex for each χ ∈ W 0
β .

If σ̂1, σ̂2 ∈ Θ̄2χ, then there are ρ1, ρ2 ∈ SΣ,y satisfying for any τ ∈ [tk, rk+1], k = 0, 1, . . . ,M

σ̂l(τ) =
∫ τ

tk

G(τ, s)ρl(s)ds, l = 1, 2.
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Let 0 ≤ λ ≤ 1, then [λσ̂1 + (1 − λ)σ̂2](τ) =
∫ τ

tk
G(τ, s)[λρ1(s) + (1 − λ)ρ2(s)]ds.

In view of Lemma 3.1, SΣ,y is convex, we have λσ̂1 + (1 − λ)σ̂2 ∈ Θ̄2χ.
Claim 2: Θ̄2 takes bounded sets into bounded sets in W 0

β .
It is sufficient to establish that there existsL > 0 with the end goal that for each σ̂ ∈ Θ̄2y, y ∈ Dκ(0,W 0

β ), one
has ∥σ̂∥2PC ≤ L. If σ̂ ∈ Θ̄2y, then there exists ρ ∈ SΣ,y for τ ∈ [tk, rk+1], k = 0, 1, . . . ,M such that

σ̂(τ) =
∫ τ

tk
G(τ, s)ρ(s)ds.

Now, for y ∈ Dκ(0,W 0
β ),

E∥σ̂(τ)∥2Y = E∥
∫ τ

tk

G(τ, s)ρ(s)ds∥2Y ≤ βM
∫ τ

tk

E∥ρ(s)∥2Yds

≤ βM
∫ τ

tk

[b1(s) + b2E∥y(s) + η̄(s)∥2W ]ds

≤ βM[∥b1∥L1(J,R+) + 2βb2(κ∗ + ∥η∥2W )] = L.

Thus for each y ∈ Dκ(0,W 0
β ), we have ∥σ̂∥2PC ≤ L.

Claim 3: Θ̄2 maps bounded sets into equicontinuous sets of W 0
β .

For every y ∈ Dκ(0,W 0
β ), σ̂ ∈ Θ̄2y, there exists ρ ∈ SΣ,y such that for τ ∈ [tk, rk+1], k = 0, 1, . . . ,M

σ̂(τ) =
∫ τ

tk
G(τ, s)ρ(s)ds.

For τ, τ + ς ∈ [tk, rk+1], k = 0, 1, . . . ,M, 0 < |ς| < δ, δ > 0,

E∥σ̂(τ + ς) − σ̂(τ)∥2Y ≤ 2E∥
∫ τ

tk

[G(τ + ς, s) − G(τ, s)]ρ(s)ds∥2Y + 2E∥
∫ τ+ς

τ
G(τ + ς, s)ρ(s)ds∥2Y

≤ 2(τ − tk)
∫ τ

tk

∥G(τ + ς, s) − G(τ, s)∥2YE∥ρ(s)∥2Yds + 2τ
∫ τ+ς

τ
∥G(τ + ς, s)∥2YE∥ρ(s)∥2Yds

≤2(rk+1 − tk){∥b1∥L1(J,R+) + 2(rk+1 − tk)b2(κ∗ + ∥η∥2W )}×

sup
s∈[tk ,rk+1]

∥G(τ + ς, s) − G(τ, s)∥2Y + 2τM(∥b1∥L1(J,R+) + b2κ
∗τ).

The compactness of the operator G(τ, s) yields the continuity in the uniform operator topology. Thus
E∥σ̂(τ + ς) − σ̂(τ)∥2

Y
→ 0 uniformly independently of y ∈ Dκ(0,W 0

β ) as ς→ 0. Hence our claim holds.

Claim 4: Θ̄2 is a compact set-valued map.
We now assert that Θ̄2 maps Dκ(0,W 0

β ) into a precompact set in Z. That is, the set △(τ) = {σ̂(τ), σ̂ ∈
Θ̄2Dκ(0,W 0

β )} is relatively compact in Z. For τ = 0, Θ̄2y = 0 is compact.

If τ ∈ [tk, rk+1], k = 0, 1, · · · ,n then for each y ∈ Dκ(0,W 0
β ) and σ̂(τ) ∈ Θ̄2y, there exists ρ ∈ SΣ,y in order

that

σ̂(τ) =
∫ τ

tk
G(τ, s)ρ(s)ds.

Let 0 < ϵ < τ. Define σ̂ϵ(τ) =
∫ τ−ϵ

tk
G(τ, s)ρ(s)ds = G(τ, τ − ϵ)

∫ τ−ϵ
tk
G(τ − ϵ, s)ρ(s)ds.

By (S1), G(τ, s); 0 < s ≤ τ is compact. From the boundedness of
∫ τ−ϵ

tk
G(τ − ϵ, s)ρ(s)ds, we acquire that

△ϵ(τ) = {σ̂(τ), σ̂ ∈ Θ̄2Dκ(0,W 0
β )} is relatively compact in Z.
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Furthermore, for σ̂ϵ ∈ Θ̄2Dκ(0,W 0
β )}, we obtain

E∥σ̂(τ) − σ̂ϵ(τ)∥2 ≤ ϵ
∫ τ

τ−ϵ
E∥G(τ, s)ρ(s)∥2Yds

≤ ϵM
∫ τ

τ−ϵ
[b1(s) + b2(κ∗ + ∥η∥2W )]ds

≤ ϵM[ϵ∥b1∥L1(J,R+) + ϵb2(κ∗ + ∥η∥2W )]
→ 0, for sufficiently small positive ϵ.

Thus, we have precompact sets that are arbitrarily close to △(τ). Hence △(τ), τ > 0 is totally bounded.
Considering Claim 3 and the Arzela–Ascoli theorem, we infer that Θ̄2 is a compact operator (completely
continuous).

Lemma 3.5. If (S1) and (S3) hold, then Θ̄2 has a closed graph.

Proof. Let w(n)
→ w∗, σ̂(n) ∈ Θ̄2w(n), w(n)

∈ Dκ(0,W 0
β ) and σ̂(n) → σ̂∗. Then using the Axiom (i), it follows that

∥w(n)
τ − w∗τ∥

2
W ≤ 2K2

β sup{∥w(n)(s) − w∗(s)∥2
Z
, 0 ≤ s ≤ τ} + 2L2

β∥w
(n)
0 − w∗0∥

2
W

≤ 2K2
β sup

s∈J
{∥w(n)(s) − w∗(s)∥2

Z
→ 0 as n→∞.

This implies w(n)
s → w∗s uniformly as n→∞ for s ∈] −∞, β].

We claim that σ̂∗ ∈ Θ̄2w∗. For σ̂(n) ∈ Θ̄2w(n), there exists ρ(n)
∈ SΣ,w(n) such that, for τ ∈ [tk, rk+1], k =

0, 1, . . . ,M

σ̂(n)(τ) =
∫ τ

tk

G(τ, s)ρ(n)(s)ds.

We wish to show that there is ρ∗ ∈ SΣ,w∗ that insures

σ̂∗(τ) =
∫ τ

tk

G(τ, s)ρ∗(s)ds, τ ∈ [tk, rk+1], k = 0, 1, . . . ,M.

For any τ ∈ [tk, rk+1], k = 0, 1, 2, . . .M,

∥σ̂(n)(τ) − σ̂∗(τ)∥2PC =∥

∫ τ

tk

G(τ, s)[ρ(n)(s) − ρ∗(s)]ds∥2PC

≤ (rk+1 − tk)M
∫ τ

tk

∥ρ(n)(s) − ρ∗(s)∥2

→ 0 as n→∞.

Consider the operator ∆ : L2([tk, rk+1],Z)→ C([tk, rk+1],Z), k = 0, 1, . . . ,M,

∆(ρ)(τ) =
∫ τ

tk

G(τ, s)ρ(s)ds.

Then ∥∆(ρ)∥2 ≤ (rk+1 − tk)M∥ρ(s)∥2. This shows that ∆ is bounded, which implies ∆ is continuous. Lemma
3.2 asserts that the operator ∆ ◦SΣ has a closed graph. Moreover, by the definition of ∆, for τ ∈ [tk, rk+1], k =
0, 1, . . . ,M,we get,

σ̂(n)(τ) ∈ Θ̄2(SΣ,w(n) ).
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Since w(n)
→ w∗, for some ρ∗ ∈ SΣ,w∗ , it follows that for any τ ∈ [tk, rk+1], k = 0, 1, . . .M,we have

σ̂∗(τ) =
∫ τ

tk

G(τ, s)ρ∗(s)ds, this indicates that σ̂∗ ∈ Θ̄w∗.

This implies operator Θ̄2 is closed graph. By utilizing Proposition 3.3.12(2) of [33], we get that Θ̄2 is u.s.c..
Therefore Θ̄2 satisfies the condition (b) of Lemma 2.6.

Theorem 3.6. Let (S1)-(S4) are fulfilled. Then system (1.1) admits at least one solution on ] −∞, β] provided that

M0 = max
1≤k≤M

4K2
β[γk + 3M(ck + β

2Hc(H)Tr(Q)Mq)] < 1, and∫ β

0
max{c∗1m(t) + c∗2b2}dt <

∫
∞

Υ(0)

ds
mq(s)

. (3.8)

Proof. We claim that the set ℧ = {y ∈ W 0
β : λy ∈ Θ̄y = Θ̄1y + Θ̄2y} is bounded for some λ > 1 on [0, β]. Let

y ∈ W 0
β satisfies λy ∈ Θ̄y = Θ̄1y + Θ̄2y for some λ > 1 , we obtain

y(τ) =



1
λ

[
E(τ, 0)η(0) +G(τ, 0)ξ +

∫ τ
0 G(τ, s)ρ(s)ds +

∫ τ
0 G(τ, s)q(s, ys + ηs)dZH(s)

]
, τ ∈ [0, r1];

1
λ fk(τ, yτ + ητ), τ ∈

M

∪
k=1

(rk, tk];
1
λ

[
E(τ, tk) fk(tk, ytk + ηtk

) +G(τ, tk)1k(tk, ytk + ηtk
) +
∫ τ

tk
G(τ, s)ρ(s)ds

+
∫ τ

tk
G(τ, s)q(s, ys + ηs)dZH(s)

]
, τ ∈

M

∪
k=1

(tk, rk+1],

(3.9)

Thus for τ ∈ [0, r1], we get

E∥y(τ)∥2
Z
≤ 4M

[
E∥η∥2

Z
+ E∥ξ∥2

Z
+ r1

∫ r1

0
b1(s)ds + r1b2

∫ r1

0
E∥y(s)∥2

Z
ds

+ r2H
1 c(H)Tr(Q)

∫ r1

0
m(s)mq(∥ys + ηs∥

2
W )ds

]
.

For any τ ∈ (rk, tk], k = 1, 2, . . . ,M,we have

E∥y(τ)∥2
Z
≤ E∥ fk(τ, yτ + ητ)∥

2
Z

≤ γk(∥yτ + ητ∥
2
W + 1).

Similarly, for τ ∈ (tk, rk+1], k = 1, 2, . . . ,M, we compute

E∥y(τ)∥2
Z
≤ 4[E∥E(τ, tk) fk(tk, ytk + ηtk

)∥2
Z
+ E∥G(τ, tk)1k(tk, ytk + ηtk

)∥2
Z

+ E∥

∫ τ

tk

G(τ, s)q(s, ys + ηs)dZH(s)∥2
Z
+ E∥

∫ τ

tk

G(τ, s)ρ(s)ds∥2
Z

≤ 4M
{
(γk + ck)(∥ytk + ηtk

∥
2
W + 1) + (rk+1 − tk)2Hc(H)M Tr(Q)

∫ τ

tk

m(s)mq(∥ys + ηs∥
2
W )ds

+ (rk+1 − tk)M
∫ τ

tk

[b1(s) + b2E∥y(s) + η(s)∥2
Z

]ds
}

Using Lemma 2.1, we get
sup{∥ys + ηs∥

2
W
, τ ≥ s ≥ 0} ≤ 4L2

βE∥η∥
2
W
+ 4K2

β sup{E∥y(s)∥2, τ ≥ s ≥ 0}.
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Let φ(τ) = 4L2
βE∥η∥

2
W
+ 4K2

β sup{E∥y(s)∥2, τ ≥ s ≥ 0}, τ ≥ 0. Thus, for τ ∈ J, we obtain

E∥y(τ)∥2
Z
≤M̂ + γkφ(τ) + 4M[γkφ(τ) + ckφ(τ)] + 4β2Hc(H)M Tr(Q)

∫ τ

0
m(s)mq(φ(s))ds

+ βM
∫ τ

0
[b1(s) + b2φ(s)]ds,

where M̂ = max
1≤k≤M

[4M(∥η∥2
W
+ E∥ξ∥2

Z
+ γk + ck) + γk].

Also, a simple calculation yields that

φ(τ) ≤4[L2
β∥η∥

2 + K2
βM̂] + 4K2

β

{
[γk(1 + 4M) + 4Mck]φ(τ)

+ 4β2Hc(H)M Tr(Q)
∫ τ

0
m(s)mq(φ(s))ds + βM

∫ τ

0
[b1(s) + b2φ(s)]ds

}
.

Using the fact that M̂0 = 4K2
β max

1≤k≤M
{γk(1 + 4M) + 4Mck} < 1, we obtain

φ(τ) ≤
1

1 − M̂0

{4L2
β∥η∥

2
W + 4K2

βM̂} + c∗1

∫ τ

0
m(s)mq(φ(s))ds + c∗2 b2

∫ τ

0
φ(s)ds,

where c∗1 =
4K2
ββ

2Hc(H)M Tr(Q)

1−M̂0
, c∗2 =

βM

1−M̂0
.

Let c∗ = 1
1−M̂0
{4L2
β∥η∥

2
W
+ 4K2

βM̂ + βM∥b1∥L1(J,R+)}. Then the above inequality can be rewritten as

φ(τ) ≤ Υ(τ) = c∗ + c∗1

∫ τ

0
m(s)mq(φ(s))ds + c∗2b2

∫ τ

0
φ(s)ds,

Also Υ(0) = c∗ and

φ′(τ) ≤ c∗1m(t)mq(φ(τ)) + c∗2b2φ(τ) ≤ max{c∗1m(τ), c∗2b2}[Υ(τ) +mq(Υ(τ))], τ ∈ J.

Thus we get∫ τ

0

Υ′(s)
Υ(s) +mq(Υ(s))

ds ≤
∫ τ

0

Υ′(s)
mq(Υ(s))

ds ≤
∫ β

0
max{c∗1m(s) + c∗2b2}ds.

Moreover,∫ Υ(τ)

Υ(0)

ds
mq(s)

≤

∫ β

0
max{c∗1m(s) + c∗2b2}ds <

∫
∞

Υ(0)

ds
mq(s)

.

The above inequality shows that Υ(τ) is bounded. Therefore, we have Ñ such that

Υ(τ) ≤ Ñ, τ ∈ J.

Consequently, ∥yτ + ητ∥2W ≤ φ(τ) ≤ Υ(τ) ≤ Ñ, τ ∈ J, where Ñ depends on mq(·) and m(·). This proves that
℧ is bounded on [0, β]. Hence, Lemmas 3.3–3.5 and the first assertion of Lemma 2.6 yield that Θ̄ = Θ̄1 + Θ̄2
has a fixed element y∗ in W 0

β . Set χ∗(τ) = y∗(τ) + η̄(τ), τ ∈] −∞, β]. Then χ∗ is a fixed point of the operator Θ.
Consequently, χ∗ is a mild solution of the system (1.1).
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4. An Example

This section is illustrated for the applicability of the above result to a concrete stochastic partial differ-
ential inclusions with unbounded delay and Clarke’s subdifferential given by

∂2

∂τ2χ(τ,w) ∈ ∂2

∂w2χ(τ,w) + v(τ) ∂∂τχ(τ,w) + ∂Σ(τ,w, χ(τ,w)) +
∫ τ
−∞

u(t − τ)ũ(τ, χ(t,w))dZH(t),

(τ,w) ∈
M

∪
k=1

(tk, rk+1] × [0, π];

χ(τ,w) =
∫ τ
−∞
µk(t − τ)χ(t,w)dt, (τ,w) ∈

M

∪
k=1

(rk, tk] × [0, π];

χ(τ, 0) = χ(τ, π) = 0, τ ∈ (0, β];
χ(τ,w) = η(τ,w) ∈ W , (τ,w) ∈] −∞, 0] × [0, π];
∂
∂τχ(0,w) = χ1(w);
∂
∂τχ(τ,w) =

∫ τ
−∞
µ̃k(t − τ)χ(t,w)dt, (τ,w) ∈

M

∪
k=1

(rk, tk] × [0, π];

(4.1)

where η, χ1 are continuous. To compose the above system in the abstract form, set Z = Z = L2([0, π];R).
Let H 2([0, π],R) be the Sobolev space of all mappings χ : [0, π] → R such that χ′′ ∈ L2([0, π],R). Define
A : D(A ) → Z by A χ(τ) = χ′′(τ), where D(A ) = {χ ∈ Z : χ, χ′ are absolutely continuous, χ′′ ∈
Z, χ(0) = χ(π) = 0}. Then, the cosine family C(τ) and the associated sine function S(τ) on Z are generated
by A and are strongly continuous; also for any τ ∈ R, ∥C(τ)∥ ≤ 1 [32]. Define Ĉ : H 1([0, π],R) → Z by
Ĉ(τ)χ(w) = v(τ)χ′(w), where v : [0, 1]→ R is Hölder continuous. Define the linear operator A (τ) = Ĉ(τ)+A
that is closed also. The operator {A (τ) : τ ∈ J} generates the evolution operator {G(τ, s)}(τ,s)∈D, D = {(τ, s) ∈
J × J : s ≤ τ}, see [23]. Moreover, G(·, ·) is well defined and assumption (S1) hold with M = 1.

The map Σ : [0, π] × J × R → R is a locally Lipschitz w.r.t. the last variable, which is non-smooth and
non-convex. The set-valued function ∂Σ(τ,w, ϕ) : R → 2R is non-monotone. To support (S3) one can take
Σ(ϕ) = min{ϖ1(ϕ), ϖ2(ϕ)}, whereϖ1, ϖ2 : R→ R are convex quadratic functions [34]. Notation ZH(τ) stands
for the Rosenblatt process that is defined on the complete stochastic space (Ω,Γ,P) and 1

2 < H < 1 .

Let the function l̃ :] −∞, 0]→ R+ ∪ {0} be measurable satisfying (g-5)-(g-7) described in [21].

Set PC0 × L2 (̃l,Z) =
{
Π : J0 → Z, Π(·) is Lebesgue measurable on ] −∞, 0)

}
and

∥Π∥W = ∥Π(0)∥ +
( ∫ 0

−∞

l̃(s)∥Π(s)∥2ds
) 1

2
.

The space (W , ∥ · ∥W ) = (PC0 × L2(l̃,Z), ∥ · ∥W ) satisfies Axioms (i) and (ii), (see [21]).
Suppose that the following conditions hold:

(i) Let u : R → R, ũ : R2
→ R be continuous and Lu =

( ∫ 0

−∞

(u(s))2

l̃(s)
ds
)1/2
< ∞, also for (τ, x) ∈ R2,

|ũ(τ, x)| ≤ b̃(τ)|x|, b̃ : R→ R is continuous.

(ii) The functions µk, µ̃k : R2
→ R are continuous and there are mappings ak, ãk : R → R which are

continuous satisfying |µk(s, x)| ≤ ak(s) with Ak =
( ∫ 0

−∞

(ak(s))2

l̃(s)
ds
)1/2
< ∞, also |µ̃k(s, x)| ≤ ãk(s) with

Ãk =
( ∫ 0

−∞

(ãk(s))2

l̃(s)
ds
)1/2
< ∞.

Take η ∈ W with η(ϑ)(w) = η(ϑ,w), (ϑ,w) ∈] −∞, 0] ×W .



A. Upadhyay, S. Kumar / Filomat 36:4 (2022), 1215–1230 1229

Let χ(t)(w) = χ(t,w), define q : J ×W → L0
2, fk, 1k(rk, tk+1] ×W → Z as

q(τ,Ξ)(w) =
∫ 0

−∞

u(t)ũ(τ,Ξ(t)(w)dt,

fk(τ,Ξ)(w) =
∫ 0

−∞

µk(t)Ξ(t)(w)dt,

1k(τ,Ξ)(w) =
∫ 0

−∞

µ̃k(t)Ξ(t)(w)dt.

Under the above assumptions the problem (4) can be formulated as (1.1).
From the hypothesis (i), for all (τ,Ξ) ∈ [0, β) ×W , we have

E∥q(τ,Ξ)∥2 = E
[( ∫ π

0

( ∫ 0

−∞

u(t)ũ(τ,Ξ(t)(w))dt
)2

dw
) 1

2
]2

≤ E
[( ∫ π

0

( ∫ 0

−∞

u(t)b̃(τ)|Ξ(t)(w)|dt
)2

dw
) 1

2
]2

≤ E
[
b̃(τ)
( ∫ 0

−∞

(u(t))2

l̃(t)
dt
) 1

2
( ∫ 0

−∞

l̃(t)∥Ξ(t)∥2dt
) 1

2
]2

≤ [b̃(τ)Lu]2
∥Ξ∥2W .

Also for all (τ,Ξ), (τ,Ξ1) ∈ (rk, tk) ×W , we get

E∥1k(τ,Ξ) − 1k(τ,Ξ1)∥2 = E
[( ∫ π

0

( ∫ 0

−∞

µi(t,w)[Ξ(t)(w) − Ξ1(t)(w)]dt
)2

dw
) 1

2
]2

≤ E
[( ∫ 0

−∞

(ak(t))2

l̃(t)
dt
) 1

2
( ∫ 0

−∞

l̃(t)∥Ξ(t) − Ξ1(t)∥2dt
) 1

2
]2

≤

[
Ak

(
∥Ξ(0)∥ +

( ∫ 0

−∞

l̃(t)∥Ξ(t) − Ξ1(t)∥2dt
) 1

2
)]2

≤ A2
k∥Ξ − Ξ1∥

2
W .

Similarly,

E∥ fk(τ,Ξ) − fk(τ,Ξ1)∥2 ≤ γk∥Ξ − Ξ1∥
2
W , γk > 0, for all (τ,Ξ), (τ,Ξ1) ∈ (rk, tk) ×W

E∥q(τ,Ξ) − q(τ,Ξ1)∥2 ≤Mq∥Ξ − Ξ1∥
2
W , Mq > 0, for all (τ,Ξ), (τ,Ξ1) ∈ [0, β) ×W

Thus all the hypotheses in Theorem 3.6 are followed. Hence, the model (4) admits a solution on J.

5. Conclusion

In this article, we study a new class of non-autonomous second-order stochastic inclusions of Clarke’s
subdifferential type involving NIIs, unbounded delay, and the Rosenblatt process. The existence result is
deduced by utilizing the fixed point strategy for a set-valued map. The obtained results are illustrated
through a concrete example. In the future, it is interesting to study the controllability results (such as
approximate controllability, optimal control, and time-optimal control among others) of the associated
systems. In our future research work, we will consider the optimal control problem associated with the
system (1.1) involving state-dependent delay.
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